
Recurrence Relations

Now we’ll look at how we might solve recurrence relations.

1. A recurrence relation is like a differential equation. Its an expression describing a
sequence of numbers where the value of some number in the sequence can be defined
in terms of earlier numbers in the sequence.

2. We’re already intimately familiar with the Fibonacci sequence, where the value of a
number in the sequence is the sum of the previous two numbers. We’ll write it as:

an = an−1 + an−2

3. As a member of the research staff at the Center for Disease Control in Atlanta, you
have been tasked with tracking the spread of the recently discovered Severe Acute Res-
piratory Syndrome (SARS). After talking to several health officials, you have decided
to model SARS with the following assumptions:

(a) A person with SARS is sick for four days.

(b) A person spreads SARS to two other people for each day sick.

(c) At day 0, there was only 1 person infected.

In order to help analyze this, you built the following table:
Number People Sick total
1 2 3 4 number

Day day days days days sick Comments
0 1 0 0 0 1 Poor Sucker
1 2 1 0 0 3 Spreads to Family
2 6 2 1 0 9 Uh Oh
3 18 6 2 1 27 Look out!
4 54 18 6 2 80 Original person dead!
5 160 54 18 6 238 Government begins cover-up
6 476 160 54 18 708 Back page of newspapers
7 1416 476 160 54 2106 Displaces war news

By looking at this table, you discover the recurrence relations an describing the number
of people sick on day n. You assumed that ∀n, n < 0 → an = 0. That is a−1 = a−2 =
a−3 = · · · = 0. You also assumed a0 = 1.

What is the recurrence relation you discovered?

an = 3an−1 − an−4 + an−5
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4. Normally to find out the value of an for some particular n, we need to find out the
value of all the numbers that came before. What a pain! We’ll define “solving” a
recurrence relation as coming up with a formula so that we can determine an without
having to determine all the numbers that came before,

5. some recurrence relations are solvable using algebraic techniques, but they’re often
tricky, they require some math many of you don’t know, and it still won’t work for
many relations.

6. Instead, we’ll look at classes of recurrence relations that we know we can solve in a
general way.

(a) A recurrence relation is homogeneous if every term on the right-hand side contains
a factor of the form ak.

i. an = nan−1an−2 + 3a0 is homogeneous.

ii. an = nan−1an−2 + 3a0 + 7 is not.

(b) A recurrence relation is linear if every term on the right-hand side contains no
more than one factor of the form ak.

i. an = nan−1an−2 + 3a0 is homogeneous, but not linear.

ii. an = nan−1 − an−2 + 3a0 is both homogeneous and linear.

(c) A recurrence relation has constant coefficients if n does not appear in any term,
except in a subscript.

i. an = nan−1−an−2+3a0 is homogeneous and linear, but does not have constant
coefficients.

ii. an = 4an−1 − an−2 + 3a0 is a linear homogeneous recurrence relation with
constant coefficients.

7. Our first technique will only work on linear homogeneous recurrence relation with
constant coefficients. It generates a solution of the form an = rn where r is a constant.

(a) Let us consider an example we all know: calculating interest. If we keep our
money (c dollars) in the bank at 11% annual interest, compounded annually, how
much money do we have after n years? an = 1.11an−1, a0 = c

We know a formula for this, don’t we? an = 50(1.11)n.

(b) The nice thing is that LHRRw/CC will always be of that form, so:

(c) Suppose we have a LHRRw/CC: an = c1an−1 + c2an−2 + ... + ckan−k. If an = rn,
then we could substitute:

rn = c1r
n−1 + c2r

n−2 + ... + ckr
n−k

rk = c1r
k−1 + c2r

k−2 + ... + ckr
k−k divide byrn−k

rk − c1r
k−1 − c2r

k−2 − ...− ckr
k−k = 0
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(d) If we can find a solution for this equation (called the characteristic equation) in
terms of r, then we know the value of r in the original equation an = rn

(e) But this isn’t the whole story. Take the case of calculating interest. an = 1.11an−1.
The characteristic equation is: r − 1.11 = 0. The solution to that is obviously
r = 1.11, implying that an = 1.11n. Which is true, this is a solution (sort of)
to the recurrence relation an = 1.11an−1. What’s it missing? a0! We need to
account for that.

(f) We account for a0 by including a constant α in the solution: an = αrn, and then
solving for α based on the value of a0. For example, an = α1.11n, plus a0 = 50,
gives us α = 50, and the final solution an = 1.11n50, which is the interest equation
you know and love.

(g) How do we know that this technique works? We prove this theorem from the text:
“Let C be a real number. Suppose that r-C=0 is the characteristic equation with
one real root r. Then, the sequence {an} is a solution of the recurrence relation
an = can−1 if and only if an = αrn where α is a constant.”

(h) The proof in the text is hard to follow, so it is worth going over it in detail to
understand how the proof stuff you learned before actually applies to a real proof.

(i) Break the theorem into propositions as follows:

“A:(Let C be a real number. Suppose that r-C=0 is the characteristic equation
with one real root r.) Then, B:(the sequence {an} is a solution of the recurrence
relation an = can−1) if and only if C:(an = αrn where α is a constant.)”

(j) This means the theorem says “if A, then (B if and only if C)” or A → (B ↔ C).

A → ((B → C) ∧ (C → B)) Since (X ↔ Y ) is (X → Y ) ∧ (Y → X)

(A → (B → C)) ∧ (A → (C → B)) Since X → (Y ∧ Z) is (X → Y ) ∧ (X → Z)

((A ∧B) → C) ∧ ((A ∧ C) → B)) Since X → (Y → Z) is (X ∧ Y ) → Z

(k) So this tells us we need to prove 2 things:

“IF C is a real number, r-C=0 is the characteristic equation with one real root r,
and the sequence {an} is a solution of the recurrence relation an = can−1, THEN
an = αrn where α is a constant.”

and

“IF c is a real number, r-c=0 is the characteristic equation with one real root r,
and an = αrn where α is a constant, THEN the sequence {an} is a solution of the
recurrence relation.”

Lets do the second one first: prove the sequence {an} is a solution of the recurrence
relation. Assumptions:

r − c = 0

r = c (1)

an = αrn (2)
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One way to show that {an} is a solution of is to start with an = can−1, and come
up with an:

can−1 = cαrn−1 by (2)

= rαrn−1 by (1)

= αrn

= an by (2)�

OK, time to do the second part: prove an = αrn where α and a0 are constants.
A reminder: a RR w/o starting points has multiple solutions.

First we find an α that is consistent with the starting point. We do this by looking
at: a0 = αr0 = α. Thus we know that α = a0. This next part is tricky:

i. We know from the first part that if an = αrn, then the sequence generated
by that equation, {an}, is a solution.

ii. Now, assume some sequence of numbers is a solution to the RR. Assume
we take some equation of the form an = αrn and match it to any part of
the particular sequence (that is, that equation generates that portion of the
sequence).

iii. from 7(k)i, we know that an = αrn must be a solution, and since an = αrn,
with α = a0 is a particular solution and all sequences are unique, it must be
the only solution.

(l) What does this say, anyway? Well, tells us 3 things: we can solve an = can−1

with an = αrn, solve for α using the a0, and that using this technique gives us
ALL solutions. These are 3 very important things.

(m) We’re already seen this theorem in action, with our compound interest case.

8. But what about more complicated recurrence relations, such as those of degree 2?

(a) We can apply the same proof above to those cases:

“IF c1 and c2 are real numbers, r2−c1r−c2 = 0 is the characteristic equation with
two real roots r1 and r2 of the recurrence relation an = c1an−1 + c2an−2, and the
sequence {an} is a solution of the recurrence relation, THEN an = α1r

n
1 + α2r

n
2

where α1 and α2 are constants.”

and

“IF c1 and c2 are real numbers, r2 − c1r − c2 = 0 is the characteristic equation
with two real roots r1 and r2 of the recurrence relation an = c1an−1 + c2an−2, and
an = α1r

n
1 + α2r

n
2 where α1 and α2 are constants, THEN the sequence {an} is a

solution of the recurrence relation.”
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(b) We prove these in the same ways, starting with the second:

an = α1r
n
1 + α2r

n
2 (3)

r2 − c1r − c2 = 0 (4)

r2
1 = c1r1 + c2 by (4) (5)

r2
2 = c1r2 + c2 by (4) (6)

c1an−1 + c2an−2 = c1(α1r
n−1
1 + α2r

n−1
2 ) + c2(α1r

n−2
1 + α2r

n−2
2 ) by (3)

= c1α1r
n−1
1 + c1α2r

n−1
2 + c2α1r

n−2
1 + c2α2r

n−2
2

= c1α1r
n−1
1 + c2α1r

n−2
1 + c1α2r

n−1
2 + c2α2r

n−2
2

= α1r
n−2
1 (c1r1 + c2) + α2r

n−2
2 (c1r2 + c2)

= α1r
n−2
1 r2

1 + α2r
n−2
2 r2

2 by (5)and (6)

= α1r
n
1 + α2r

n
2

= an by (3).

(c) Then we need to find the αs.

a0 = C0 = α1 + α2

a1 = C1 = α1r1 + α2r2

α2 = C0 − α1

C1 = α1r1 + (C0 − α1)r2

α1 =
C1 − C0r2

r1 − r2

α2 =
C0r1 − C1

r1 − r2

(d) Note that this proof doesn’t work if r1 = r2, both roots are the same, since we
would be dividing by zero.

(e) How does this work? Lets try an example: a0 = −2, a1 = 3 and an = an−1+6an−2.

k = 2 so the characteristic equation is r2 − r − 6. The roots of this are -2 and 3,
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thus the solution is of the form an = α1(−2)n + α23
n. We know:

−2 = α1(−2)0 + α23
0 and,

3 = α2(−2)1 + α23
1 so,

−2 = α1 + α2

3 = −2α1 + 3α2

α1 = −2− α2

3 = −2(−2− α2) + 3α2

3 = 4 + 2α2 + 3α2

α2 = −1

5

−2 = α1 −
1

5

α1 =
1

5
− 2

α1 = −9

5

an = −9

5
(−2)n − 1

5
3n

(f) Cute, huh? What about Mr. Fibonacci? an = an−1 + an−2, a0 = 0 and a1 = 1.
Again k = 2 and the characteristic equation is r2−r−1 = 0. This is not factorable,
but we can find the roots using the quadratic formula: r1 = 1+

√
5

2
r2 = 1−

√
5

2
so

an = α1(
1+
√

5
2

)n + α2(
1−
√

5
2

)n. α1 = 1/
√

5, α2 = −1/
√

5.

an =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

9. As I said, this doesn’t work if the two roots are the same- we end up dividing by zero.
We need a different solution if we have that case. It turns out that, if there is one
distinct root of the characteristic equation r2 − c1r − c2 = 0, then an = α1r

n + α2nrn

Try: an = 2an−1 − an−2, a0 = 2, a1 = 1.

r2 − 2r + 1 = 0, so the unique root is r = 1. Thus, α1 = 2, α2 = −1 and an = 2− n.

10. That about wraps up recurrence relations of degree 2, but what about higher degrees?

(a) If a characteristic equation rk − c1r
k−1 − · · · − ck = 0 has k roots, then an =

α1r
n
1 + α2r

n
2 + · · ·+ αkr

n
k .

(b) For example, given the recurrence relation an = 3an−1 + 4an−2 − 12an−3 and
a0 = 6, a1 = 1, a2 = 29 what is the solution?

(c) The characteristic equation is: r3−3r2−4r+12 = 0 which has roots:(r1, r2, r3) =
(3, 2,−1). Thus an = α13

n + α22
n + α3(−2)n. And we know α1 + α2 + α3 = 6

and 3α1 + 2α2 − 2α3 = 1 and α13
2 + α22

2 + α3(−2)2 = 29 which gives us:
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α1 = 1, α2 = 2, α3 = 3, for a final solution of:

an = 3n + 2 · 2n + 3(−2)n

11. OK, now what about the case of a LHRRw/CC of arbitrary degree where the number
of roots of the characteristic equation is less than the degree?

(a) suppose a characteristic equation rk − c1r
k−1 − · · · − ck = 0 has t distinct roots

r1, r2, . . . , rt with multiplicities m1, m2, . . . ,mt (this means that root rp occurs mp

times). The solution to the recurrence relation an = c1an−1 +c2an−2 + · · ·+ckan−k

is:

an =(α0 + α1n
1 + α2n

2 + · · ·+ αm1−1n
m1−1)rn

1 +

(β0 + β1n
1 + β2n

2 + · · ·+ βm2−1n
m2−1)rn

2 +

(δ0 + δ1n
1 + δ2n

2 + · · ·+ δm3−1n
m3−1)rn

3 +

. . .

(ω0 + ω1n
1 + ω2n

2 + · · ·+ ωmt−1n
mt−1)rn

t

(7)

(b) wow.

(c) For example: if an = 10an−1−40an−2+82an−3−91an−4+52an−5−12an−6 then the
characteristic equation is: r6−10r5+40r4−82r3+91r2−52r+12 = 0. This factors
to: (r− 2)(r− 2)(r− 1)(r− 1)(r− 1)(r− 3) = 0 for roots of (r1, r2, r3) = (2, 1, 3)
and multiplicities of (m1, m2, m3) = (2, 3, 1). Then, by (7):

an =(α0 + α1n
1)rn

1 +

(β0 + β1n
1 + β2n

2)rn
2 +

(δ0)r
n
3

Then all we would have to do is solve for the various constants using the initial
values a0, a1, a2, a3, a4, a5.

12. Linear NON-HOMOGENEOUS Recurrence Relations with Constant Coefficients.
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