I a) algorithm 1

First note that for loops are a pain to count. Much easier to convert them to while loops:
public double f algl(double x, int k) {
// Compute x"8

double x8 = 1.0;
for(int 1 = 0; 1 < 8; i++)
X8 = x8*x;
double s = 0.0;
for(int n = 1; n <= k; n++) {
double f = 1.0;
for(int i = 1; i <= n; i++)// Compute n!
f = f*i;
s =5 + x8/f; // Add next term
}
return s;
}
becomes:
public double f algl(double x, int k) {
double x8 = 1.0; 1 step
int i=0; 1 step
while( i < 8 ) 9 comparisons, 8 times through
X8 = x8*x; 2 steps
i++; 2 steps
double s = 0.0; 1 step
int n = 1; 1 step
while( n <= k ) { k+1 comparisons, k times through
double f = 1.0; 1 step
int 1 = 1; 1 step
while( i <= n)// Compute n! n+1l comparisons, n times through
f = f*i; 2 steps
i++; 2 steps
s = s + x8/f; // Add next term 3 steps
n++; 2 steps
}
return s;
}

the first 7 lines are: 1+1+9+8(2+2)+1+1 = 45 steps.

Next we notice that the number of times through the inner loop varies, so we know we'll break that
portion out. First, we'll just count the outer loop, pretending the inner loop doesn't exist:
k+1+k(1+1+3+2)= 8k+1 steps.

Now, for the inner loop. The first pass is 2 comparisons, plus 1 time through the loop of 4 steps, or
2+4 steps. The second pass is 3 comparisons, plus 2 times through the loop of 4 steps, or 3+8 steps.
The third pass is 4 comparisons, plus 3 times through the loop of 4 steps, or 4+12 steps, etc. The last
pass is k+1 comparisons, plus k times through the loop of 4 steps, or k+1+4k steps. We now have a
series: 2+4+3+8+4+12+...+k+1+4k. First, lets separate out the comparisons from the loop, leaving 2
series: 2+3+4+...+k+1 for the comparisons, and 4+8+12+...4+4k for the loop contents.

If we take the first series and move the 1 to the front, we get 1+2+3+4+...+k, which we know is k(k+1)/
2. We can the factor out a 4 from the second series to get 4(1+2+3+...4+k), which we know is
4k(k+1)/2, or 2k(k+1). So the inner loop is k(k+1)/2 + 2k(k+1).

So we get a final tally of 45 + 8k+1 + k(k+1)/2 + 2k(k+1). Simplify:

(5k»/2 + 21k/2 + 46, or just O(k?).



I. a) algorithm 2

public double f alg2(double x, int k) {
// Compute x"8

double x2 = x*x;
double x4 = x2*x2;
double x8 = x4*x4;
double s = 0. O
double f = 1.0

for(int n = 1; n <= k; n++) {
f = f*n;// Compute n!
s = s + x8/f; // Add next term

}

return x8%*s;
}
Convert to whiles:
public double f alg2(double x, int k) {

double x2 = x*x; 2 steps
double x4 = x2*x2; 2 steps
double x8 = x4*x4; 2 steps
double s = 0.0; 1 step
double f = 1.0; 1 step
int n = 1; 1 step
while(n <= k) { k+1 comparisons, k times through
f = *n // Compute n! 2 steps
s = s + x8/f; // Add next term 3 steps
n+ 2 steps
}
return x8*s; 1 step
}

With only 1 loop, this one is much easier. The first 6 lines are 9 steps. The loop has k+1 comparisons,
k times through, and 7 steps inside, for a total of k+1+7k. And there is 1 step in the last line, resulting
in, 8k+11, or O(k).

I. b) This matches the graph perfectly, the first being a quadratic curve and the second a linear one.

IL. a)
p=0;
//loop over each term in polynomial
for(int 1 = 0; 1 <= n; i++) {
//compute x"i
xi = 1;
for(int j = 0;j<i;j++)
X1l = xi*x;
p = xi*a[i] + p;
II. b)
double p recursive(double x, double al[], int n, int m) {
if (m == n)
return x*a[n]
else
return a[m] + x * p _recursive(x,a,n, m+l)

}

double p(double x, double a[]) {
return p recursive(x,a,a.size(),0)
}



Note how this only has n+1 recursive calls (m counts up from O to n). Thus, this runs in O(n), Those
of you paying attention will notice that this is very similar to part one. Instead of re-calculating a power
of x each time (factorial in part I), we use that fact that the next thing to compute is equal to the
previous thing we computed times x (or n). That is, n! = n*(n-1)!, and x"= x* x"".



