
Probability for AI students who have seen some probability
before but didn’t understand any of it

“I am inflicting these proofs on you for two reasons:

1. These kind of manipulations will need to be second nature to you if you use probabilistic analytics
in depth

2. Suffering is good for you” -Andrew W. Moore

1. Basic probabilty is straightforward, but mathematicians have made it incredibly complicated by
starting with formal axioms, skipping some fundamental properties and using inconsistent notation.
They do this because there are deep and beautiful connections to other areas of mathematics, such
as set theory and logic, and this approach makes that clear. Unfortunately, it ignores the simple fact
that if you don’t already know these other ares, the connections are totally lost on you, and instead
just confuse you. We’ll try to fix this problem here.

2. Why probablity?

(a) Genuine randomness - the results of quantum events.

(b) Qualification - There are exceptions to rules we can’t or don’t want to list. “If I look both ways
before crossing the street, I’ll get to the other side safely...” is a fine rule, but it has lots of
exceptions: “...if I don’t get hit by a meteor, and I didn’t miss that truck, and I didn’t go even
though I saw that truck, and I don’t have a heart attack, and the world doesn’t end....” Its
easier to just say, “If I look both ways before crossing the street, I’ll probably get to the other
side safely.”

(c) Lack of Knowledge - We don’t know enough information to reliable predict what’s going to
happen. This is what really is happening for dice and cards. Its not that the events are really
random, but that we don’t know the details enough to predict what will happen.

3. We’re concerned here about lack of knowledge. Can we tell what state we’re in without enough detail
to know for sure.

(a) A random variable is an event, such as an election.

(b) Random variables take values, known as outcomes, such as So-and-so winning the election.

(c) Each of the possible outcomes of an event gets a number p assigned to it, such that each number
is 0 ≤ p ≤ 1.
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(d) The number is a prediction of the outcome of the event. These numbers reflect a measure of
the liklihood that this outcome will be the outcome of the event. It’s a prediction of the future.
If it is a reapeating event, it says, “if this same situation comes up n times, then we expect this
to be the outcome p×n times.” Thus if the probablity of me having a good day is 0.6, then we
would expect me to have 3 good days every 5 day work week.

(e) We’ll write these numbers as: P (E ← o) = p. The probability that event E has outcome o is
the number p.

4. If we look at the collection of all possible outcomes (the distribution of probabilities), we see something
like the following table for the event of “what is the status of spare tire after we try to attach it to
a car axle?”:

P (Spare← tight) = 0.6

P (Spare← loose) = 0.3

P (Spare← off) = 0.1

5. OK, where do the numbers come from? From data. We observe the world, make a table and count
the number of times each outcome occurs dividing by the total number of samples.
data item number 1 2 3 4 5 6 7 8 9 10

status tight loose tight off loose tight tight tight loose tight

6. We will sometimes write the distribution as a vector (note the bold P): P(S) = 〈0.6, 0.3, 0.1〉 When
doing this we have to know that the first number is for the outcome of tight, the second is for loose,
and the third is for off. We’ll also try to use single capital letters to represent events, and single
lowercase letters for outcomes.

7. Sometimes we want to combine 2 events, “what is the probability of E1 being o1 AND E2 being o2?”

(a) Often, this is to combine evidence of something with the question we really want to know.

(b) For example, if we want to know if the spare in on tight, and we already know the wheel
wobbles, we might ask what it the probability that the wheel is on tight and it still wobbles:
P (Spare← tight ∧ Connection← wobbly) =? This is still just a number.

(c) This comes from the data, just as the individual distributions do:
item number 1 2 3 4 5 6 7 8 9 10

Spare on Status tight loose tight off tight tight loose loose loose loose
Connection Firmness solid wobly solid wobly solid wobly solid wobly wobly wobly

item number 11 12 13 14 15 16 17 18 19 20
Spare on Status tight tight tight tight off tight tight loose tight tight

Connection Firmness solid solid solid solid solid wobly solid wobly solid solid

(d) We will sometimes indicate the whole table as P(CS)

(e) We can also speak about the distribution on the conjunction. This is a two dimensional table
known as the joint distribution.

Spare
tight loose off

connection wobly 0.1 0.25 0.05
solid 0.5 0.05 0.05
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(f) We just count all the times both outcomes occur in the data, divided by the number of data.

8. Marginalization

(a) Marginalization is a fancy word for “adding up all the numbers in a row or column.”

(b) We do this to reconstuct the separate distributions from the joint table:
Spare

tight loose off margin
Connection wobly 0.1 0.25 0.05 0.4

solid 0.5 0.05 0.05 0.6
margin 0.6 0.3 0.1 1

(c) What do the margins mean? They remove the effects of one of the two events. So if we
add up all the elements in the row where connection status is wobly, then what we get is
P (Connection← wobly). Go back and look at the original data and count up all the times you
see ‘wobly’. Its 8/20 or 0.4, just as the marginalization tells us. If you think about this for a
minute, it should be clear from the data why this is so. Each of the columns is made up of
the instances where connection status is wobly and some other property is true, divided by the
number of data. When we add them all up, we get the number of times wobly occurs, divided
by the number of data. If N(x ∧ y) is the number of times both x and y occur in the same
datum, then

(N(w ∧ t) +N(w ∧ l) +N(w ∧ o))/20 = N(w ∧ t)/20 +N(w ∧ l)/20 +N(w ∧ o)/20

This side is P (C ← w)directly marginalization

(d) Marginalization seems obvious, but it turns out to be useful to reconstruct the individual prob-
abilities from the joint.

9. You probably remember “and means multiply and or means add”.

(a) This is wrong, but just right enough to get you into serious trouble!

(b) Look at the table. We know P (C← w ∧ S← t) is 0.1.

(c) but if we multiply the two we get P (C← w)× P (S← t) = 0.6× 0.4 = 0.24, which we know is
wrong.

(d) See? and is NOT multiplying!

(e) What about or?

(f) Well, what about the question P (C← s ∨ S← t)? Looking at the table and just adding them
together, we get 1.2! That can’t happen!!!!

10. So what’s really going on?

(a) For or the rule is, “or means add when the or is across values of a single variable or a conjunction
of variables”

(b) To get P (S← t ∨ S← l) we do add them up: 0.6 + 0.3 = 0.9.
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(c) If we add them all up, we have to get 1: P (S← t∨ S← l∨ S← o) = 1. This has to be the case
since all the data have one of those three outcomes, so when we count up the number of data
in that table that have that property, it will be all of them. and since we divide by the number
of data, we get 1. This is often given as an axiom of probability, which is why you never could
understand it before– it was their fault, not yours.

(d) The question P (C ← s ∨ S ← t) is not really well-formed. What we’re really interested in is
P ((C← s ∧ S← t) ∨ (C← s ∧ S← l) ∨ (C← s ∧ S← o) ∨ (C← w ∧ S← t))

(e) Notice this is all of the cells in the table where either C is s or S is t, and if we add up all those,
we get 0.5 + 0.1 + 0.05 + 0.05 = 0.7, which is correct.

(f) When we incorrectly just added P (C← s) + P (S← t), that could be interpreted as adding up
the two margins, one for P (C ← s) and one for P (S ← t). Note that each margin is the sum
of its corresponding row or column, su adding up the margins is like adding up the individual
cells, but we add in 0.5 twice! So mathematically, we could just subtract out one of those 0.5s
and get the right answer. What cell did the 0.5 come from? The P (C ← s ∧ S ← t) cell. So
we conclude that P (C ← s ∨ S ← t) = P (C ← s) + P (S ← t) − P (C ← s ∧ S ← t). Some like
to make this an axiom of probability. I think it is bizarre to take a formula that contains two
mistakes that cancel each other out and make that an axiom, but that’s just me.

11. What about and?

(a) Well, that’s more complicated, and we need a new idea to talk about it.

(b) This new idea is conditional probability. It’s like conjuction, but different

(c) We say P (E1 ← o1|E2 ← o2) is read as “the probability that E1 is o1, given that E2 is o2”.

(d) This is read straight form the data table, just like all our other numbers.

(e) BUT, we read only from those entries where E2 is o2.

(f) For example, if we want to know P (C ← w |S ← l) we look at the 6 cases where the Spare
is loose, and count the number of times C is wobly (5). Thus P (C ← w |S ← l) is (5/6), or
0.83333....

(g) Now, once we know this, we can find P (C ← w ∧ S ← l) = P (S ← l)P (C ← w |S ← l)
0.3× 0.833333 = 0.25 giving us exactly what was in the table.

(h) The reverse is also true: P (CF ← wobly ∧ S ← loose) = P (CF ← wobly)P (S ← loose|CF ←
wobly). This is another example of an “axiom” that makes sense if you look at the data.

(i) The way I like to think of conditional probability P (X ← a|Y ← b) is that if we consider just
the elements in the table where Y is b (or if we pretend that the only data we have is where
Y=b) then what is the probability of X being a?

(j) Thus and does mean multiply, but not in the way you thought at all.

12. Conditional probability is interesting because it tells us the relationship between events and outcomes.

(a) Sometimes things are highly related. The probability that a student will have a programming
project in a semester is pretty low, about 0.1. But if we know the student is a CS major
P (Assignment← programming|Major← cs) is pretty high, 0.999. There is a strong relationship
between programming and major.
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(b) Sometimes things are not related at all. The probability that Joe Student will pass Calculus II
is about 0.98. The probability that Joe Student will pass Calculus II given that in rained in St.
Petersburg on September 5, 1752 is going to be about the same, no?

(c) That’s an interesting property, that knowing rain does not change the probability of passing. In
terms of the numbers, this means P (Grade← passing|Weather← rain) = P (Grade← passing).

(d) This says that these events are independent of each other. There is no relationship between
these two events. We will indicate that 2 events A and B are independent as: A⊥B

(e) There is an additional side effect of independence. We know:

P (Grade← passing ∧Weather← rain) = P (Weather← rain)P (Grade← passing|Weather← rain)

we know

P (Grade← passing|Weather← rain) = P (Grade← passing), therefore

P (Grade← passing ∧Weather← rain) = P (Weather← rain)P (Grade← passing)

(f) When two events are entirely unrelated, conjunction is just multiplication. But ONLY THEN.

13. Another handy rule:

(a) P((A ∧B) ∨ (A ∧ ¬B)) =?

P((A ∧B) ∨ (A ∧ ¬B)) = P(A ∧B) + P(A ∧ ¬B)−P((A ∧B) ∧ (A ∧ ¬B))

= P(A ∧B) + P(A ∧ ¬B)

it is also equal to:

= P((A ∨ A) ∧ (A ∨ ¬B) ∧ (A ∨B) ∧ (B ∨ ¬B)

= P(A ∧ (A ∨ ¬B) ∧ (A ∨B))

And general resolution tells the 2nd and third clause are just A

= P(A)

setting the two equal

P(A) = P(A ∧B) + P(A ∧ ¬B)

14. Bayes Rule

(a) We’re going to start using the distribution notation more, so pay attention. Instead of P (Grade←
passing) we’ll say P(G) meaning the distribution across all the outcomes of G. And remember
that P(G ∧W ) (or just P(GW )) is the joint table across the combined outcomes of of the two
events. And when we say P(G|W ) we also mean a table: P (Grade ← passing|Weather ←
rain), P (Grade ← passing|Weather ← sunny),P (Grade ← failing|Weather ← rain), and
P (Grade is failing|Weather← sunny)

(b) Now, we know that, for any two events, P(GW ) = P(G)P(W |G). We also know that P(GW ) =
P(W )P(G|W ). We can set them equal to each other and get, P(G)P(W |G) = P(W )P(G|W ).
Solve for P(W |G) to get:

P(W |G) =
P(W )P(G|W )

P(G)
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(c) This is known as Bayes’ Rule. It is useful because we can discover the conditional probability
of something by using the conditional probability going the other direction.

(d) Take this simple problem. You are a prosecutor who wants to know whether to charge someone
with a crime. You know this person’s fingerprints are at the crime scene.

i. What we need to figure out is what is the probability that the person is guilty given
that his prints were at the crime scene: P (Guilty ← true|Fingerprints ← true) or just
P (G← t|F← t)

ii. We know from Bayes’ Rule that

P (G← t|F← t) =
P (F← t|G← t)P (G← t)

P (F← t)

iii. If we assume that one person in the town of 100,000 comitted the crime, then P (G← t) =
0.00001

iv. Our forensics experts tell us that if someone commits a crime, they leave behind fingerprints
99% of the time, so P (F← t|G← t) = 0.99

v. If there are typically 3 person’s fingerprints at any particular locale, we estimate that the
probability a particular person’s fingerprints being at the crime scene as 3 in 100,000, or
P (F← t) = 0.00003

vi. So we can plug in our values:

P (G← t|F← t) =
P (F← t|G← t)P (G← t)

P (F← t)

=
0.99× 0.00001

0.00003
= 0.33

vii. Perhaps not enough to arrest him, but definitely someone we want to talk to, and gather
more evidence on (Combining evidence is something we’ll talk about below).

viii. Later, the wise ass detective points out that the suspect lives in the crime scene. This
changes our belief in the probability that the fingerprints would be found there, to P (F←
t) = 0.99.

ix. Replugging in, we get:

P (G← t|F← t) =
P (F← t|G← t)P (G← t)

P (F← t)

=
0.99× 0.00001

0.99
= 0.00001

x. If the suspect lives there, there’s no reason to be surprised that the fingerprints are there,
and thus they fingerprints shouldn’t make us believe guilt. We have to let him go.

(e) In that example, there was something that should be surprising, but you may not have noticed

i. We didn’t know know one conditional probability P (G ← t|F ← t), but we did know
another P (F← t|G← t).
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ii. This is surprising because I said earlier that these numbers were just read from the data
table, and it should be just as easy to read one conditional probability from the table as
the other.

iii. But it turns out that in the real world it is often hard to get good data. Instead certain
kinds of data is easier to gather than others. In this case, most of our data on criminals
comes from cases we’ve solved, where we know who the guilty person is and whether or
not his fingerprints were there at the crime scene. We can even generate our own data by
hiring professionals to stage crimes and see if there were fingerprints left behind giving us
P(F |G) directly.

iv. Another reason we may want to reverse the conditionality is because one direction is less
stable than another.

A. Take a medical diagnosis task. We want to know the the probability of having a disease
given that we have a symptom x: P (D← t|S← x). We know that this is:

P (D← t|S← x) =
P (S← x|D← t)P (D← t)

P (S← x)

B. A well informed doctor might know P (D← t|S← x) directly, but what happens if there
is an epidemic? P (D← t|S← x) will change but we don’t know how much.

C. A Bayesian doctor will be able to adjust P (D← t) based on information on the epidemic.
None of the other numbers need to be adjusted, so the Bayesian doctor can adapt.

v. As both these examples show, it is often easier to find and keep track of causal conditional
probabilities than it is for evidential conditional probabilities.

(f) Another example. You think you might have the horrible disease Severnitis. You know that
Severnitis is very rare- the probability that someone has it is 1 in 10,000 (.0001). There is a test
for it that is reasonably accurate, 99%. You go get the test, and it comes back positive. You
think “oh no! I’m 99% likely to have the disease!” Is that correct?

i. Our events are the test T, and health H. T can take 2 outcomes, positive (p) and negative
(n). H can take 2 outcomes, diseased (d) and well (w). We want to know P (H← d|T← p)

ii. We know that the disease is rare P (H← d) = 0.0001. Thus P (H← w) = 0.9999

iii. What does 99% accurate mean? Well typically, it means, if you have the disease, it says
positive P (T ← p|H ← d) = 0.99 or, if you don’t have the disease, it says negative:
P (T← n|H← w) = 0.99

iv. Therefore P (T← n|H← d) = 0.01 and P (T← p|H← w) = 0.01

v. We start with Bayes’ Rule:

P (H← d|T← p) =
P (T← p|H← d)P (H← d)

P (T← p)

vi. We know the values of the numerator, but not the denomenator, but we can find them with
some clever math:

P (H← d|T← p) =
P (T← p|H← d)P (H← d)

P (T← p)

P (H← w|T← p) =
P (T← p|H← w)P (H← w)

P (T← p)
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and since,

P (H← d|T← p) + P (H← w|T← p) = 1

P (T← p|H← d)P (H← d)

P (T← p)
+
P (T← p|H← w)P (H← w)

P (T← p)
= 1

P (T← p|H← d)P (H← d) + P (T← p|H← w)P (H← w) = P (T← p)

vii. We can substitute this back into bayes rule above, to get:

P (H← d|T← p) =
P (T← p|H← d)P (H← d)

P (T← p|H← d)P (H ← d) + P (T← p|H← w)P (H← w)

and we know all the values:

P (H ← d |T ← p) =
0.99× 0.0001

0.99× 0.0001 + 0.01× 0.9999

= 0.0098

viii. This is why doctors are hesitant to order expensive tests if its unlikely you have the disease.
Even though the test is accurate, rare diseases are so rare that the very rarity dominates
the accurracy of the test.

(g) In the Severnitis example, we generated a new denominator to get around not knowing some
numbers. The process of generating that denominator is called normalization, which seems like
a funny thing to call it, but there is a good reason.

i. Let’s look again at calculating the value of P (H ← w |T ← p)

P (H ← w |T ← p) =
P (T ← p|H ← w)P (H ← w)

P (T ← p)

ii. Note that it has the same denominator as P (H ← d |T ← p), namely P (T ← p). Let α be
1/P (T ← p). Then,

P (H ← w |T ← p) = αP (T ← p|H ← w)P (H ← w)

P (H ← d |T ← p) = αP (T ← p|H ← d)P (H ← d)

Since the sum of these two must be one, then

α [P (T ← p|H ← w)P (H ← w) + P (T ← p|H ← d)P (H ← d)] = 1

So α is sometimes thought of as the “constant needed to make the distribution of P(T |H )P (H )
add up to 1.” In math, the processing of making stuff add up to 1 is called normalization.

iii. Some authors skip over how to do normalization entirely, jumping stragit from bayes rule
to using the α with the explanation that “α is just the normalization constant.” I think
they do this to make you feel stupid- don’t stand for it!

15. Multiple sources of evidence
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(a) In real world problems of conditional probability, there’s often a lot of evidence, not just one
piece.

(b) This means there are more variables we need to worry about. Take our crime investigation:

i. We get additional evidence that a new suspect not only has fingerprints at the scene,
but was found with the stolen items. Now we want to know the probability that he is
guilty, given that his fingerprints were left at the scene and he had the purloined loot:
P (G ← t |F ← t ∧ L← t). We can still apply Bayes Rule to this:

P (G ← t |F ← t ∧ L← t) =
P (F ← t ∧ L← t |G ← t)P (G ← t)

P (F ← t ∧ L← t)

ii. In general:

P(A|BCD...) =
P(BCD...|A)P(A)

P(BCD...)

iii. That’s nice, but how likely are we to know P(BCD...|A)? Pretty unlikely, actually. Think of
our court case where we have 100 peices of evidence. Its almost certain that we we’ve never
seen a case before with exactly that evedience, let alone enough cases to have meaningful
data.

iv. And what about the table for P(E1E2E3...E100|G)? (where each En is a separate piece of
evidence) Assuming boolean events, that table would need to have 2100 entries, which is
bigger than the memory of any computer.

v. So as the number of variables grows, this technique gets less useful.

16. Conditional independence - In order to deal with multiple sources of evidence, we’ll need the idea of
conditional independence

(a) Recall that if 2 events are independent, then their conjunction is just the product of the indi-
vidual probabilities: if A⊥B then P(AB) = P(A)P(B)

(b) That means that since A and B are unrelated, knowing something about one tells us nothing
about the other.

(c) Sometimes two events are independent given some other event. A⊥B|C, meaning that if we
know the value of C, then knowing something about A tells us nothing about B. (A note on
notation: the ⊥ symbol has higher precedence than the | symbol, so A⊥B|C is (A⊥B)|C not
A⊥(B|C). The second one makes no sense since only events can be independent of each other,
and B|C is not an event.

(d) How could that happen? well, imagine we have three events: whether the suspect touched the
doorknob, whether the subject left fingerprints on the doorknob, and whether the suspect was
at the crime scene. Obviously, knowledge about fingerprints affects our belief about whether
the suspect was there, so they are not independent. But once we know for sure that the suspect
touched the doorknob, then saying that there were no fingerprints on the doorknob does not
affect our belief that the suspect was there, since we already know that he touched the doorknob.
Thus we say that F⊥P |T (F:fingerprints, P:present, T: touched).
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(e) What does this mean? well, if two things are independent given a third, then their conjuc-
tion is the product of the two separate conditional probabilities: if A⊥B|C then P(AB|C) =
P(A|C)P(B|C). This comes from:

P(ABC) = P(AB|C)P(C)

P(ABC) = P(B|AC)P(AC)

= P(B|AC)P(A|C)P(C)

therefore

P(AB|C)P(C) = P(B|AC)P(A|C)P(C)

P(AB|C) = P(B|AC)P(A|C)

But since once we know C, knowing A tells us nothing new about C, so

P(B|AC) = P(B|C)

P(AB|C) = P(B|C)P(A|C)

(f) This independence simplifies a 3 dimensional table into two 2 dimensional tables. The big win
comes when you simplify a 100 dimensional table into ninety-nine 2 dimensional tables.

17. Naive Bayes

(a) If we know about some conditional independence, we can encode that into the equations. This
is done in Bayesean Networks, which we’ll cover later.

(b) When someone applies Naive Bayes to a problem, what they do is assume conditional indepen-
dence of all the events: P(ABC...|Z) = P(A|Z)P(B|Z)P(C|Z)...

(c) This can then be plugged into Bayes Rule:

P(A|BCD...) =
P(BCD...|A)P(A)

P(BCD...)

=
P(B|A)P(C|A)P(D|A)...P(A)

P(BCD...)

= αP(B|A)P(C|A)P(D|A)...P(A)

(d) And thus we’ve managed to reduce a high demensional table into several low demensional table.
In terms of the crime scene evidence above, the 2100 element table would be reduced to one
hundred 4 element tables. The difference between 2100 and 400 is rather large.

(e) But if the naive bayes assumption isn’t true, and it almost never is, then the naive bayes
algorithm can’t be correct, can it?

(f) Well, no, but if we’re using this as a classifier, its not important that the probability is correct,
just that the correct class have the highest probability. It turns out that in practice for many
problems, this is the case.
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