
Voronoi Diagrams

� Let’s talk about drug stores.

� Let’s face it, one drug store, CVS, Rite Aid, is pretty like another, so customers go to the one closest
to their home.

� So, we’re doing store location strategy, and we need to know where to place our new store. If we’re
too close to one of our sotres, the new store will steal customer from the old one. If we’re too close
to a comptetior , we’ll comptete too strongly for

� Obviously, we don’t want to be too close to another store, but where does it go?

� The key is to make a diagram of the regions that a particular drugstore serves (that is the area
around each store that is closer to that store than to any other store).

� It turns out that this is a classic problem from mathematics: that of forming a Voronoi diagram.

� A voronoi diagram is:

– Start with a collection of Points in a plane

– Divide the plane into regions, one region per Point, where each region consists of those points
that are closer to the Point of the region than to any other Point.

� So what we want to do is build a voronoi diagram where the Points are the locations of stores.

� we could then find the largest regions, and place stores in those regions to maximize the take of our
new store.

� So, how do we build a voronoi diagram?

� we need to look at the properties of the diagrams.

– if there are just two points, the region for point p is all the points closer to p than q:

1



This makes up a half plane in the plane. The boundry of the half plane is the perpendicular
bisector of the segment pq.

– if we add a third point r,

2



the region of p consists of the points that are both closer to p than q, and closer to p than r.
This is the intersection of the pq half plane, and the pr half plane.

– Adding a fourth point s, the region of p is the set of points that are closer to p than q, closer
to p than r, and closer to p than s:

3



or the intersection of the three half planes, pq, pr, and ps.

– and so on. The final diagram might look like:

4



� This process suggests an algorithm:

makeVoronoi(points)
For each point p ∈ points

buildRegion(p,points)

� This gives us the regions for all the points in question.

� But how do we calculate the intersection of those half planes?

� The most obvious way is to take two half planes, intersect them, then takes that region, intersect it
with the next half plane, etc.

� Intersecting half planes is easy...

� but once we’ve intersected a few, what do we end up with? It’s some sort of region, but what are its
properties?

– It could be a polygon:

5



– It could be an open region:

– But we know for sure that it is convex. Start with two planes: definitely convex. Take any
convex region, intersect it with a half plane. drawing a straight line accross it cannot make it
concave because it cannot carve a convex region out of it.

� So what we’re really doing is repeatedly intersecting a convex region with a half plane, giving us a
new convex region.

� OK, so how do we do that?

– We need to talk about how we want to represent the region and the half plane.

– Typically, we’ll represent the region as a set of segments defining the edges of the region.

– The segments will be represented by the two end points.

– The half plane we can represent with the line that describes the half plane mathematically:
y = mx + b

– Sometimes, instead of a segment or a line, one of the edges of the region will be a ray, starting
at one point and extending indefinitely one direction.

– We’ll have to represent these as an the line, plus the one point. We’ll also have to represent
which half of the line is in the ray.

– with all of these, how do we know which side of the line/ray/segment is the region interior? It’s
the side that has the point in it.

� So how do we do this intersection? Intersecting 2 half planes is easy: find the point of intersection;
that becomes the the end point for the two rays, and the pieces of the lines closer to the point are
the rays.

� In general we will intersect a half plane and a convex region. Lets assume for a moment that it is a
convex polygon:

6



not to scale

� if the line does not intersect the polygon, then the intersection is just the polygon. Thus, the key is
determining if the two intersect:

– The simplest way to do this is to compare the line to each segment. If they cross, then the line
intersects the polygon.

– Since this is a convex polygon, the line must intersect it twice (exception noted below). Thus
we must still check all the other segments for the other intersection. (we can exit early one we
find a secon point of intersection. A straight line can intersect a convex polygon at most once).

– Once the intersections are found, the polygon changes. A portion of the line becomes part of
the polygon, and some portions of the other segments go away.

– The segment of the line between the two intersection points is now a new side of the polygon.

– segments that do not intersect the line AND are on the same side of the line as the point are
still part of the polygon.

– segments that do not intersect the line AND are on the opposite side of the line as the point
are deleted.

– segments that intersect the line are cut at the intersection points. The portions on the point
side of the line are kept, and the portions on the other side are dropped.

� Special Cases

– What if the line only intersects the polygon at one point?

– that case is identical to the no intersection case- the result is the polygon. But we can use the
same rule as above: keep segments that are on the same side of the line as the point.

– What if the region is not really a polygon?

– in that case nothing has really changed: if there are 2 intersection points, then its exactly the
same as the above. If there is one intersection point, then the line crosses a ray. The ray is
truncated to be a segment, and the line becomes a ray.

– if the line intersects two rays, both are truncated, and we’ve made a polygon.

7



– what if we have 2 half planes where the edges are parallel? We need to keep both lines as edges
of the region.

� So we can now formalize calculating the the intersection of all half planes formed with p and the
other points:

BuildRegion(p,points)
R← ∅
For each point q 6= p

h← halfplane(p,q)
R← R ∩ h

� how about halfplane(p,q)?

halfplane(p,q)
r ← ((px + qx)/2, (py + qy)/2)
m← −1/(qy − py)/(qx − px)
b← ry −mx

� Now we can do the intersection:

operator-∩(R,h)
For each s (segment,line, or ray) ∈ R:

i ← ∩-point(h,s)
if(i 6= ∅)

t← insideHalf(s, h)
h← insideHalf(h, s)
R← R− s + t

else if (opposite(s,h,p))
R← R− s

return R + h

8



∩-point(h,s)
if (¬(((sa

y < hmsa
x + hb) and (sb

y > hmsb
x + hb)) or

((sa
y > hmsa

x + hb) and (sb
y < hmsb

x + hb))))
return ∅

sm =
sb
y−sa

y

sb
x−sa

x

sb = sa
y − smsa

b

ix = sb−hb

hm−sm

iy = smix + sb

if (line(h)
return i

else
if (ixhophx)

return i
else

return ∅

insideHalf(c,d,i,p)
if (segment(c))

if ((py < dmpx + db and ca
y < dmca

x + db) or
(py > dmpx + db and ca

y > dmca
x + db))

return segment cm, cb, c
a, i

else
return segment cm, cb, i, c

b

else if (ray(c))
if ((py < dmpx + db and ca

y < dmca
x + db) or

(py > dmpx + db and ca
y > dmca

x + db))
return segment cm, cb, c

a, i
else

return ray cm, cb, cop, i
else

if (py < dmpx + db)
return ray cm, cb, <, i

else
return ray cm, cb, >, i

� How long does this whole thing take in terms of the number of points, n?

– The main loop has n passes.

– BuildRegion’s loop has O(n) passes.

– halfplane takes O(1).

– The intersection takes O(m), where m is the number of edges to the region.

9



– The first pass through, there are no edges to intersect with, then next there is 1, then 2, all the
way up to posibly n-1

– that is
∑n−1

i=0 i = n(n− 1)/2 which is O(n2) for all the calls to intersection.

– thus buildregion is O(n2) + O(n) = O(n2).

– and the total is O(n3).

� Run time items to note:

– There is a nice divide and conquer algorithm using a sweep line to find the intersection of two
convex regions, that finds the intersection of n half planes in O(n log n). This gives a voronoi
run time of O(n2 log n).

– There is an even more clever algorithm using a sweep line that can find the voronoi diagram in
O(n log n).

� So what does this all get us? What are the properties of the edges of the these regions?

� they’re all maximally distant from the two closest points.

� This makes this a good path to follow to avoid obstacles. What else?

� Connected. Unless there’s a region with two parallel lines, then its connected, AND there can be no
voronoi diagram with non-colinear points and parallel lines.

� point + edges = graph.

� what do we do with graphs? We burn them! no we search them.

10


