
Basic Kinematics: Representing Location and Motion

� Basic task- manipulate objects with high degree of precision. Primarily for arm-based
robots. Precisely predict and control robot effectors. Requires that all the pieces be
rigid: no rubber arms, etc.

� Approach-

– define a mathematical space in which the robot exists

– define a mathematical space of the robots movements

– derive a mapping between the two spaces.

– determine the position in space desired of the robot, and calculate how to move
the robot to get there.

� Create a 3 dimensional coordinate space x,y,z. E.G. z is up, y is right & x is down to
the left.

� Representations - Represent objects as collection of points of the corners.

– For example, a cube might have corners at: ((-1,1,1), (-2,1,1),(-1,2,1),(-2,2,1),(-
1,1,2),(-2,1,2),(-1,2,2),(-2,2,2))

� Transformations-

– movement of object is space (definition for our purposes).

– 2 kinds:

* translation- movement in one or more directions in a straight line.

* rotation- movement around a fixed axis.

· right hand rule for positive/negative rotation.

· 1st finger is x, 2nd is y, thumb is z

· finger points in positive direction.

· positive rotation is counter-clockwise rotation around an axis, when the
positive portion of the axis poke you in the eye.

� Transforming the location of an object means transforming the locations of ALL the
points representing the object.

– In the case of the cube, one movement results in 8 transformations.

1

– 3 movements results in 24 transformations.

– To move an n-cornered object through m movements requires n*m transforma-
tions.

� To reduce the computational load, we create a new local coordinate frame.

– Define a new coordinate system where one corner of the object is at the origin

– in our cube, the corners would be at: ((0,0,0), (-1,0,0),(0,1,0),(-1,1,0),(0,0,1),(-
1,0,1),(0,1,1),(-1,1,1)).

– Keep track of ONE corner in the global reference frame. (The original frame we
described above.)

– The origin above would be at location (-1,1,1) in the reference frame.

– Now we perform transformations on just the one point in the reference frame.
When the final destiantion is reached, we generate all 8 points of the cube by
performing 8 transformations from the local frame, resulting in n+m total trans-
formations.

� Review martix multiplication.

� Basic transformations

– Transformations will be implementented as the product of a point (represented
as a column vector) and a matrix (representing the transformation) resulting in
a new point. We will start in 2 dimensions so the math will be easier, and scale
up to 3 dimensions later on.[

a c
b d

] [
x0

y0

]
=

[
(ax + cy)
(bx + dy)

]
=

[
x1

y1

]
The identity matrix does not change the point:[

1 0
0 1

] [
x0

y0

]
=

[
x0

y0

]
– look at various matrices:

* Scale- moves a point in a direction proportional to that point’s distance from
the origin in each dimension

* Rotation- rotates a point around the origin.
Scale in the x direction by a:[

a 0
0 1

] [
x0

y0

]
=

[
ax0

y0

]
Scale in the y direction by d:[

1 0
0 d

] [
x0

y0

]
=

[
x0

dy0

]
2

Scale in both x & y: [
a 0
0 d

] [
x0

y0

]
=

[
ax0

dy0

]
rotate φ degrees:[

cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
x0

y0

]
=

[
cos(φ)x0 − sin(φ)y0

sin(φ)x0 + cos(φ)y0

]
For example, if φ = 90, then the rotation matrix is:[

0 −1
1 0

] [
x0

y0

]
=

[
−y0

x0

]
* Why?

������

������
������

x

y

z

z

x0
x1

y

y

0

1

θ

φ

sin(φ + θ) =
y1

z
,

cos(φ + θ) =
x1

z
,

sin(φ + θ) = sin φ cos θ + cos φ sin θ,

cos(φ + θ) = cos φ cos θ − sin φ sin θ,

sin θ =
y0

z
,

cos θ =
x0

z
,

y1

z
=

x0

z
sin φ +

y0

z
cos φ,

x1

z
=

x0

z
cos φ− y0

z
sin φ,

y1 = x0 sin φ + y0 cos φ,

x1 = x0 cos φ− y0 sin φ.

3

– This is pretty good, but we have a problem: We don’t normally want to change
x by some scale, but translate by some constant factor. (i.e. we don’t wat a*x,
but rather a+x)

– The trick is to add a dimension to the point (and make all the transformation
matricies 3x3). Then put the translation factors in the third column:
general translation: 1 0 m

0 1 n
0 0 1

 x0

y0

1

 =

 x0 + m
y0 + n

1

We can combine this with rotation to create a general transformation matrix: cos(φ) − sin(φ) m

sin(φ) cos(φ) n
0 0 1

 x0

y0

1

 =

 cos(φ)x0 − sin(φ)y0 + m
sin(φ)x0 + cos(φ)y0 + n

1

– A mathematician will tell you this is “projecting the problem to a higher di-

mensional space.” It’s nice to realize that what this means is “employ a little
trick based on how matrix multiplation works.” This trick is called Homogeneous
Matrices.

� Three dimensional matrices.

– We are normally interested in 3 dimensional spaces.

– Scale up 2-D to the obvious 3-D matrices:

Trans(px, py, pz) =

1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

Rot(x, φ) =

1 0 0 0
0 cos(φ) − sin(φ) 0
0 sin(φ) cos(φ) 0
0 0 0 1

Rot(y, φ) =

cos(φ) 0 sin(φ) 0

0 1 0 0
− sin(φ) 0 cos(φ) 0

0 0 0 1

Rot(z, φ) =

cos(φ) − sin(φ) 0 0
sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

4

� To perform a series of transforms, multiply the matrices.

– RTN = Rot(y, 90)Trans(0, 0, a)Rot(x, 90)Trans(0, a, 0).

– Transforms from reference coordinate from to new coordinate frame.

– Note that matrix multiplication is NOT communative.

– Each multiplication performs a single transformation, resulting in a new frame.
The next transformation is with respect to that new frame!!

* Rotate around the y axis in R (the reference frame), 90 degrees, resulting in
a new frame N1.

* Translate along the z axis in N1, a units, resulting in a new frame N2.

* Rotate around the x axis in N2, 90 degrees, resulting in a new frame N3.

* Translate along the along the y axis in N3, a units, resulting in N.

– Note that this is not just a point, but a local frame that is moving.

– This can be interpreted right to left as transformation that ALL took place in the
reference frame:

* Translate along the y axis in R, a units.

* Rotate around the x axis in R, 90 degrees.

* Translate along the z axis in R, a units.

* Rotate around the y axis in R, 90 degrees.

– If we were to design a series of transformation, we could either do it left to right
(relative), or right to left (absolute) whichever works better for the model.

– why would we ever need to do more that a single translation and a single rotation?

T =

cos(90) 0 sin(90) 0

0 1 0 0
− sin(90) 0 cos(90) 0

0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 a
0 0 0 1

1 0 0 0
0 cos(90) − sin(90) 0
0 sin(90) cos(90) 0
0 0 0 1

1 0 0 0
0 1 0 a
0 0 1 0
0 0 0 1

T =

0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 a
0 0 0 1

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

1 0 0 0
0 1 0 a
0 0 1 0
0 0 0 1

T =

0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 a
0 0 0 1

1 0 0 0
0 0 −1 0
0 1 0 a
0 0 0 1

5

T =

0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

1 0 0 0
0 0 −1 0
0 1 0 2a
0 0 0 1

T =

0 1 0 2a
0 0 −1 0
−1 0 0 0
0 0 0 1

� We will describe the location and orientation of an object by its position in its local

frame.

� We describe the location and orientation of a local frame by the transformation from
the refernce frame to the local frame.

Rp = RTN
Np

Rp =

0 1 0 2a
0 0 −1 0
−1 0 0 0
0 0 0 1

0
0
0
1

 =

2a
0
0
1

– Things we can tell about the transformation matrix:

* the last column is the same as the location of the transformation from (0,0).

* The first column tells us that the new x direction will be in the direction of
-z in R.

* the second column tells us that the new y will be in the direction of x in R.

* the third column tells us that the new z will be in the direction of -y in R.

– In general, if we know a point’s location in the new frame (x,y,z) and want to
know it’s location in the original reference frame, we can:

Rp =

0 1 0 2a
0 0 −1 0
−1 0 0 0
0 0 0 1

x
y
z
1

 =

y + 2a
−z
−x
1

� Inverse transformations

6

– Sometimes we know the location of a point in the referecne frame: Rq but would
like to know the the location of the point in some other fram Nq. For example to
find a position of an object relative to a hand, given that we know the location of
both the object and the hand in the reference frame.

– If the know the transform to the new frame (the hand), we can do this with the
inverse transformation.
RTN

Nq = Rq
Nq = RTN

−1Rq
where T−1 is the inverse of T, TT−1 = I, the identity matrix.

– The notation I’m using is handing both for figuring out problems as well tak-
ing a verbal description and converting to equations. The key is cancelling the
superscripts and subscripts.

– Inverting a matrix in general is hard, but fortunately, we have constraints to help
us.

* The upper left 3x3 matrix describes the rotations of the cordinate frame.
RRN

* To reverse the rotations of the coordinate frame, you just need to transpose
the matrix.

* The right hand column describes the origin of the new frame w/r/t the ref-
erence frame RPN .

* To reverse this, we note that RPN = −RRN
NPR

* And RRN = NRP
T

* BIG Extra Credit assignment: Prove that this is the case.

* The result is that:
xx yx zx px

xy yy zy py

xz yz zz pz

0 0 0 1

−1

=

xx xy xz −pxxx − pyxy − pzxz

yx yy yz −pxyx − pyyy − pzyz

zx zy zz −pxzx − pyzy − pzzz

0 0 0 1

� An example:

– Suppose we know the transformations from the reference frame to the robot,
from the robot to the hand as well as from the reference frame to an object to be
grasped and from the object frame to a point on the object where it is suposed to
be grasped. We want to know what is the transformation from the hand to the
grasping point on the object?

– We can set up an equation of transformations to the grasping point on the object,
throught the object, and through the robot:
W TO

OTG = W TR
RTH

HTG (show that cancellation makes equation balance).
Where:
W TOis the transform from the world reference frame to the object,
OTGis the transform from the object to the grasping point on the object,

7

W TRis the transform from the world to the robot,
RTH is the transform from the robot to the hand,
HTGis the unknown transform from the hand to the grasping point on the object.
Solve:
RTH

−1W TR
−1W TO

OTG = HTG

8

