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Abstract

From a Computer Science and Artificial Intelligence perspec-
tive, Robotics often appears as a collection of disjoint, some-
times antagonistic sub-fields. The lack of a coherent and uni-
fied presentation of the field negatively impacts teaching, es-
pecially to undergraduates. The paper presents an alternative
synthesis of the various sub-fields of Artificial Intelligence
robotics, and shows how these traditional sub-fields fit in to
the whole. Finally, it presents a curriculum based on these
ideas.

Introduction
Modern Artificial Intelligence robotics education treats the
field as a collection of overlapping subfields. An exami-
nation of the current robotics textbooks (McKerrow 1991;
Arkin 1998; Dudek & Jenkin 2000; Murphy 2000; Niku
2001; Siegwart & Nourbakhsh 2004; Craig 2005; Choset et
al. 2005) indicates that these subfields are: traditional plan-
ning based robotics, behavior-based robotics, probabilistic
robotics, mobile robotics, and engineering robotics. Read-
ing these texts gives the impression that each of these fields
is overlapping, yet distinct, except for engineering robotics,
which many Computer Science/Artificial Intelligence in-
structors consider to be an entirely separate field.

This fragmentation of fields likely derives from the some-
times fractious relations between the fields as they competed
for primacy. “The whole idea of plan execution and the
runtime maintenance of something called a ‘plan’ is mis-
guided.” (Brooks 1986) “This development follows a much
broader trend in mobile robotics, where probabilistic tech-
niques are commonly the method of choice over more ad
hoc approaches, such as behavior-based techniques.” (Thrun
2002) While such competition is natural in a research set-
ting, it makes it difficult to present these multiple fields co-
herently to an undergraduate. Exacerbating the situation,
many robotics instructors present topics chronologically ac-
cording to historical development. This approach, while in-
teresting to practitioners, fails to put the areas in their tech-
nical context.

This paper argues for a perspective that unifies all the
competing robotics sub-fields into a single framework for
instruction. By using the organizing principle that robotic
systems are best understood as layers of abstractions over
input and output channels, it results in a more natural order

of topics and emphasizes their relations rather than differ-
ences. We will begin by presenting the layered framework,
followed by an example AI Robotics curriculum that empha-
sizes the similarities and encourages a cohesive big-picture
understanding of the field. We will then compare the cur-
ricular themes presented in other robotics textbooks. Finally
we will discuss the sometimes surprising implications of this
view in how the various robotics sub-fields relate to each
other.

Layers of Abstraction
The application of layers of abstraction in Computer Sci-
ence is a well known technique used either prescriptively to
coordinate standards development, or descriptively to make
sense of complicated processes and ease comparison of ap-
parently conflicting ideas. The classic example of the former
is the OSI network layer system (ISO 1994) which speci-
fies an organization for computer networking (Figure 1, left).
On the other hand, layers of abstraction are used as a gen-
eral guideline for the understanding of complicated systems
throughout Computer Science and Engineering, such as the
organization of computer hardware, operating systems or
large pieces of software (Figure 1, right). The claim made
here is that the technique of applying layers of abstraction
as a descriptive tool is useful for understanding robotics sys-
tems.

Layers of abstraction are a natural way to characterize in-
telligent robotics, in which low-level perceptions are con-
verted to high-level decisions and actions and then converted
back down to low-level motor movements. Every system
does this by: processing multiple sensor inputs; combining
the input into increasingly higher levels of abstraction un-
til an action decision can be made; and breaking down the
decision into increasingly more specific information until it
can be executed as motor commands. Intelligent Robotics
as a field is best seen as two information channels (input and
output) crossing multiple layers of abstraction from physi-
cal signals to sophisticated symbols (such as multiple term
logical representations) . All of the major paradigms fit into
and can be interrelated by this paradigm. Figure 2 shows the
framework presented here with two channels and the lay-
ers of abstraction through which information is processed.
The top row is the input channel, starting with physical sig-
nals on the left, and passing through multiple abstractions as
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Figure 1: Two standard layered models of abstraction. On
the left is the ISO/OSI network standard, an example of pre-
scriptive model describing how a system should be designed.
On the right is a general layered operating system model as
a layered architecture (Drawn from Tanenbaum (Tanenbaum
1992) and Solomon (Solomon 1998)). It is an example of
a layered model describing how systems are currently de-
signed.

it moves to the right. The bottom row is the output chan-
nel, moving from high-level symbols on the right to motor
signals on the left. Each input channel can be made up of
multiple pathways along which individual pieces of infor-
mation can travel. For instance, input from multiple sensors
would all travel in the input channel, but until that informa-
tion is fused, it would travel along multiple pathways. All
of the common robot architectures can be seen in this view
as variations on how many layers of abstraction are passed
through, and at which layer (or layers) information crosses
over from the input channel to the output channel.

The Layers
Figure 2 describes six distinct layers. Because this model is
descriptive there is considerable room for adjustment in both
the numbers of layers and where they are divided. These
particular layers were identified because they correspond to
major robotic architectures in the literature and have proved
useful in teaching. They are the signal, information, at-
tribute, simple model, abstract model, and lifetime layers.

The lowest layer is the signal layer. Information at this
layer takes the form of electrical impulses from sensors and
to motors. While all electronic robots have activity at this

layer (otherwise they would never move), few perform any
crossover from input to output at this layer. The classic ex-
ceptions to this are the Braitenberg Vehicles (Braitenberg
1984) which directly connect sensors to motors. Figure 3
shows the information flow in the framework of a Braiten-
berg Vehicle.

The next layer up is the information layer, where analog
input and output signals are handled digitally; this layer is
the interface between the world of physics and the world of
information. In the input channel, the electrical signals are
converted to bits in memory, typically with an analog to dig-
ital converter. In the output channel, the information layer
performs kinematic analyses to convert positions in robot
geometry into motor positions and thus motor current out-
puts. Input to the output channel of this layer is a desired
position in space. The process of inverse kinematics is to
take that position and convert it into a set of motor position
that would place the robot in that location. From there, these
motor positions are converted directly to electrical signals to
the motors themselves.

It is at this layer where much of what might be called
engineering robotics takes place (Figure 3). Sensor inputs
are used to generate the desired robot positions that are then
converted to motor movements, such as a camera directing
an articulated arm to grasp an object1.

In the attribute layer the input channel generalizes the in-
formation input by recognizing simple environmental states
such as landmark-detected or goal-detected. These differ
from the treatment of the raw data in the layer below in that
there is some processing required, often integrating sensor
information over short periods of time from multiple sen-
sors. In the output channel collections of possible actions
(by action we mean ’desired position in the environment’)
are weighed, and an action is selected, resulting in a suit-
able specification to pass down to the information layer. The
attribute layer is where most of the action takes place in
behavior-based architectures (Figure 3). Collections of in-
dependent modules fuse input to recognize simple environ-

1This characterization is not exactly accurate, as what many re-
searchers might consider “engineering robotics” extends well into
the model layer (Latombe 1991; McKerrow 1991). There are, how-
ever, perspectives that do primarily limit engineering robotics to
these lower layers (Craig 2005). This will be discussed in greater
depth below.
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Figure 3: Information flow in different robotics architectures.

ment properties and make action recommendations, which
are then selected from to result in a new desired robot posi-
tion.

In the simple model layer, the input channel begins to
build concrete and explicit models of the external world. For
mobile robots, these take the form of maps of the navigable
space, while for manipulators, these models take the form of
a configuration space. For example, probabilistic occupancy
grid maps (Moravec & Elfes 1985; Moravec 1988) are low-
level, simple abstractions, as they make no serious attempt to
cluster the occupied cells into objects. The construction of
the simple models is performed by collecting the detected in-
put in the attribute layer into obstacles and free space. These
can be further processed into more abstract map models,
such as generalized Voronoi diagrams (Aurenhammer 1991;
Choset & Burdick 2000). Note that occupancy grids and
Voronoi diagrams both apply to mobile robots navigat-
ing through real space and to manipulator arms navigating
through configuration space. With the transition to the out-
put channel at the simple model layer, comes path planning,
in which a path is found through free space to get the robot
from one position to another (we refer to this as a path-plan
model architecture). Again, the techniques are the same in
real space and configuration space. Once a path is deter-
mined, the commands can be passed down to the action se-
lection mechanism in the attribute layer. The simple model
layer accounts for the rest of engineering robotics and most
of mobile robotics (Figure 3).

From the map models, path planning typically occurs, but
sometimes, instead of path planning, the robot behaves re-
actively toward that model, skipping the planning part alto-
gether (Yamauchi, Schultz, & Adams 1998). We call this the
reactive-model architecture.

The abstract model layer takes the representation of space
from the simple model layer, and generates more sophis-
ticated models, such as propositions of relations about the
world state. These are usually described with a logic, such
as predicate logic, or an AI planning system (McDermott
1992). These logic sentences are built out of the information
in the lower layers by grouping together data from the maps

and other detected information from the layers below. In the
output channel, a full-fledged task planning system can use
these representations to generate “good old fashioned AI”-
style plans for achieving goals that may involve more than
just navigation. Steps in the plan, such as “go to the door”
can be converted into lower level actions by the path plan-
ning systems of the lower layer. Traditional planning based
systems also perform most of their computation at the model
layer (Figure 3).

In all of the paradigms presented up to this point, input
information is abstracted up to some layer where it crosses
over to the output channel and converted to motor com-
mands. There is no reason that information cannot cross
from input channel to output channel at multiple layers. This
is precisely what happens in the planning/behavior hybrid
systems (Pell et al. 1998, e.g.). In these systems, longer term
information is modeled and planned over, which is used to
direct the reactive decisions being made in the attribute layer
(Figure 4).

In the top lifetime layer, decisions are made about the
longer term behavior of the robot. It is here that other agents
are modeled in order to coordinate collective behavior, and
the robots are able to consider what tasks they will pursue
over their lifetimes. Actual robot systems that operate at
this level are rare, especially those that perform true goal
selection. Activity in multiple robot coördination has re-
sulted in some modeling of other agents, but most multi-
robot systems encode assumptions about other robot be-
havior rather than perform true modeling (Matarić 1992;
1997).

There are two observations to be made in examining the
layers from left to right. First, both the amount of state re-
quired and the time window over which that state integrates
sensor input increases. For instance, when comparing the in-
put processing at attribute and the model layers, processing
at the attribute layer is both less intense than at the model
layer and it requires fewer input samples in order to gener-
ate output. The model layer needs to integrate many input
samples before it can build a model suitable for use in deci-
sion making. The second observation is, moving from left to
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Figure 4: Information flow in hybrid systems.

right, the number of pathways used in the input channel de-
creases as information is consolidated into the abstractions.
For example, input from multiple sensors is typically com-
bined in order to recognize properties and smooth out errors
at the attribute layer. These detections are further combined
into maps at the simple model layer. This process reverses as
information travels from right to left down the output chan-
nel, where an action is broken into the multiple motor com-
mands necessary for completion.

The Curriculum
The two-channel layered model described above suggests
a particular curriculum based on alternately presenting the
workings of each layer, followed by one or two example ar-
chitectures that focus on that layer. This enables the students
to implement an example of that architecture on a robot
suited to that layer, thus experiencing the power of architec-
tures at that layer while simultaneously seeing the connec-
tions to the layers below. We have developed this curricu-
lum in a four hour per week robotics course taken primarily
by twelve to sixteen senior Computer Science majors who
have not necessarily taken an Artificial Intelligence course.
In this course we try to present an AI robotics perspective
while emphasizing how each robot architecture relates to the
others in the context of the layered model.

For the signal layer, we present the basic operation of the
sensors and electric motors found on most robots. As an
example robot architecture, we present Braitenberg’s archi-
tecture as described in Vehicles, chapters one through five
(Braitenberg 1984). The students can experiment directly
with these ideas using simple commercial robots such as the
BYO-bot (Miller 2005) or some of the BEAM robotics kits
(Hrynkiw & Tilden 2002). These robots provide some of the
standard functions of the Braitenberg Vehicles, but are not
programmed by the student directly connecting sensors and
motors with wires, and are limited in the number of ways it
can be programmed. To remedy this, we designed a similar
low-cost robot that the students can program by connecting
wires. The sensors and motors have pluggable connectors
into which the students can insert wires to attach the sen-
sors to the motors so that they resemble the diagrams in the
Vehicles book. Our initial design was developed out of a
laboratory assignment in a robot engineering class (Bishop
& Wick 2005) (Figures 5 and 6), but designs in development
now also include potentiometer knobs to adjust connection

Figure 5: Photograph of a student-designed Braitenberg
robot prototype.

strength.
For the information layer, we present the mathematical

models of engineering robotics, with emphasis on kinemat-
ics in the Denavit-Hartenberg system (Denavit & Harten-
berg 1955) for rigid arms and extend it to the integral based
system for mobile robots used in Dudek and Jenkin (Dudek
& Jenkin 2000). In keeping with emphasis on similarities
and cohesion, we derive the results for mobile robots using
both systems to show their equivalence. The students per-
form both forward and inverse kinematics on both a rigid
arm and a mobile robot. For the rigid arm we use the Robix
Rascal (Advanced Design Inc. 2005) a rugged kit suitable
when high accuracy is not required (Figure 7). For the mo-
bile robot we use the aging but still viable Rug Warrior (A
K Peters, Ltd. 2005) (Figure 8).

In presenting the attribute layer, we discuss basic tech-
niques for identifying properties in input streams, sensor fu-
sion, and action selection mechanisms. For example, we
discuss the combination of multiple sensors such as infra-
red and vision to determine the distance and bearing to ob-
stacles. We also discuss the combination of multiple sensor
readings over time as a separate form of sensor fusion. From
this we present behavior-based architectures, how behaviors
are designed and actions are selected, emphasizing how this



Figure 6: Photograph of an alternative Braitenberg robot
prototype.

Figure 7: Photograph of a Robix Rascal Arm.

Figure 8: Photograph of a Rug Warrior performing ded.
reckoning.

leads to robust behavior in chaotic environments. The cor-
responding student assignment is to implement a behavior-
based system for a chaotic multi-robot task, such as playing
a game of capture the flag. These sorts of task emphasize
the benefits of more reactive systems in the face of real-time
unexpected situations but not requiring more sophisticated
reflection and planning to solve the task. Depending on the
nature of the task, we use Rug Warrior or Khepera (K-Team
S.A. 2005) robots.

At the simple model layer, we present the basics of oc-
cupancy grid maps and how they can be used as a repre-
sentation of the configuration space of either a manipula-
tor or a mobile robot2. This is followed by topographical
maps, and how they could be built out of occupancy grids
by identifying objects, and constructing Voronoi diagrams
or other roadmaps. As we shift over to the output channel,
we present first how reactive modules in the attribute layer
can use maps such as occupancy grids, by treating the input
from the map as if it came directly from the environment (a
technique some authors refer to as “virtual sensors” (Asada
1990)). Then we show how paths can be found by search-
ing either the grid-like spaces of occupancy grid maps, or
the graphs of the Voronoi diagrams. Once paths are calcu-
lated they can be passed down to the attribute layer, where
the first step in the path is determined (and weighed against
other possible courses of action).

In the abstract model layer, we discuss logical representa-
tions of the world and how they can be gathered both from
properties in the identification layer and from the maps built
in the simple model layer. For the output channel, we dis-
cuss task-planning and how that can use logical descrip-
tions to solve hard problems in the world. Because many
of the students have not yet taken Artificial Intelligence, we
present the AI problems solely as finding paths in abstract
graphs of plan-space and leave the algorithmic details to
the AI course. In our model, steps in the task-plan are ac-
tions that require path-planning to solve, such as “go-to-red-
door”. Each step in the plan is passed down to the simple
model layer, where a path for the action is calculated. The
action for manipulator plans, such as “grasp-hammer,” are
passed down to the path planning system in the same man-
ner. The student’s final project assignment is to use a Khep-
era robot equipped with a gripper to move blocks (Figure
9).

The balance of the class discussions focus on the life-
time layer, where the highest level operations take place.
It is at this layer that much of the cutting edge research is
performed and thus it is difficult to give a clear picture of
where these issues are headed. We typically concentrate
on multi-agent systems, the coördination of robots to per-
form a task, and how fully autonomous robots might se-
lect which goals they want to pursue and which they do

2Technically, the configuration space of a mobile robot would
include both its pose (x,y position plus orientation) and the angular
position of the wheels or legs. Since most often, only the pose is
interesting, the configuration space is defined ignoring the config-
uration of the locomotors. This results in the configuration space
being a nearly direct representation of the physical space of the
surrounding area.
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Figure 10: The logical conclusion.

Figure 9: A Khepera robot maneuvering to lift a block.

not. Although these issues apply throughout the layers, this
is a good place to discuss the ethics of fully autonomous
robotics, in terms of worker displacement, liability, and of
course, independence (the “Terminator” issue). We also
point out that the logical conclusion of the layers and the hy-
brids is a model where information crosses over all the layers
(Figure 10). While there may not be any examples of such
an artificial system today, it does echo some current psy-
chological models of animals and humans (Gallistel 1980;
1990). Reflex reaction corresponds to the signal layer, while
brain-stem and cerebellum behavior correspond to the infor-
mation and attribute layers. While the physiological mecha-
nisms are less well understood at higher layers, psychologi-
cal evidence indicates that there is pathway crossover at all
layers in human behavior.

At the conclusion of the class we can re-emphasize that
all of the styles of robotics share the same general architec-
ture, and only vary on how many levels of abstraction are
applied and at what levels information crosses from the in-
put to the output channel. We also re-emphasize that just
as with good software engineering practices, high levels of
abstraction reuse implementations of lower levels.

Getting It All To Fit
A curriculum as presented here has more material than might
be covered in other robotics courses. We feel that to give an

accurate assessment of the whole of AI robotics, it is impor-
tant to look at the whole of robotics and how these pieces
fit together. Fortunately, due to the nature of the formalism,
the material need not be overwhelming. The modular lay-
ered approach means that there is less repetition of similar
material in different architectures. For instance, when pre-
senting behavior-based and task-planning architectures sep-
arately, the lower layers are essentially presented twice. By
using a bottom-up approach in the layered model we advo-
cate here, this duplication is avoided because the explanation
of the behavior-based layers is the foundation for the task-
planning layers.

Even given the efficiency of this approach, courses move
at different speeds from semester to semester, depending on
both the students and the instructor. Fortunately, the ap-
proach makes it easy to leave out a module without further
repercussions. Any particular module can be treated as a
black box, and all that needs to be presented is the specifica-
tion and interface, what it does rather than how it works. In
this manner, any particular section can be jettisoned when it
comes time.

Finally, the projects we’ve presented here seem to add
up to a great deal of programming, implementing two in-
verse kinematics systems, a behavior-based system and a
task-planning system. Our approach to alleviating this is to
provide as many of the program modules as possible, espe-
cially from the lower layers. For example, in the planning
project, the students are given all the tools at the lower lay-
ers to perform the sensory processing, and take the actions
proposed by their planning system. The development of this
library of tools was done over several years by the students
themselves. As the class was being built, assignments were
made with the intent that they would contribute to the suite
of libraries for later assignments. This process is not com-
plete, and for each assignment, one group is given a different
assignment from the others for addition to the library.

Other Approaches
This section attempts to compare our framework and themes
for teaching AI robotics to undergraduates to those themes
and frameworks presented in current textbooks. When com-
paring the approach described here to that described (or at
least adhered to) in the available textbooks, it is important
to note the difference in purpose. The motivation of our ap-
proach is to present a principled perspective of the entirety of



robotics, suitable for an undergraduate survey course with an
AI bent. Most of the existing books explicitly narrow their
focus to a particular area in robotics, as would be appropri-
ate for a graduate course. Even so, most of these texts do
have perspectives and themes that can can be discussed.

Artificial Intelligence: A Modern Approach
Russell and Norvig’s influential Artificial Intelligence: A
Modern Approach (Russell & Norvig 2003) is of course
not actually a robotics textbook, but the second edition
does have a chapter on robotics written mostly by Sebas-
tian Thrun. The overall theme of the Russell-Norvig text is
that of agents sensing and acting in an environment. That
theme is essentially redundant when it comes to robotics,
as all robots are agents by definition and application of the
theme is not helpful in differentiating between the various
architectures. If there could be said to be a secondary theme,
it could be that “[t]he literature on robotics research can be
divided roughly into two parts: mobile robots and stationary
manipulators.”(p. 940) While accurate, the ontological po-
sition that it takes (there are manipulators, mobile robots,
and hybrids of the two) appears to emphasize the differ-
ences rather than the similarities between these two types
of robots. Within the chapter, the sequence of the sections
is: hardware, perception, motion planning, motion planning
under uncertainty, moving, software architectures, and ap-
plications. There is a particular emphasis on probabilistic
approaches. The section on software architectures briefly
discusses layered architectures as a combination of deliber-
ative and reactive processes, and mentions that most modern
software systems contain a variant of the architecture, hint-
ing at the formalism we have presented here.

Interestingly, what a lay person might consider intelligent
behavior in a robot is never actually mentioned. As far as
specific robot capabilities are concerned, the chapter ends
after path planning. Of course, high level issues such as task
planning and natural language are covered at great length in
others areas of the book, but all these techniques have spe-
cial concerns when applied to robots and are missing from
this chapter. This disconnect is present in most of the intel-
ligent robotics books, and appears to reflect the AI robotics
community’s current research emphasis on effective spatial
reasoning over higher-level task composition.

Introduction to AI Robotics
Introduction to AI Robotics by Robin Murphy (Murphy
2000) is, by topic area, the most appropriate text for an in-
telligent robotics course. The book itself is organized into
two (overlapping) mini-books, the first on software archi-
tectures, and the second on navigation. Manipulators are not
discussed to any depth.

Prof. Murphy comes from the behavior-based robotics
tradition, and follows the party line from that perspective.
“Shakey-style” robotics are presented and then criticized,
leaving behavior-based robotics as the only sane solution (or
perhaps if the problem is especially complex, a hybrid of the
two is what is called for). Notably missing is a discussion
of where high level representations might come from. How
does a robot take a mass of noisy sensor data, integrate it

over space and time, and generalize to logical style descrip-
tions such as those in a planning language. This would go
a long way toward truly reconciling the approaches. Much
like Russell-Norvig’s mobile versus manipulator paradigm,
planning vs. behaviors emphasizes, to our mind, too many
of the differences, and too few of the similarities. Further, it
doesn’t leave much room for other sorts of robotics (such as
engineering) that don’t fit neatly into the dichotomy.

The second mini-book on navigation is almost entirely
stand-alone, making little direct reference back to the soft-
ware architectures. Aside from the lost opportunity to talk
deeply about configuration space, the split has the effect of
leaving the student perplexed about where the navigation
portion fits into the various architectures explained in book
one.

Mobile Robot Texts
Siegwart and Nourbakhsh’s Autonomous Mobile Robots†
(Siegwart & Nourbakhsh 2004) and Dudek and Jenkin’s
Computational Principles of Mobile Robotics are both
solely about mobile robots, and as such, buy in to the
Russell-Norvig partition. By the authors’ admissions, both
books focus on the problem of getting a robot to move
through space in support of some other task. This slice of the
larger robot problem calls for a less encompassing frame-
work than presented in this paper, and so makes direct com-
parison difficult.

Dudek and Jenkin, however, do set out a broad ranging
theme that “[w]hat sets mobile robotics apart from other
research areas such as conventional manipulator robotics,
artificial intelligence, and computer vision is the empha-
sis on problems related to the understanding of large-scale
space.”(p. 1) This position appears to be the antithesis to the
view presented here, though Dudek and Jenkin may main-
tain that they are highlighting the differences in order to dif-
ferentiate their narrow topic from the rest of robotics.

Siegwart and Nourbakhsh make fewer broad thematic
claims, but appear to be in fairly strong agreement with
Dudek and Jenkin on the scope, breadth, depth, and even
order of topics in a mobile robotics textbook. They do place
more of an emphasis on the layered nature of robotics, even
going so far as to present a diagram (p. 10) nearly identical
to figure 11. They do however, restrict information flow to
just one particular kind of architecture.

Because of the emphasis in these books on the mobile
over the manipulator nature of robots, their robots rarely
do anything besides navigate, forgoing traditional AI-style
tasks (when they say “planning”, they mean almost exclu-
sively “path-planning”). Much like Russell-Norvig, they ad-
dress intelligent robotics only in the sense that navigation
can be considered a task requiring intelligence. Without cov-
erage elsewhere of higher level topics such as task planning,
the mobile robots texts implicitly endorse the idea that tra-
ditional AI plays no role in current mobile robotics.

†Texts marked with a dagger (†) are ones that we have not used
as texts in our robotics class. We have examined the text, and in
most cases incorporated some material into the course.
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Figure 11: Reference control scheme from Siegwart and
Nourbakhsh, (Siegwart & Nourbakhsh 2004).

As an aside, Dudek-Jenkin discusses configuration space
with respect to mobile robot pose without recourse to the
manipulator model. We wish they wouldn’t; this has caused
confusion with students who end up believing that configu-
ration space is merely a direct representation of real space,
degrading the term and causing confusion among not just
students, but also some other textbook authors. Siegwart
and Nourbakhsh get this right.

Robot Motion
A different view on some of the same problems faced in mo-
bile robotics is offered by the texts on “robot motion”. From
this perspective, all robot movement problems are mapped to
configuration space, where path planning can be performed.
In mobile robots, configuration space is close (if not identi-
cal) to real space, whereas in fixed base manipulators, con-
figuration space is the set of positions (configurations) in
which the manipulator can reside. A collision-free path in
a mobile robot’s configuration space takes the mobile robot
from one location to another, whereas a collision-free path
in a manipulator’s configuration space takes the robot from
one position to another. Either way, the main problem for
robot motion is finding paths through the appropriate con-
figuration space. In this view, outside of differences in hard-
ware and the associated kinematic differences, the primary
difference between manipulator robots and mobile robots is
the latter’s additional problems of localization and mapping.
Thus it is not that surprising that mobile robot texts and robot
motion texts might share many properties.

Jean-Claude Latombe’s classic Robot Motion Plan-
ning†(Latombe 1991) is still a definitive reference when it
comes to moving either a mobile robot or a manipulator.
The material is dense, light on motivation, heavy on the an-
alytic geometry, thus is unlikely to be appropriate as an un-

dergraduate text. The format is an introduction of configura-
tion space and how it is constructed, followed by an in-depth
survey of how paths can be found in such spaces. The later
chapters look at complications on the problem, such as mul-
tiple moving obstacles. The book shows its age in the chap-
ter on “uncertainty in action,” which approaches the problem
something to be engineered around, as opposed to embraced
with probabilistic techniques. As with the mobile robot text-
books above, “planning” means “path-planning.” Unlike the
mobile robot texts, it considers the problem almost entirely
in an abstract mathematical space, only occasionally refer-
ring to idealized robots and not at all to real-world platforms.

The recent Principles of Robot Motion†(Choset et al.
2005), team written by seven authors, could easily be viewed
as an update of Latombe’s text. Like Robot Motion Plan-
ning, it focuses on the idea of configuration space as a rep-
resentation for mobile robots and articulated arms alike. It
presents many of the same topics as Latombe, such as poten-
tial fields, roadmaps, and cell decompositions. Of course,
each of these areas has been updated with the new results
from the intervening fifteen years. There is also new ma-
terial based on some more recently developed approaches,
especially with respect to probability. Most of this material
fits smoothly into the text, such as sampling approaches to
roadmaps for path planning. On the other hand, some of the
new material is not directly about motion at all, but rather
about the problems of sensation specific to mobile robots,
such as approaches to simultaneous localization and map-
ping (SLAM).

Due to the mathematical difficulty and limited scope of
both these texts, neither is a good choice for the course under
discussion here, but the unifying philosophy is aligned with
the spirit of our approach, and the material they contain is
an important piece of the larger picture.

Introduction to Robotics. . .
Two books with similar names, Introduction to Robotics:
Mechanics and Control† by Craig (Craig 2005) and Intro-
duction to Robotics: Analysis, Systems, Applications† by
Niku (Niku 2001) present the standard view of engineering
robotics. In fact, the first few chapters differ only in ex-
planation style, covering the same material in pretty much
the same order. Both focus almost exclusively on manipula-
tor arms, covering: kinematics, velocities, dynamics, ma-
nipulator design, and control. Niku presents fuzzy logic
control while Craig focuses on more traditional linear and
non-linear differential equation based control. Neither au-
thor pays any attention to the higher level issues that would
characterize an AI style course, but are good references for
instructors who wish to include coverage of these topics.

Discussion
The idea of abstraction in computing is not new, nor is the
bottom up approach to teaching. However, by examining the
texts currently available in robotics, it appears that under-
graduate robotics is rarely taught in that manner. Textbooks
that focus on one robotics sub-field usually ignore all of the
other sub-fields. Even books that have broad coverage, of-
ten fail to relate the sub-fields to each other. For each major



sub-field in robotics, examining it from the perspective of
the layers of abstraction framework provides additional in-
sight.

At the signal layer, Braitenberg architectures are often
presented as an interesting but unrelated thought experiment
in robotics. Instead, they fit naturally into the framework
and make an excellent place to introduce robots.

Behavior-based robots have been traditionally presented
as an antidote to and a radical departure from the traditional
planning systems. According to this layered framework they
are neither unrelated nor antithetical to planning systems;
they are a difference of opinion on how much abstraction is
necessary to perform various tasks. Furthermore, the frame-
work highlights that hybrids of behavior-based and planning
architectures are a natural combination of crossing informa-
tion from the input to the output channel at multiple layers,
thus taking advantage of the time differences at the various
layers.

Mobile robotics is commonly presented as its own sub-
field, with its own kinematics and own high-level issues,
primarily navigation. Some authors explicitly present them
as orthogonal to manipulators, as if mobility and manipu-
lation is thought of like oil and water: they can be mixed
with vigorous shaking, but on the local level, they are dis-
tinct. By examining mobile robotics in terms of the layer
framework one can see that the system organizational issues
for mobile robotics are identical to those of other robotics
systems. They can been viewed as requiring slight modifi-
cations of details, such as using a variant on the kinematic
formulations, but otherwise are the same as stationary artic-
ulated arms. In fact, two of the more elegant and interest-
ing results come from this fact: the equivalence of the in-
tegral kinematic method for mobile robots with the Denavit
and Hartenberg methods; and the equivalence of path plan-
ning in manipulator configuration space with path planning
in mobile robot physical space.

“Probabilistic robotics” is an imprecise phrase, at its root
meaning that there are some probabilities in the system
somewhere. In practice, it typically is used to mean proba-
bilities exist in either sensation in the simple model layer for
localization and mapping, or accounting for uncertain move-
ments in the path planning problem through the use of par-
tially observable Markov decision processes (Thrun 2000).
If architectures are defined by the number of layers through
which information is passed and where information crosses
channels, then probabilistic robotics are not a particular ar-
chitecture at all. The use of probability is a specific approach
to solving the problem of a particular layer and channel. For
instance, Bayesian classifiers can be used in the detection
module for behavior-based systems. Further, a probabilistic
robot might use any combination of probabilistic modules
with non-probabilistic mechanisms in other areas, such as
probabilistic localization with a deterministic path planner.
From the perspective of the layers of abstraction, the degree
to which probabilities are involved in a system is orthogonal
to the architecture of the system.

Advocates of probabilistic robotics maintain that it can
bestow the fast reaction time and robustness to noise ben-
efits of behavior-based robotics over logic predicate based

task-planning robotics, while being more principled than
said behavior-based systems. The validity of this claim de-
pends on what systems are being compared. For instance,
when comparing a probabilistic path planner to a task plan-
ning robot, some of the robustness of the path-planner is due
to only abstracting up to the simple-model layer. When path
planning is performed in these systems, it is not the same
sort of problem being solved as would be by a task-planning
robot. Similarly, a system that uses probabilities in the input
channel for map making but uses modules that are reactive
towards the maps built (what we’ve called reactive-model ar-
chitectures) would owe some of their robustness to behavior-
based architectures. Yet, the probabilistic path planning sys-
tem that has no reactive component is just as vulnerable to
surprise occurrences as other planning systems.

Because probability is not an architecture, but a technique
to be used within many architectures, comparison to indi-
vidual architectures is not immediately elucidating. On the
other hand, the success of probability does suggest a gen-
eral principle. While more abstraction reduces robustness
through the discard of information, the introduction of prob-
abilistic techniques at a particular layer can ameliorate the
brittleness of abstraction while maintaining its advantages.
It will be interesting to see if researchers will succeed in
applying probabilistic techniques to the higher layers of the
abstract model, and whether this principle will continue to
hold true.

It is common to find discussion of AI planning robotics
without any explanation of where the logic representation
comes from, or how actions output by the planner end up
as motor movements. It is similarly common to find dis-
cussions of the use of topographical maps without discus-
sion of their origin. In the layered model, these connections
are emphasized at each stage, providing the student with the
context to understand these topics.

Many authors like to describe the level of autonomy in a
robot system as a spectrum, from fully autonomous to tele-
operated. While strictly speaking the level of autonomy is
orthogonal to the architecture, it is interesting to note that
as autonomy increases, it is nearly always introduced at
the lowest layers of the system first. As systems become
progressively more autonomous, the designers add auton-
omy layer by layer from the lower layers on the left to the
higher layers on the right. But this need not proceed in both
channels, for instance, there can be little or no autonomy
in the input channel, with hand-build maps provided by a
controller, yet the robot is fully autonomous in the output
channel. Similarly, the autonomy could all be in the input
channel, where the result of the processing is presented to
the controller who then makes decisions and prescribes the
robot’s actions directly. By describing the level of auton-
omy in this manner, by showing where autonomy is added,
it provides a more specific concept than just that of a simple
spectrum.

Finally, it is interesting to note that because this frame of
reference encompasses all of the standard robotics sub-fields
it can act as an evaluation tool of the claims of novel archi-
tectures. By examining new proposals from the perspective
of this framework, a researcher can determine relations to



existing systems and evaluate uniqueness claims. For ex-
ample, the layers of abstraction model points out that there
appears to be a disconnect between artificial intelligence and
mobile robotics as it is currently practiced by the AI commu-
nity. AI texts place the field of AI in the upper layers of this
taxonomy, abstract models, task planning, with some path
planning. In contrast, most mobile robotics efforts spend
their time building simple models; there is almost no consid-
eration of what the robot does when it gets to its destination.
This is not a criticism– after all a robot has to be at the job
site before it can perform a job, but rather point where the
connection can be made.

Conclusion
This paper presents and argues in favor of a perspective for
teaching AI robotics that looks at the problem as a two-
channel set of layers of abstraction. This perspective is use-
ful for teaching an undergraduate course that focuses on the
broad spectrum of subfields in robotics. It covers all of the
major issues while providing a unifying context for what
sometimes seem disparate approaches to robotic problems.
In addition, the technical focus of these layers of abstraction
adds perspective to some of the historical developments that
have led AI and Robotics to the stature that they enjoy to-
day. When AI robotics is only a small portion of a much
larger AI course, this framework effectively and efficiently
connects the topics to the much broader fields on which it
depends.
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