Paul Martin

Frederick Crabbe

Stuart Adams

Eric Baatz

Nicole Yankelovich

Sun Microsystems Laboratories

Users interact with SpeechActs
applications using natural,
continuous speech, as if they
were conversing with a
personal assistant.

0018-9162/96/$5.00 © 1996 IEEE

SpeechActs:
A Spoken-
Language
Framework

peechActs is a prototype testbed for developing spoken natural

language applications. In developing SpeechActs, our primary

goal was to enable software developers without special expertise
in speech or natural language to create effective conversational speech
applications—that is, applications with which users can speak naturally,
as if they were conversing with a personal assistant.

We also wanted SpeechActs applications to work with one another with-
out requiring that each have specific knowledge of other applications run-
ning in the same suite. For example, if someone talks about “Tom Jones”
in one application and then mentions “Tom” later in the conversation
while in another application, that second application should know that
the user means Tom Jones and not some other Tom. A discourse manage-
ment component is necessary to embody the information that allows such
a natural conversational flow.

Because technology changes so rapidly, we also did not want to tie devel-
opers to specific speech recognizers or synthesizers. We wanted them to
be able to use these speech technologies as plug-in components.

These constraints—integrated conversational applications, no special-
ized language expertise, and technology independence—led us to a
minimalist, modular approach to grammar development, discourse man-
agement, and natural language understanding. This approach contrasts
with those taken by other researchers working on spoken-dialogue sys-
tems. We believe we have achieved a degree of conversational natural-
ness similar to that of the outstanding Air Traffic Information Systems
dialogues,'? and we have done so with simpler natural language tech-
niques.

At the same time, SpeechActs applications are unique in their level of
speech technology independence. Currently, SpeechActs supports a hand-
ful of speech recognizers: BBN’s Hark,* Texas Instruments’ Dagger,® and
Nuance Communications’ recognizers® (derived from SRI’s Decipher).
These recognizers are all continuous—they accept normally spoken speech
with no artificial pauses between words—and speaker-independent—they
require no training by individual users. For output, the framework pro-
vides text-to-speech support for Centigram’s TruVoice and AT&T’s
TrueTalk. The system’s architecture makes it straightforward to add new
recognizers and synthesizers to the existing set.

Like several other research systems, SpeechActs supports multiple, inte-
grated applications. For example, the Chatter system developed at the
Massachusetts Institute of Technology” offers e-mail reading, voice mail
access, telephone dialing, Rolodex access, and user-activity information.
Chatter, however, was created as a single, monolithic system. Applications
in a monolithic system can be very tightly integrated, allowing the user’s
conversation to flow seamlessly from one activity to another (Chatter:
“Your next message is from Lisa.” User: “What’s her address?”).

July 1996

peechActs
lets business

travelers r

e-mail, consult
their calendars,

and ask fo

time around

the world.

SpeechActs trades off this type of seamless integration
for extensibility. A single, monolithic system cannot be
expanded indefinitely without running into grammar size
limits, vocabulary conflicts, and unacceptably high per-
plexity. Perplexity (too many equally likely word choices)
is a major cause of recognition errors. SpeechActs users,
therefore, must explicitly switch between applications
rather than change the subject in a more natural, implied
manner. Despite this inconvenience, the user’s conversa-
tional context is maintained across applications, as we
illustrate in this article.

HELP FOR BUSINESS TRAVELERS

The current suite of SpeechActs telephone-based appli-
cations targets business travelers, letting them read elec-
tronic mail, look up calendar entries,
retrieve stock quotes, set up notifications,
hear national weather forecasts, ask for
time around the world, and convert
currency amounts. The dialogue below
captures the flavor of a SpeechActs con-
versation. In this example, a business trav-
eler has telephoned SpeechActs and
r entered his name and password. (We've
published a more complete discussion of

ead

the design issues and user testing of the
SpeechActs conversational interface else-
where.?)

SA: Welcome to SpeechActs. Would you like
mail, calendar...

User: I'd like mail please.

SA: Youhave 47 old messages and 78 new
messages; 14 are high priority. The first new
message is from Paul Martin regarding
“Sailing this weekend.”

User: Skip that one.

SA: Message 2 is from Nicole Yankelovich
regarding “Change in itinerary.”

User: Let me hearit.

SA: “Ric, can you meet me in Paris on the first
Friday after New Year’s instead of in Brus-
sels next week?”

User: Switch to Calendar.

SA: Switching to Calendar. Today you have
“Lunch with visitors.”

User: What do I have the Friday after New Year’s?

SA: OnFriday, January 5th, you have no
appointments.

User: How about the day before that?

SA: On Thursday, January 4th, you have
“Remember to call florist.”

User: What does Sandy have on Wednesday?

SA: On Wednesday, December 11th, at 11:00
Sandy has “Staff Meeting.”

User: No, I meant the Wednesday after New
Year’s.

SA: Sorry. On Wednesday, January 3rd, Sandy
has “Peter’s Birthday.”

User: What’s on Tom’s calendar the next day?

SA: Do you mean Tom Ricardo or Tom Jones?

User: I mean Tom Jones.

Computer

SA: OnThursday, January 4th, at 9:00 Tom
Jones has “Meet with architect.” From 3:00
to 4:00 he has “Performance review meeting.”
User: Switch back to Mail.
SA: Switching back to Mail. You left off with
message 2 from Nicole Yankelovich.
User: Send a message to Tom.
SA: Preparing message to Tom Jones...

Notice that SpeechActs weaves feedback into each con-
versational unit so that users can detect errors. Notice also
that the user’s reference to Sandy is unambiguous, but the
system knows about two different Toms (for this user).
SpeechActs remembers which Tom is currently being dis-
cussed so that the user doesn’t have to identify “Tom” more
than once in a session. The sample dialogue also illustrates
how the user can correct just a portion of the query when
the system selects the incorrect Wednesday.

In addition, this example illustrates the Calendar’s
extensive use of relative dates. Our user studies revealed
that this is how people talk about dates when they do not
have a calendar in front of them. Because relative dates
are rather tricky from a natural language-understanding
perspective, SpeechActs includes a modular date gram-
mar and a discourse specialist for dates. These shared
resources let developers of subsequent applications (such
as notification and weather) use relative dates (“Give me
a reminder call next Monday” or “What’s the weekend
forecast for Boston?”) without addressing the accompa-
nying complex language issues.

Other prewritten grammar modules support irregular
verb constructions, user names, place names, numbers,
clock times, and money. These grammars can be included
in any application. When necessary, corresponding dis-
course specialists handle calculations and track prior con-
versational references. Besides easing development, using
common modules gives the applications a shared “sound
and feel.”

SYSTEM STRUCTURE OVERVIEW

Figure 1 shows a diagram of information flow in
SpeechActs. The framework comprises an audio server,
the Swiftus natural language processor, a discourse man-
ager, a text-to-speech manager, and a set of grammar-
building tools. These pieces work in conjunction with
third-party speech components and the components sup-
plied by the application developer. In this article, we place
Swiftus, the discourse manager, and the grammar tools in
context. For a more comprehensive architectural overview,
see our earlier account.?

The audio server presents raw, digitized audio (via a
telephone or microphone) to a speech recognizer. When
the speech recognizer decides that the user has completed
an utterance, it sends a list of recognized words to Swiftus.
The speech recognizer recognizes only those words con-
tained in the relevant lexicon—a specialized database of
annotated vocabulary words.

Swiftus parses the word list, using a grammar written by
the developer, to produce a set of feature-value pairs. These
pairs encode the semantic content of the utterance that is
relevant to the underlying application. For example, a cal-
endar application requires pairs such as the following:

USERID=pmartin,
DATE=6 January 1996, and
ACTION=appointment-lookup.

The feature-value pairs pass through a series of dis-
course manager snooper functions, which scan for pairs
that require special action such as requests to end the ses-
sion or switch to a different application.

If none of the snoopers intervene, the feature-value
pairs are passed to the application for processing. As it
processes the pairs, the application may ask the discourse
manager for help from discourse specialists or access to
information about the current conversational context.
Among other things, discourse specialists turn relative
date references like “the Wednesday after New Year’s” into
absolute day-month-year references like “3 January 1996.”

The discourse manager also maintains a stack of infor-
mation about the current conversation (the discourse
stack), including data that lets an application resolve ref-
erences that use pronouns (“Send me a reminder”), deic-
tic references (“What does Eric have tomorrow?”), or
partial information (“And Nicole?”). Both the discourse
manager and the application can respond to the user by
sending a text string to the text-to-speech manager, where
it is eventually transformed into digitized audio, which
the audio server sends to the user via the telephone, a
speaker, or headphones.

GRAMMAR TOOLS

Although any SpeechActs application can recognize and
act upon a single defined set of user utterances, there are
two grammars that specify the legal set of utterances: A
speech recognition grammar determines what words were

spoken, and a natural language processing grammar
extracts the meaning from those words. Each grammar has
a corresponding engine: A speech recognizer and Swiftus.

Lexicon

The lexicon used by SpeechActs is a computer-readable
dictionary containing all the words (in their various
forms) that are needed for the current application. Each
entry is a word sense, so a word like “bank” might have
two noun entries (side of a river and financial institution)
plus two verb senses (making a financial transaction and
deflecting a ball). If a word sense never occurs in an appli-
cation, the developer can omit it from that application’s
lexicon. Besides its spelling, each word sense has a set of
feature-value pairs that defines such things as its part of
speech (noun, verb, and so on), its root form (“was” and
“am” are both forms of “to be”), and other information
useful to the application (such as semantic features like
“clothing” for the word “shirt”). The lexicon may contain
additional features, such as defining synonyms (instead
of creating the entry for each separately) or specifying
when a word changes its form irregularly (for example,
the plural of “child” is “children”). The developer may also
explicitly include other lexicons so that an application can
easily use previously developed lexicons for special pur-
poses.

An example entry for the word “show” in a calendar
application might look like this:

(show

((category verb) (root show)
(semantics display)

(irregular (past-participle shown)))

R

Speech Natural

recognition language Blackboard
grammar grammar data
and

lexicon

Unified
grammar
and
lexicons

Audio .
server -
y Swiftus | *
Speech natural Discourse _ | Application _ | Text-to-speech Text to
recognition language manager* ~ | interface o manager speech
processor I
Application
Y engine

Text-to-speech
dictionaries

Text-to-speech
dictionaries

*Under development

@ Third-party component
O SpeechActs component
[Application component

Figure 1. Diagram of information flow in SpeechActs.

July 1996

From this entry, the lexicon loader would automatically
produce “shows,” “showed,” and “shown” as derivative
forms. Because the speech recognizer requires a full
word list, the morphology must be done in advance, not
on the fly.

Unified Grammar

Current continuous-speech recognizers require gram-
mars that specify every possible utterance a user could
say to the application. The constraints on word choice
imposed by these grammars reduce perplexity and thus
lower the recognition error
rate. Recognizer grammars
are commonly specified
using Backus-Naur Form, C urrent
yet the details of each for- continuous-
malism vary widely. To sub- speech
stitute one recognizer for recognizers
another, developers must require grammars
write a new version of the that specify every
grammar. Worse still, for possible
the Swiftus semantic gram- utterance a
mar to handle the same user could say to
user utterances as the rec- the application.
ognizer, it must be closely
synchronized with the
recognizer grammar.

We solved this problem by inventing a Unified
Grammar,® which lets a developer write a single, recog-
nizer-independent grammar specification for a SpeechActs
application.

UNIFIED GRAMMAR RULES. Along with its lexicon, a
Unified Grammar is a collection of rules. The typical Unified
Grammar rule consists of a pattern—such as a BNF rule—
followed by augmentations, which are statements written
in a Pascal-like form. Augmentations take the form of

* head declarations—an easy way to pass groups of fea-
ture-value pairs;

» tests—further constraints on the matches based on the
features of the pattern elements; and

* actions—a means to pass feature values out of the
parse.

Here is a commented example of a Unified Grammar
rule that matches utterances such as “What is on Nicole’s
calendar?”

{CalendarQuestion := # PATTERN

“what” root=be (“in” | “on”
namePossessive sem=calendar;

AUGMENTATIONS
#f Head Declaration
head namePossessive;

Tests
be.past-participle != t;
be.ing-form != t;
Actions
action := “lookup; }
Computer

Each word of the pattern matches a word (or compound
word) of the utterance. The pattern requires the first word
to be “what,” then any form of “to be,” then “in” or “on.”
The fourth word is whatever results from a rule called
namePossessive, and the last is any word in the lexi-
con with the semantics of “calendar,” such as “schedule.”
The first augmentation sets the head of the rule (its main
source of information) to be the results from the
namePossessive rule. Then, the tests ensure that the
verb is not “being” or “been.” The “be” forms we want are
“was,” “is,” “are,” and “_s” (for a contraction), and so on.
The action augmentation adds a feature “action” with the
value of “lookup.”

UNIFIED GRAMMAR COMPILER. From a Unified
Grammar, the Unified Grammar compiler produces a
grammar for a specified speech recognizer and a corre-
sponding grammar for Swiftus. The major complication
is that the recognizer and Swiftus grammars are funda-
mentally different from one another. Recognizer gram-
mars, used only to constrain word sequences, explicitly
represent constraints down to the level of all possible ter-
minals, while Swiftus grammars, in order to extract a data
structure comprising the semantic contents of a full parse
of the sentence, must be more general and use augmen-
tations. The Swiftus grammar is a simple transformation
of the Unified Grammar, so we will focus instead on how
the compiler produces the speech recognizer grammar.

Reducing a grammar containing arbitrary augmentations
to pure BNF would require precomputing all those aug-
mentations, which is provably not possible. However, a tool
to reduce augmented grammars is so useful that we have
created an engineering approximation. The augmentations
are composed of tests that commonly compare pattern ele-
ment features to one another or to constant values, and
actions that set feature values, either by copying from lexi-
cal feature values or through more complex computations.

The Unified Grammar compiler works by rewriting the
augmented rules and the feature-based patterns using only
words from the lexicon or patterns that correspond eventu-
ally to some set of these words. While a top-down expansion
to all the allowed word sequences would fit this description,
the compiler also strives to maintain a compact form for an
expression without losing its constraining power.

Retaining constraints is the purpose of the compiler;
otherwise a single trivial rule such as sentence :=
word* ; could cover every grammar. So whenever case
analysis of the actual entries in the lexicon can yield a tight
BNF rule to replace an augmented one, it is used. For
example, a rule like

ToBeVerb := root=be

could be rewritten after searching the lexicon for all such
words as

ToBeVerb := “be” | “_ g” “is “| “am “
uasn “were” | “being ul
“been”

When the tests refer to properties that have been set by
actions in other rules, the compiler must pursue those

rules to determine the conditions that cause them to set
these values. Whenever the code analysis becomes too
complex, or when the augmentation contains an explicit
indicator that further analysis is forbidden, the compiler
produces a rule that allows the pattern portion but does
not impose the restrictions represented by the unanalyz-
able actions or tests. This is the escape hatch that makes it
possible to process any Unified Grammar.

The new rules created by rewriting are given descrip-
tive names that allow the compiler to reuse rules that
would otherwise be created more than once in a compila-
tion. For example, if a portion of some pattern allowed any
word whose root form was “do,” a substitute rule that sim-
ply collected all the winners from the lexicon would be
written

eq_root_do := “do” | “does” | “did *
“done” | “_d”

If an additional requirement for only past-participle
forms were added as a test augmentation

do.past-participle = t

then a further restricted rule would be created, using only
the allowed word:

eq root_do_eq past-participle_t :=
“done”

Other cases where an equivalent restriction arose would
use this same rule, recognizing it by the name-construc-
tion rules.

Swiftus
Swiftus, the natural language processor, was designed
to meet several competing objectives.

Real-time performance. The semantic representation
must be generated in real time to facilitate conversa-
tion.

* Accurate understanding. Methods such as simple key-

word matching cannot be used because they miss

nuances needed to make the proper response.

Toleration of misrecognized words. State-of-the-art

speech recognition systems have a significant error

rate, especially for structural words, which may be
short and/or deemphasized. For example, traditional
natural language understanders place too much cre-
dence on the distinction between the words “the” and

“a.”

* Wide variation among applications. Different appli-
cations require different knowledge and different
strategies. An inflexible natural language processor
will not work well with some applications.

* Easeof use. Someone besides the developers must find

it straightforward to create new applications.

To meet these objectives, Swiftus is designed to perform
flexible, medium-grained semantic analysis, somewhere
between coarse keyword matching and full, in-depth
semantic analysis.

SWIFTUS OPERATIONS. Swiftus uses the lexicon sup-
plied for the Unified Grammar and the rule set produced
by the Unified Grammar compiler. It is implemented as a
pattern recognizer, and it applies the augmented context-
free grammar using a top-down, finite-state-automata
parser.

The patterns the Unified Grammar compiler has made
from the rules are quadruples: pattern name, pattern
body, tests, and actions. Patterns are represented as Lisp
expressions. Swiftus converts the word list from the
speech recognizer into a sequence of word senses. It then
parses this sequence by recursively expanding the rule
quadruples until at least one sense of each word has been
consumed. The rules are efficiently represented as a finite-
state automata, in which traversing an arc to another state
requires matching the patterns and passing the tests.

At each state, the pattern body is compared with the
input to find all matches. If a match occurs, Swiftus then
tries the test expressions as additional match require-
ments, testing such things as the word root, part of speech,
or the value of a specified feature in the lexical entry. When
both the pattern and the test expressions have passed,
Swiftus evaluates the action expressions and uses their
values to produce the result form.

USING SWIFTUS. Each Swiftus grammar is designed to
handle just one application, so when the user changes
applications, Swiftus is reset to the relevant lexicon and
Swiftus grammar.

By performing a full parse but limiting semantic analy-
sis to simple feature-value
pairs and a limited number
of grammar rules, Swiftus
can complete its analysis
quickly yet preserve the
essential content. Because
the matching need not be
restricted to specific words,
a well-designed grammar
can successfully extract the
semantics despite many
common speech misrecog-
nitions. For example, if the
recognizer mistakes one
preposition for another, the grammar can be written so
that the sentence will still be understood. This choice of
how specific to make the grammar’s tests lets an appli-
cation writer create widely ranging grammars, from quite
simple to fairly sophisticated. Finally, since the lexicon
and grammars are switched with the applications, each
can be fine-tuned to respond best for its particular appli-
cation without interfering with the sharing of grammars
by applications.

f the recognizer

mistakes one
preposition for
another, the
grammar can be
written so that
the sentence
will still be
understood.

DISCOURSE MANAGEMENT

Using just Swiftus to process what a user said, an appli-
cation would succeed only if the user fully specified a com-
mand every time he spoke (“Show the calendar for Eric
Baatz on January 4, 1996.”) To support more natural
speech, we must provide at least rudimentary discourse
management.

SpeechActs provides a discourse manager to keep track

July 1996

of some of what has already been said. The discourse man-
ager tracks the conversation’s current structure, using a
simplified version of the theories of discourse-segment
pushing and popping.™ To provide a more natural con-
versation, we use additional techniques," including
prompt design and error-correcting mechanisms.

Application-level discourse

At the coarsest level, a discourse is represented as a data
structure consisting of functions for handling user input.
The discourse manager maintains a stack of these struc-
tures, and the top one handles the default discourse for
the current application. When an application deems it nec-
essary to enter a new dialogue, it informs the discourse
manager, which pushes a
structure for the new dia-
logue onto the discourse
stack. t the coarsest

For example, when Speech- level, a
Acts starts, a small applica- discourse is
tion called Login is started represented as
by pushing its discourse a data structure
structure onto the stack. consisting of
After logging in, the user functions for
chooses a “real” application, handling user
which is pushed onto the input.
discourse stack. After Swift-
us has processed a user
utterance and the resulting feature-value pairs are passed
to the discourse manager, the pairs are sent to the functions
identified by the dialogue structure at the top of the dis-
course stack (unless a discourse manager snooper claims
the utterance). When the discourse manager is told that the
current dialogue has been resolved, it pops it off the stack,
leaving the underlying dialogue at the top. Additionally,
there are ways to abort the current discourse, and they may
pop more than one discourse structure from the stack. New
discourse structures are started explicitly by the current
application or implicitly by the discourse manager to sup-
port the current discourse. Consider this example dialogue:

SA: Please state a currency which you’d like
conversion to.

User: What's the rate for the franc?

SA: Do you mean Belgian, French, or Swiss?

User: Swiss.

SA: There are 1.15 Swiss francs in one dollar or
.87 dollars in one Swiss franc.

In this example, when the user asks for the franc’s con-
version rate, the currency exchange application does not
have enough information to reply, so it asks the discourse
manager for disambiguation. If previous context estab-
lished which franc, then the specialist for this disam-
biguation would just insert the needed information. In this
example, however, the specialist asked the user a question
and then pushed a new discourse structure chosen for
resolving countries onto the discourse stack. When the
user replies, the feature-value pairs are not returned to the
currency exchange application, but to the handler for the
disambiguation discourse. If the user’s response resolves
the ambiguity, the new information is passed on to the

Computer

application and the disambiguation discourse is popped.
Otherwise, functions within the disambiguation discourse
structure will try to elicit the information from the user
until the issue is resolved. The discourse structure will
eventually be popped off the stack when the ambiguity is
resolved or when the user cancels that activity.

Discourse across applications

The other main form of discourse management depends
on the cross-application context stack. To allow the con-
versations with SpeechActs to feel more natural, we keep
a simple stack of referenced items so that the system sel-
dom needs to rely on entering a subdialogue.

The stack is currently implemented as an ever-grow-
ing list, although a more sophisticated model will be
needed when we attempt to support longer conversa-
tions. As a particular concept is being discussed, the
application can push the concept onto the top of the
stack. Items can be pushed on as single lexical entries,
which are later expanded into feature-value pairs, or as
feature-value pairs representing a sentence or phrase.
The context stack stays current between various appli-
cations, so representing the ideas as feature-value pairs
allows flexible access by applications other than the one
that pushed them on. Because it is not always clear which
of several items should take precedence, multiple items
can be pushed onto the same level of the stack. When an
application needs to resolve a reference, it asks the dis-
course manager to search the context stack for the most
recent entry of a particular type—that is, the entry with
a feature matching one of a set of possible values. If one
or more items on the same level match, all those that
matched are returned.

Continuing with the preceding example, when the
user asks for a conversion between Swiss and Belgian
francs, both Switzerland and Belgium are placed as loca-
tions on the top of the stack. When the user asks for the
rate “there,” the reference is ambiguous, and the appli-
cation asks the discourse manager to search the stack for
a place. Both Switzerland and Belgium are returned, so
the situation remains ambiguous. But now, when the dis-
ambiguation discourse is entered, the choices are more
limited:

User: How about 1 franc in Belgian francs?

SA: There are 25.58 Belgian francs in 1 Swiss
franc.

User: How much is 57 dollars there?

SA: Do you mean Belgium or Switzerland?

User: Belgium.

SA: There are 1,450.65 Belgian francs in 57 U.S.
dollars.

After this ambiguity is resolved and the feature-value
pairs for the Belgian franc are put onto the top of the con-
text stack, a later call from the International Time appli-
cation for a location can easily extract “Belgium” as the
most recent geographic reference on the stack:

User: What time is it there?
SA: The current time in Brussels, Belgium, is
9:46 in the morning.

CHALLENGES

Modular, reusable grammars, coupled with discourse
specialists and the simple feature-value pair knowledge
representation, have allowed SpeechActs application
developers to create dialogues that flow naturally.
However, some substantial issues still need to be addressed
before SpeechActs can simulate a human conversation
convincingly. The more tractable of these issues include
pacing, error recovery, and defining the functional bound-
aries of an application.

Conversational pacing

Pacing is perhaps the least obvious challenge. Humans
attach meaning to pauses in a conversation, and current
speech systems produce pauses that are inappropriate by
human convention. Although the speech recognizers used
with SpeechActs have approximately real-time perfor-
mance, their response delays are sometimes long enough
to disrupt conversational pacing. Worse, the delays are not
consistent. A longer utterance or a more complex gram-
mar requires more processing time. The resultant pacing
gaps signify either that the system is still doing recogni-
tion or that the user has not been heard,™2 but users are
not good at guessing which. Besides the obvious solution
of somehow speeding up recognition, we are considering
the use of nonspeech audio cues to fill pauses. For exam-
ple, if a certain sound or musical motif were used to let the
user know that the system is working, then silence would
unambiguously mean that the system had not heard the
user.

Explicit error corrections

Recognition errors are quite common, partly because
users sometimes speak too soon, causing the first part of
their utterance to be clipped, and partly because some
sequences sound similar. We have tried very hard to make
the system robust in the face of these errors," but more
work is required. First, the sort of user-initiated error cor-
rection illustrated in the example at the beginning of this
article was handcrafted by the Calendar developer. A
desirable addition to the discourse services would be a
generic error-correction specialist that any application
could call on; this would both ease the developers’ burden
and increase the consistency of error-correction behavior
across applications.

Such a specialist should allow:

* Full-replacement corrections: “I said how much is that
in French francs?”

Partial-replacement corrections: “No, I meant this
Wednesday.”

Elimination of options: “No, I didn’t mean that one.”
* Undoing of state-changing mistakes: “Undo that” or
“Oops! Go back.”

Probing the system state: “What was I doing?” or
“Where were we?”

User prompting

Another issue in designing dialogues is how to let users
know an application’s boundaries. A speech-only appli-
cation resembles a command-line interface in that it hides
the application’s functionality. Speech is too slow an out-

put channel to give users extensive spoken help. In lieu of
help, in our applications we have tried to establish a com-
mon ground with the user that suggests possible next
utterances. While this approach has proven quite effective
in getting users to speak legal utterances, it falls far short
of letting them know the range of legal utterances possi-
ble at a given moment. Currently, new users are given ref-
erence cards that list example utterances for each
application. Though helpful, this is not a satisfactory solu-
tion.

A different approach to user help involves using fairly
lengthy prompts, initially, to teach users an application’s
functionality and options. As the user gains experience, we
progressively shorten the
prompts and provide less
detail (both within a single
session and across ses-
sions). For example, the
first time a user records an
outgoing e-mail message,
the prompt might be “Begin
recording your message
after the tone. Pause for
several seconds when
done.” The second time,
the prompt might be short-
ened to “Record then
pause.” If these prompts
were played in conjunction with an audio cue, eventually
the cue alone would suffice.

To help application designers provide this tapered
prompting, we provide functions to keep track of which
elements in a list of progressively shorter prompts have
already been used. To further automate tapering, we need
a mechanical way to derive shorter prompts from longer
ones, and the record keeping to remember not just that a
user is “experienced,” but exactly what parts of the system
he has mastered.

peechActs is

both a proof
of concept and
an effective
system that
about a dozen
people now
depend upon
when they
travel.

AS AN EXISTING SET OF APPLICATIONS, SpeechActs is both a
proof of concept and an effective system that about a dozen
people now depend upon when they travel. Powerful
enough to be useful it is easy to use with little training.

As a framework for building speech applications,
SpeechActs’ contributions include the Unified Grammar
to create synchronized grammars for speech recognition
and semantic parsing, reusable plug-in speech compo-
nents, and the Swiftus natural language processor.
SpeechActs also includes important discourse manage-
ment techniques. Both the discourse stack and a simple
context queue in SpeechActs model the current state of
the discourse so that SpeechActs can respond naturally.
These simple, straightforward components combine to
make SpeechActs a powerful framework in which to
design speech applications. [J

Acknowledgments

SpeechActs has been a group effort. We thank Andy
Kehler, Gina-Anne Levow, Matt Marx, and Cynthia McLain
for their contributions to the design and implementation,

July 1996

and especially Bob Sproull for his support and architec-
ture ideas.

References

1. M. Bates et al., “The BBN/HARC Spoken Language Under-

standing System,” Proc. Int’l Conf. Acoustics, Speech, and Sig-

nal Processing, Vol. I, IEEE Press, Piscataway, N.J., 1993, pp.
111-114.

2. W.Ward and S. Issar, “Recent Improvements in the CMU Spo-
ken Language Understanding System,” Proc. Human Lan-
guage Technology Workshop, Morgan Kaufmann, San Mateo,
Calif., 1994, pp. 213-216.

3. V. Zueetal., “Pegasus: A Spoken Language Interface for On-
Line Air Travel Planning,” Proc. Human Language Technology
Workshop, Morgan Kaufmann, San Mateo, Calif., 1994, pp.
201-206.

4. G. Smith and M. Bates, “Voice Activated Automated Tele-
phone Call Routing,” Proc. Ninth IEEE Conf. Artificial Intelli-
gence for Applications, IEEE CS Press, Los Alamitos, Calif.,
1993, pp. 143-148.

5. C. Hemphill, “DAGGER, Directed Acyclic Graphs of Gram-
mars for Enhanced Recognition,” Users Guide and Reference
Manual, tech. report, Texas Instruments, Dallas, Tex., 1993.

6. V. Digalakis and H. Murveit, “Genomes: Optimizing the
Degree of Mixture Tying in a Large Vocabulary Hidden
Markov Model Based Speech Recognizer,” Proc. Int’l Conf.
Acoustics, Speech, and Signal Processing, IEEE Press, Piscat-
away, N.J., 1994, pp. 1,537-1,540.

7. E.Ly, Chatter: A Conversational Telephone Agent, master’s the-
sis, Massachussetts Inst. of Technology, Cambridge, Mass.,
1993.

8. N. Yankelovich and E. Baatz, “SpeechActs: A Framework for
Building Speech Applications,” Proc. AVIOS 94, American
Voice Input/Output Soc., San Jose, Calif., 1994, pp. 179-188.

9. P. Martin and A. Kehler, “SpeechActs: A Testbed for Contin-
uous Speech Applications,” Proc. AAAI-94 Workshop on Inte-
gration of Natural Language and Speech Processing, MIT Press,
Cambridge, Mass., 1994, pp. 65-71.

10. B. Grosz and C. Sidner, “Attention, Intentions, and the Struc-
ture of Discourse,” Computational Linguistics, July-Sep. 1986,
pp. 175-204.

11. N. Yankelovich, G. Levow, and M. Marx, “Designing
SpeechActs: Issues in Speech User Interfaces,” Proc. CHI 95,
Addison-Wesley, Reading, Mass., 1995, pp. 369-376.

12. L. Stifelman, “VoiceNotes: A Speech Interface for a Hand-
Held Voice Notetaker,” Proc. InterCHI 93, ACM Press, New
York, 1993, pp. 179-186.

Paul Martin is co-principal investigator of Sun Microsys-
tems Laboratories’ Speech Applications Project, where he
designs and builds tools and prototypes that use state-of-the-
art speech recognition systems to “understand” natural lan-
guage. Martin has worked on the problem of communicating
with computers for two decades, at the Stanford Al Lab, Xerox
Parc, SRI, MCC, and IBM. Martin received a PhD in artifi-
cial intelligence from Stanford University, and a BS in elec-
trical engineering and computer science from North Carolina
State University.

Computer

Frederick Crabbe is a PhD candidate in artificial intelli-
gence and cooperative, multiagent natural language at the
University of California, Los Angeles, and an intern at Sun
Microsystems Laboratories’ Speech Applications Project,
where he develops models and tools for discourse in Speech-
Acts. He has worked at the US Air Force’s Rome Laboratories
and Los Alamos National Labs. His interests include neural
network models of natural language processing and of gen-
eral cognition. Crabbe received an MS in computer science
from UCLA and an AB in computer science and philosophy
from Dartmouth College.

Stuart Adams is a consultant who integrates speech, tele-
phony, and natural language processing technology to build
speech-aware applications. He has been involved in the devel-
opment of various speech applications for other companies,
including the development of software to provide phone
access to daily newspaper text for the blind and the develop-
ment of hardware and software for a speech-enabled palm-
top computer. Adams received an MS in computer science
from Penn State University.

Eric Baatz is a staff engineer at Sun Microsystems Labo-
ratories’ Speech Applications Project, where he programs the
SpeechActs Framework and applications. He has held a vari-
ety of technical and managerial jobs at BluePoint Technolo-
gies, Cadre Technologies, Mosaic Technologies, Computer
Corporation of America, and Digital Equipment Corpora-
tion. Baatz received an MS in computer science from North-
west University.

Nicole Yankelovich is co-principal investigator of Sun
Microsystems Laboratories’ Speech Applications Project,
where she has project management responsibilities and
designs speech user interfaces. She has worked on user-inter-
face design in the context of an integrated, multiuser hyper-
text system at Brown University’s Institute for Research in
Information and Scholarship (IRIS). She has published a
variety of papers on hypertext, user-interface design, and
speech applications, and she has served on the organizing
and program committees of conferences such as Hypertext,
CHI, UIST, ASSETS, and CSCW.

Contact Martin at Sun Microsystems Laboratories, 2 Eliza-
beth Dr., Chelmsford, MA 01824; paul martin@east.
sun.com; for more information and references, see
http.//www.sunlabs.com/research/speech.

