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Abstract

Among many properties suggested for action selection mechanisms, a prominent one
is the ability to select compromise actions, i.e. actions that are not the best to satisfy
any active goal in isolation, but rather compromise between the multiple goals. This
chapter briefly reviews the history of compromise behaviour and performs experimental
analyses of it in an attempt to determine how much compromise behaviour aids an
agent. It concludes that optimal compromise behaviour has a surprisingly small benefit
over non-compromise behaviour in the experiments performed, it presents some reasons
why this may be true, and hypothesises cases where compromise behaviour is truly
useful. In particular, it hypothesises that a crucial factor is the level at which an action
is taken (low level actions are specific, such as “move left leg”; high level actions are
vague, such as “forage for food”). The chapter hypothesises that compromise behaviour
is more beneficial for high-level actions than low-level actions.

1.1 Introduction

Agents act. An agent, be it a robot, animal, or piece of software, must repeat-
edly select actions from a set of candidates. A controller is the mechanism
within an agent that selects the action. The question of how to design con-
trollers for such agents is the action selection problem. Researchers who con-
sider the action selection problem have identified potential properties of these
controllers. One such property is the ability to exhibit compromise behaviour.
A controller exhibits compromise behaviour when the agent has multiple con-
flicting goals, yet the action selected is not the optimal action for achieving any
single one of the those goals, but is good for achieving several of those goals in
conjunction. For example, a predator stalking two prey might not move directly
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toward one of the prey, but in between the two, in case one flees (Hutchinson,
1999). The action would not be optimal for individual goals to catch either
prey, instead being a compromise between them.

The ability to select a compromise action conveys a benefit to an agent: the
optimal action changes in light of other of the agent’s goals. There has been dis-
agreement on the beneficiality of compromise behaviour in both animals and
artificial agents. This chapter investigates the history of compromise behaviour,
its various definitions, and the degree to which it (under the most common def-
initions) confers a behavioural advantage, concluding that the disagreement
about the utility of compromise behaviour arises from a fundamentally impre-
cise notion of what it is. Finally, this chapter proposes a new hypothesis for
when compromise behaviour is truly beneficial: when the agent selects actions
at a high level rather than a low one.

1.2 Background

In order to understand compromise behaviour, it is instructive to examine its
history in terms of ethology, comparative psychology, behavioural ecology, ar-
tificial intelligence, planning, and robotics. After describing some basic back-
ground, this section will describe each of these disciplines in turn, with an
emphasis on their relation to the question of compromise behaviour.

1.2.1 Definitions of Compromise

In many approaches to animal behaviour, the full ramifications of an action are
weighed in light of the current situation (see section 1.2.4). Because this can be
computationally expensive (see section 1.2.5) a computational simplification is
to divide the action selection problem into subgoals, solve those optimally, and
combine the solutions (see section 1.2.2). It is with respect to this latter strategy
that compromise behaviour (acting such that no single subgoal is optimally
satisfied) is most often considered (Tyrrell, 1993).

Definitions of compromise behaviour can be categorised on two major di-
mensions, the level of the action and whether the goals are prescriptive or pro-
scriptive. Each of these dimensions is defined in detail below.

One of the primary characteristics of the different versions of compromise
depends upon the abstraction level of the actions selected by the agent. For
instance, a low-level action might be for an agent to contract left quadriceps
3 cm. A higher level action might be to transfer itself to a particular location.
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At the highest levels, an action might be to forage for food, or mate. The dis-
tinction is based on the level of specificity given by the action; the first is as
specific as possible, while the third leaves flexibility as to how it is to be ac-
complished. The nature of a particular action selection situation varies based
on the level of the actions involved. As will be seen, different authors consider
compromise behaviour at different levels.

The other dimension of distinction is the prescriptive or proscriptive nature
of the agent’s goals. Prescriptive goals are those that are satisfied by the ex-
ecution of an act, such as the consumption of a resource. Proscriptive goals
encourage an agent to not perform certain actions in certain situations. These
goals are not satisfied by a particular action, but can be said to have been satis-
fied over a period of time if offending actions are not performed. These goals
include avoidance goals, such as remaining at a safe distance from a preda-
tor. This chapter will not explicitly consider evolutionary goals that are always
active for the life of the agent, such as maximising the chance of survival or
maximising the chance of reproductive success.

The remainder of this section will review the history of the concept of
compromise behaviour from the point of view of the above mentioned fields,
demonstrating how the perspectives of compromise behaviour developed.

1.2.2 Ethology

Ethology (the study of animal behaviour) and the study of artificial agents are
both concerned with the nature of behaviour and the selection of action. The
former considers animal behaviour descriptively and analytically (Tinbergen,
1950), while the latter considers it synthetically via the construction of agents
(Pfeifer and Scheier, 1999; Todd, 1992).

Traditionally, the ethologist studies animals in their natural environment,
focusing on how they behave in the presence of multiple simultaneous drives.
One of the main results of ethology is the identification of fixed action pat-
terns (FAPs) (Brigant, 2005; Dewsbury, 1978; Lorenz, 1981), where an animal
exhibits fixed behaviour when it receives a particular type of stimulus. One
common example is of the greylag goose (Anser anser), which will exhibit a
behaviour of rolling an egg back into its nest using a fixed motion pattern, com-
pleting the motion pattern even if the egg is removed (Lorenz, 1981). Careful
observation of this and similar behaviours led researchers to hypothesise that
these individual action patterns are controlled by separate innate modules that
compete for expression in the animal’s behaviour (Burkhardt, 2004).

The idea that the modules might compete for expression in behaviour led
to investigations into how these conflicts might be resolved. Hinde (1966)
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lists nine different resolution mechanisms observed in animals. These mecha-
nisms include exhibiting just one behaviour, alternating between the multiple
behaviours, and compromise behaviour.

Natural compromise behaviour takes multiple forms. First, it is either uni-
modal or bimodal in the input. In unimodal input, signals from different sen-
sors of the same type (each ear, for example) cause the animal to consider each
a separate goal (Lund et al., 1997). Bimodal input combines signal from two
different types sensors (eyes and ears, for example) for compromise. In both
cases, compromise is typically considered a result of competition for effec-
tor mechanisms at a low level (Hinde, 1966). Thus if one FAP controls only
leg motion while another only head movement, their simultaneous expression
would not be considered compromise behaviour but rather superposition.

Low-level, prescriptive, unimodal compromise has been observed in the
crustacean Armadillium when performing tropotaxis toward two light sources
(Müller, 1925), and katydids when performing phonotaxis (Bailey et al., 1990;
Latimer and Sippel, 1987; Morris et al., 1978). The fish Crenilabris displays
low-level prescriptive, bimodal compromise in its orientation behaviour be-
tween its reaction to light and its reaction to the direction of gravity (von Holst,
1935).

Evidence for high-level compromise behaviour in nature is less clear, though
it may be argued that it can be seen in blue herons, which select sub-optimal
feeding patches to avoid predation by hawks in years when the hawk attacks
are frequent (Caldwell, 1986). Similar behaviour has been shown in minnows
(Fraser and Cerri, 1982), sparrows (Grubb and Greenwald, 1982), pike and
sticklebacks (Milinksi, 1986). Indeed, a great many studies suggest that ani-
mals balance the risk of predation against foraging or other benefits (Brown
and Kotler, 2004; Lima, 1998). Mesterton-Gibbons (1989) reinterpreted the
data of Krebs et al. (1977) to show that great tits Parus major appear to com-
promise between time and energy consumption in foraging, though it is not
clear whether this compromise fits into our definition as “time saving” is not
an explicit FAP that an agent can select.

1.2.3 Comparative Psychology

Concurrent with the developments in ethology was a competing branch of
study, comparative psychology, that examined many of the same issues (Dews-
bury, 1978). This approach differed from ethology in that individual phenom-
ena were studied in isolation, and there was much greater emphasis placed on
learning over that of innate mechanisms (Thorpe, 1979). Researchers went to
great length to ensure in their experiments that only one drive was active in the
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test animal (Dewsbury, 1992). This enabled the experimenter to delve deeply
into questions about that particular behaviour without interference from oth-
ers, but it limited investigation into interaction of behaviours. In recent years,
the branches of ethology and comparative psychology have been synthesised
(Dewsbury, 1992), but early theoretical work had important influences in arti-
ficial intelligence (see section 1.2.5).

1.2.4 Optimal Biological Approaches

Modern trends in biology have employed formal models and optimisation tech-
niques borrowed from decision theory and operations research (Clemen, 1996;
Hillier and Lieberman, 2002) (and recently, statistical physics (Bartumeus and
Catalan, 2009)) in order to determine optimal behaviour. Behavioural ecol-
ogy is the study of the interaction between an organism’s environment and
its behaviour, as shaped via natural selection (Krebs and Davies, 1997). Un-
der the assumption that selection optimises behaviour to maximise reproduc-
tive success, to understand animal behaviour it is important to analyse it with
techniques that optimise objective functions that describe reproductive success.
For example, in the field of foraging theory (Stephens and Krebs, 1986), tech-
niques such as linear programming (Hillier and Lieberman, 2002) or dynamic
programming (Bertsekas, 2005) are used to find optimal foraging behaviour
in terms of such features as maximising energy intake and minimising expo-
sure to predators (Brown and Kotler, 2004; Houston et al., 2007; Lima, 1998;
McNamara and Houston, 1994; Seth, 2007). In these studies, optimisation is
used as a basis of comparison and as an explanation for natural selection; it is
not posited as the decision making process the animal itself uses. Optimisation
is computationally expensive, such that the time to compute solutions grows
exponentially with the complexity. Complicated problems cannot be solved in
short periods of time (Bertsekas, 2005).

When examining behavioural choice with these optimal techniques, com-
promise behaviour is not an explicit issue because the techniques combine the
subgoals into a single objective function to be optimised. As such, optimal so-
lutions to the individual sub-goals are not considered, only the solution to the
overall objective function.

1.2.5 Artificial Intelligence and Planning

The field of planning within artificial intelligence was delayed in development
until the advent of robotic hardware sufficiently sophisticated to exhibit agent-
like behaviour (Fikes and Nilsson, 1971). The approaches used came from the
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operations research and computer science communities (with influence from
comparative psychology (Newell and Simon, 1976)) where the agent attempted
to formulate a mathematical proof of the correct action to take in the agent’s
current situation.

A typical planning problem is represented as a conjunction of logical rela-
tively high-level predicates. For example, a hypothetical hospital robot might
have a planning goal: Have(robot,medicine003) ∧ In(robot,room342), indicat-
ing that the robot should both be in possession of the medicine and be in the
correct hospital room.

From the planning perspective, this is a single goal that is to be achieved
by achieving each of its component parts such that there comes a time when
both are simultaneously true. The individual predicates, also known as sub-
goals, can conflict with each other. For example the robot can take actions so
as to make the In(robot,room342) to be true while Have(robot,medicine003) is
false. The robot must then take actions to make Have(robot,medicine003) that
may in turn make In(robot,room342) false. This conflict is different from the
conflict between FAPs in that it arises from the order actions are performed,
not in which sub-goal will be achieved. If multiple sub-goals are inherently in
conflict such that they cannot both be simultaneously true, then the overall goal
is unattainable. Further, because subgoals cannot be partially satisfied (they are
simply true or false) it is impossible for the agent to trade in some quality in the
satisfaction of one subgoal in order to improve the quality of others. A survey
of the state of the art in planning can be found in Ghallab et al. (2004).

Other features of the planning problem also bear resemblance to features
of the compromise behaviour question. For instance, often a single action can
move the agent closer to the satisfaction of more than one of the goal literals.
This “positive interference” (Russell and Norvig, 2010) is unlike compromise
behaviour however, in that there is nothing lost in the selection of this action.
Negated literals in a goal (e.g. ¬In(robot,room342)) are unlike proscriptive
goals in that they they must only be not true at some point for the goal to be
satisfied, as opposed to never becoming true. Recently, there has been inter-
est in multi-criteria planning (Gerevini et al., 2008; Hoffmann, 2003; Refani-
dis and Vlahavas, 2003). A multi-criteria problem is different from a multiple
goal problem in that the former, as with standard planning, has a single goal to
achieve. The multiple criteria are used to measure solution quality. Proscriptive
goals can be similar to quality criteria when the criteria measure such proper-
ties as agent safety, which encourage the agent to not take certain actions.

For the reasons described above, the notion of compromise behaviour was
unfamiliar to AI researchers until the 1980s (Brooks, 1986), and optimality
under compromise was unexamined.
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A major drawback of the AI approaches is that attempts to prove correct
actions can be prohibitively expensive in moderately complex environments.
If an agent is limited to just ten actions at any time, then each step into the
future increases the number of possible outcomes to consider by a factor of ten.
If the solution to the current problem is twenty steps long, Then the program
must examine on the order of 1020 possible sequences (Russell and Norvig,
2010). For comparison, there have been (estimated) 1018 seconds since the
beginning of the universe (Bridle et al., 2003). This high computation cost
prevents using these techniques for planning behaviour with low-level actions,
where solutions to problems might be many hundreds of steps long.

1.2.6 Behaviour Based Robotics

Eventually, the inability of robotic systems to solve certain problems of the
real world (such as those with multiple simultaneous goals) forced roboticists
to re-evaluate their approach. In the real world, agents have conflicting goals
that must be selected from, and they must be able to adjust quickly to unfore-
seen events. For instance, the agent may find a previously unknown obstacle
or discover that an action did not have the desired effect.

The result of the re-evaluation, behaviour-based robotics, borrows from
ethology the idea that there are multiple innate behaviours that are triggered
by sensory input. In the extreme formulation, advocates maintain that all in-
telligent behaviour can be constructed out of suites of these competing mech-
anisms (Arkin, 1998; Brooks, 1986, 1997). Some have attempted to explain
human-level cognition using similar modular approaches (Carruthers, 2004).
One advantage to the behaviour-based approach is that the innate reactive sys-
tems do not need to plan with low-level actions, and thus are practical to im-
plement. Another advantage is that conflicting goals can be represented.

Because the approach borrows heavily from the ethological tradition, it has
the same concerns. These concerns include how conflicts between innate be-
haviours can be resolved, and whether compromise behaviour itself an im-
portant property for controllers. In 1993, Tyrrell introduced a list of fourteen
requirements for action selection mechanisms drawn from ethology. Of these,
number twelve was “Compromise Candidates: the need to be able to choose
actions that, while not the best choice for any one sub-problem alone, are best
when all sub-problems are considered simultaneously.” (Tyrrell, 1993, p. 174)
In justifying this rule, Tyrrell used a “council-of-ministers” analogy. In this per-
spective, there are a collection of “ministers” or experts on achieving each of
the agent’s goals. Each minister casts votes for courses of action that it predicts
will solve the goal with which that minister is associated. For example, it might
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cast five votes for its highest ranked action, four for the next highest ranked,
and so on. The agent then selects the action that receives the most votes. Note
that this characterisation of compromise is of high-level compromise. Tyrrell’s
list has had significant impact on the Action Selection field (Bryson, 2000; De-
cugis and Ferber, 1998; Girard et al., 2002; Humphrys, 1996), and a number of
researchers have developed systems to meet the criteria he set out (Antonelli
et al., 2008; Avila-Garcia and Canamero, 2004; Blumberg, 1994; Blumberg
et al., 1996; Crabbe and Dyer, 1999; Hurdus and Hong, 2009; Maes, 1990;
Montes-Gonzales et al., 2000; Werner, 1994). Recently fuzzy logic controllers
have become popular, in part, because they include compromise naturally (Jaa-
far and McKenzie, 2008; Luo and Jennings, 2007).

1.2.7 Current Status

Although some researchers in behaviour-based robotics considered it “obvi-
ously preferable to combine [the] demand [to avoid a hazard] with a preference
to head toward food, if the two don’t clash, rather than to head diametrically
away from the hazard because the only system being considered is that of
avoid hazard,” (Tyrrell, 1993) more recent modelling work generated results
that seem to contradict the claim (Bryson, 2000; Crabbe, 2004; Jones et al.,
1999), in that artificial agents without the ability to select compromise actions
often perform as well on tasks as those that can select compromise actions. If
valid, these results suggest that the appropriation of this idea from ethology
was not necessary for high performing artificial agents. A central thesis of this
chapter is that this error occurred in the case of compromise behaviour because
it had been poorly defined, in particular, that no distinction was drawn between
high-level compromise and low-level compromise. Although low-level com-
promise is what is seen in much of the action selection literature, its existence
was justified by arguments concerning high-level compromise. This equivoca-
tion has caused confusion on these topics.

Some artificial agent researchers that use ethological ideas directly are those
that design systems not to perform better in the sense of scoring higher on a
metric, but to appear more natural to observers. These systems appear in the
areas of computer graphics and video gaming, where a naturalistic appearance
to a human viewer is necessary to maintain the desired illusion (Iglesias and
Luengo, 2005; de Sevin et al., 2001; Thorisson, 1996; Tu, 1996).

Although work mentioned above (Bryson, 2000; Crabbe, 2004; Jones et al.,
1999) implies that compromise behaviour is less useful that originally thought,
this work is not conclusive. The next section will attempt to analyse the nature
of low-level compromise behaviour more thoroughly.
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1.3 Experiments

In order to understand the properties of compromise behaviour, it is helpful
to examine the optimal behaviour in potential compromise situations. As dis-
cussed above, there are multiple formulations of the action selection problem.
The experiments here will closely examine those most often described in the
ethological and behaviour-based robotics literature, low-level prescriptive and
low-level proscriptive. As the compromise formulations investigated here are
low-level, the domain is defined to be that of navigation of a mobile agent,
similar to several authors’ simulated domains (Maes, 1990; Tyrrell, 1993) or
to navigating mobile robots (Choset et al., 2005). In the simulations, space is
continuous, but time is discrete, such that the action at each time step is defined
as a movement of one distance unit at any angle. Slightly different models are
required for each of the proscriptive or prescriptive situations.

1.3.1 Prescriptive Experiments

The initial experiments test a scenario where an agent has a goal to be co-
located with one of two target locations in the environment. These could be
locations of food, water, potential mates, or shelter, etc. At any moment ei-
ther or both of the targets can disappear from the environment, simulating the
intrusion of environmental factors. The agent must select an action that max-
imises its chances of co-locating with a target before it is removed from the
environment.

This scenario is approximated by placing an agent at the origin on a plane.
Two targets are placed on the plane, one in the first and one in the second
quadrant in the y-range of (0; 100), and x-ranges of (−100; 0) for one target
and (100; 0) for the other. Each target will be referred to as ta and tb. The
agent can sense the location of each target. Sensor information takes the form
of complete knowledge of the locations of both targets’ (x, y) coordinates. Be-
cause the quality of the individual targets may vary, or the types of the targets
may be different, the agent has two independent goals to be co-located with
them. The strength of the goals are in the range (0; 100). Each goal will be re-
ferred to as Ga and Gb. The dynamism in the environment is represented with
a probability p. This is the probability that any object in the environment will
still exist after each time step. That is, any object will spontaneously disappear
from the environment at each time step with probability 1− p. Time is divided
into discrete, equal sized time-steps. The agent moves at a constant speed, and
therefore a constant distance per time step. All distances are measured in the
number of time steps it takes the agent to travel that distance. Notationally, ij
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is the distance from some location i to some location j. An agent’s action se-
lection problem is to select an angle θ in which direction to move for the next
time step. θ is continuous, so the environment is also continuous and the size
of the set of actions being selected from is infinite.

Once the agent has executed its action, it is again faced with the same ac-
tion selection problem. If one of the targets has disappeared, the best action
is to move directly to the other target. Compromise behaviour in this task is
the selection of any direction to move that is not directly toward either target.
Any action selected that is in the direction of one of the targets cannot be a
compromise action because it is also the action that is optimal for achieving
one of the sub-goals. As the agent repeatedly selects an action, the path it fol-
lows resembles a piece-wise linear approximation of a curved path to one of
the targets.

Formal Model
An analysis of compromise candidates is performed using Utility Theory (Howard,
1977). Utility Theory assigns a set of numerical values (utilities) to states of
the world. These utilities represent the usefulness of that state to an agent. Ex-
pected Utility (EU) is a prediction of the eventual total utility an agent will
receive if it takes a particular action in a particular state. The Expected Util-
ity (EU) of taking an action Ai in a state Sj is the sum of the product of the
probability of each outcome that could occur and the utility of that outcome:

EU(Ai|Sj) =
∑
So∈O

P (So|Ai, Sj)Uh(So) (1.1)

where O is the set of possible outcome states, P (So|Ai, Sj) is the probability
of outcome So occurring given that the agent takes action Ai in state Sj , and
Uh(So) is the historical utility of outcome So (defined below).

Let U(t) be the utility to the agent of consuming t. Assuming the agent is
rational, the set of goals to consume objects will be order isomorphic to the set
of the agent’s utilities of having consumed the objects. That is, every possible
utility corresponds to a matching goal value, such that the order of the utili-
ties from least to greatest is the same as the order of the corresponding goals.
Therefore, EU calculated with utilities is order isomorphic with EU calculated
with goals instead. For the purposes here, it will be assumed that the goals and
utilities are equivalent (U(t) = Gt).

A rational agent is expected to select the action with the largest EU. The
historical utility of a state is defined as the utility of the state plus future utility,
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or the maximum of the expected utility of the actions possible in each state:

Uh(S) = U(S) + max
Ai∈A

EU(Ai|Sj), (1.2)

where A is the set of possible actions. The maximum is found because of the
assumption that a rational agent will always act to maximise its expected util-
ity. An agent can calculate EU using multiple actions in the future by recur-
sively applying equations (1.1) and (1.2).

Low-level prescriptive compromise behaviour is analysed by comparing an
approximation of optimal behaviour with several non-optimal but easy to gen-
erate behaviours. The optimal behaviour is approximated based on the dynamic
programming technique used by Hutchinson (1999). The technique overlays a
grid of points on top of the problem space and calculates the maximal expected
utility of each location given optimal future actions. This is done recursively
starting at the target locations and moving outward until stable values have
been generated for all grid points. As with similar dynamic programming tech-
niques, the time to convergence increases as the number and variety of targets
increases.

The value calculated is the expected utility of optimal action at an environ-
mental location when the two targets are still remain: EU(Aθ|ta, tb, λ). λ is
the agent’s location in the environment, θ is the angle of the optimal move for
the agent and λ′ is 1 unit away from λ in direction θ. By equations 1.1 and 1.2
the expected utility of being at λ is:

EU(Aθ|ta, tb, λ) =p2EU(Aθ|ta, tb, λ′)+
p(1− p)EU(Aθ|ta, λ′)+
p(1− p)EU(Aθ|tb, λ′), (1.3)

EU(Aθ|ta, λ′) =Gapλ
′ta , and, (1.4)

EU(Aθ|tb, λ′) =Gbpλ
′tb . (1.5)

The total expected utility (equation 1.3) is the expectation over four possible
situations after an action: both targets there, both targets gone, ta there but tb
gone, and vice versa (the EU of both targets gone is zero). When one of the
targets disappears from the environment, the optimal action for the agent to
take is to move directly to the other target, as shown in equations 1.4 and 1.5.
A formal specification of the algorithm is given in the supplementary material
in Crabbe (2007).

It is typically computationally prohibitive for an agent to calculate the opti-
mal action using a technique similar to the one described here (the program
used for these experiments takes between five and twenty minutes to con-
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Figure 1.1 Vector field showing the optimal strategy for a two prescriptive
goal scenario. ta is located in the upper left corner, and tb is located in the
upper right.Ga is 100,Gb is 50. The arrows’ lengths are uniform and have no
significance. Each arrow direction represents the optimal direction of move-
ment for the agent at that location. A greater proportion of the arrows point
toward the upper left, reflecting the larger value ofGa. While the arrows near
the targets point directly at the respective targets (indicating non-compromise
behaviour is optimal), many of the arrows, especially those in the shaded re-
gion in the lower right, point directly at neither target, indicating that in those
regions, compromise actions are indeed optimal.

verge in these two target scenarios). Instead, many researchers propose easy
to compute action selection mechanisms that are intended to approximate the
optimal action. (Cannings and Orive, 1975; Fraenkel and Gunn, 1961; Hous-
ton et al., 2007; Hutchinson and Gigerenzer, 2005; McNamara and Houston,
1980; Römer, 1993; Seth, 2007; Stephens and Krebs, 1986). The mechanisms
can be divided into two categories: those that select a single target and move
directly toward it, and those that exhibit some sort of compromise behaviour.
In the former category, considered here are:

• Closest (C): select the closest target.
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• Maximum Utility (MU): select the target with the higher utility.
• Maximum Expected Utility (MEU): select the target with the higher ex-

pected utility if it were the only target in the environment (MEU is a non-
compromise strategy because it can only select a direction to move that is
directly toward one of the targets, and is therefore optimal for one of the
agent’s sub-goals in isolation).

Of action selection mechanisms that exhibit compromise behaviour, examined
here are:

• Forces (F): the agent behaves as if it has two forces acting on it, where the
strength of the force is proportional to the utility of the target divided by
the square of the distance between the agent and the target location. Let
AngleTo() be a function of two locations that returns the angle from the first
location to the second. If Va is the force vector from Ta, the the direction of
Va is AngleTo(λ, Ta) and the magnitude of Va is Ga/λTa

2
. The direction

the agent moves (θ) is:

θ = AngleTo(λ, Va + Vb)

• Signal Gradient (SG): The agent behaves as if it is following a signal gra-
dient. The targets emit a simulated “odour” that falls with the square of the
distance from the target. The initial strength of the odour is proportional to
the utility of the target. The agent moves to the neighbouring location that
has the strongest odour as the sum of the odour emanating from each of the
two targets. That is,

θ = AngleTo(λ, arg max
λ′

(Ga/λ′Ta
2

+Gb/λ′Tb
2
))

• Exponentially Weakening Forces (EWF): This strategy is identical to the
forces strategy, except the pulling effects of the targets falls exponentially
with distance, rather than quadratically. The magnitudes of the two vectors
are GapλTa and GbpλTb . It is predicted that since expected utility falls ex-
ponentially with distance, this strategy may perform better than forces.

The expected utility of each of these non-optimal mechanisms can be cal-
culated for any particular scenario by using equations (1.3), (1.4) and (1.5),
where the action θ is the one recommended by the strategy, not the optimal
action.

Prescriptive Results
The results reported here are based on 50,000 scenarios. Each scenario was a
set of parameters (Ga, Gb, ta, tb) selected randomly from a uniform distribu-
tion. The simulations were written in Lisp, compiled in Franz Allegro Common
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Table 1.1 Comparison of non-compromise strategies. Each
strategy is listed in the column. The first row reports the

percentage of times that strategy makes the correct selection.
The second row reports the strategy’s performance

improvement over MU. Numbers in parentheses are the
standard deviation. The numbers are generated from the

50,000 trials. Percentage improvement is calculated as (Score
of Strategy A - Score of MU)/Score of MU . All differences

were significant on a Mann-Whitney U-test to a confidence of
0.999.

MaxUtility Closest MaxExpectedUtility

% correct 70.29 79.99 99.32
% over MU 0.0 9.35 (3.97) 15.31 (3.44)

Lisp, version 7.0, and run on a cluster of twenty five Sun Blade 1500s, for 347
computer-days. Detailed discussion of the implementation can be found in the
electronic supplementary materials in Crabbe (2007). For each scenario, the
expected utility of each of the action selection mechanisms described in the
previous section were computed: closest (C), maximum utility (MU), maxi-
mum expected utility (MEU), forces (F), signal gradient (SG), and exponen-
tially weakening forces (EWF). The expected utilities of optimal behaviour
using the dynamic programming technique were computed (an example of the
optimal behaviour is shown in figure 1.1). Table 1.1 compares the three non-
compromise mechanisms (C, MU, and MEU), using the worst performer (MU)
as a baseline. The table reports the average percentage improvement of the
strategy over MU (e.g. the closest strategy performs on average 9% better than
the maximum utility strategy). It also reports the percentage of cases where the
strategy selected the correct action of the two possible. MEU is the best of the
three as it selects the better target in most cases and its overall expected utility
is 15% better than MU. MEU selects the worse target only 0.68% of the time.
The table also shows that Closest is a better strategy than Maximum Utility.
This may be so because the expected utility of a target falls exponentially with
distance, so that closer targets have higher expected utility than targets with
higher raw utilities.

Table 1.2 compares the compromise based mechanisms with the best non-
compromise strategy, MEU. It shows both the average percentage improve-
ment improvement over MEU and the percentage improvement over MEU in
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the single best scenario. There are three important aspects of this table. The
first is that the optimal strategy is only 1.1% better than the non-compromise
based MEU. This contradicts the intuition (discussed above) that optimal be-
haviour would be significantly better than a non-compromise approach. The
result is consistent however, with the non-continuous space experiments of
Crabbe (2002) and the study in Hutchinson (1999).

The second important aspect is that all of the non-optimal compromise based
strategies performed worse than the MEU strategy. These results may help
explain why some researchers have found that compromise behaviour is un-
helpful (Jones et al., 1999; Bryson, 2000; Crabbe, 2004): the commonly used
tractable compromise strategies perform worse than a non-compromise strat-
egy.

The final aspect of table 1.2 to note is that EWF is the best performing of
the easy to compute compromise strategies tested. While it is not conclusive,
this may imply that the approach of decreasing the influence of farther targets
exponentially is a good one for developing action selection strategies. Exam-
ining the score for the best scenario for EWF shows that it is nearly as high as
the best scenario for optimal.

Prescriptive Discussion
With respect to animals and natural action selection, the results presented here
imply that animals that exhibit low-level prescriptive compromise behaviour
are either: behaving non-optimally; using an as yet unproposed compromise
based action selection strategy; or behaving in that manner for reasons other
than purely to compromise between two targets. Hutchinson (1999) suggests
three possible reasons for what appears to be low-level prescriptive compro-
mise behaviour: 1) a desire to not tip off potential prey that it is being stalked,
2) it is a part of a strategy to gather more sense data before committing to a
target, or 3) that computational issues yield simple mechanisms that exhibit
compromise style behaviour. Hutchinson’s reasons are particularly interesting
in light of MEU being the best non-compromise strategy. This strategy requires
not only detailed knowledge of the targets’ locations and worths, but also that
the agent knows p. It may be that apparent low-level compromise is an attempt
to gather more information about the targets, or that, lacking knowledge of p,
animals are unable to use the MEU strategy, in which case the compromise
signal gradient or EWF strategies might be the best (although results from for-
aging theory suggest that animals are able to estimate p accurately (Stephens
and Krebs, 1986)). Regarding Hutchinson’s third suggestion, Houston et al.
(2007) suggest that behavioural characteristics can be “side-effects” of rules
that evolved in environments that differ from where they are being used, or
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that the objective function and criteria being maximised are more complex
than the scenarios in which they are being tested.

Ghez et al. (1997) showed that when humans performed a reaching task, a
narrow angle between targets led to low-level compromise behaviour, while
a wide angle did not. They hypothesise that for widely separated targets, the
brain treated each as a separate concept or category, but that for narrowly sep-
arated targets, the brain is unable to tease them apart, thus reacting to their
superposition. By analysing reaction time, Favilla (2002) showed that humans
do appear to be switching mental strategies when changing between compro-
mise and non-compromise behaviour, even when the tasks remain the same.
These results may indicate that low-level compromise is a side-effect of other
computational mechanisms. This switching may be solely an artifact of other
mechanisms, or it may an attempt to display compromise behaviour only in sit-
uations where it is likely to occur. Section 1.3.1 will look further at conditions
where compromise strategies appear to be most beneficial.

With respect to higher-level actions, the behavioural ecology evidence is
much less clear that natural compromise is occurring. For instance in the cases
of an animal using sub-optimal feeding patches to avoid heightened predator
activity, this behaviour could be explained by the animal downgrading the qual-
ity of a feeding patch (the Gx) because of the presence of the predators. The
animal then compares the utilities of the two patches directly rather than con-
sidering compromise behaviour (Stephens and Krebs, 1986). Alternatively, the
animal could be abstracting the problem so that it might be solved optimally.

Prescriptive Analysis
While on average low-level compromise appears to have little benefit, there
may be scenarios where the Optimal or EWF strategies are significantly better
than the MEU. This might explain the exhibition of compromise in animals in
some situations and not others, as well as provide strategies for the construc-
tion of artificial agents. This section uses the idea of information gain from
information theory to attempt to determine when compromise strategies might
be a benefit.

Information gain is the technique used in the decision tree algorithms ID3
and C4.5 (Mitchell, 1997; Quinlan, 1983, 1993). The technique begins with
a data set and a classification of the data elements. The data here are the
situations generated in the prescriptive experiments, and the classification is
whether or not the scenario has a compromise strategy (either EWF or op-
timal) with an EU better than MEU. The technique then considers a set of
n-ary attributes which partition the data set. The attributes are properties of the
starting scenario that might indicate whether compromise is beneficial, such as
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Table 1.2 Comparison of compromise strategies to the
non-compromise maximum expected utility (MEU). For each
strategy, the average expected utility improvement over MEU
is given in the first line. The best expected utility improvement
over MEU in a single scenario is provided in the second line.
The optimal strategy performs the best, but is less beneficial
than expected. The non-optimal strategies (F, SG, and EWF)
are all worse than the non-compromise MEU, though EWF is

the best of that set. Differences in the averages were
significant on a Mann-Whitney U-test to a confidence of 0.99.

F SG EWF Optimal

% over MaxExpectedUtility -4.07 -2.79 -2.47 1.12
% over MaxExpectedUtility 4.84 4.82 20.56 22.73
(best case)

the distance between the two targets, or the value of p. For each attribute, the
technique considers the information gain of applying that attribute to partition
the data set. Information gain is the decrease in entropy of the data set, where
entropy is:

E(S) =
∑
i∈C
−pi log2 pi (1.6)

S is a data set, i is a category of the classification, and pi is the proportion
of S categorised as i. Entropy measures the inverse of the purity of a data set
with respect to the classification. A set is most pure when all the data have the
same classification, and least pure when the data is classifies evenly across all
categories.

The information gain of dividing set S based on attribute A is defined as:

Gain(S,A) = E(S)−
∑

v∈V (A)

|Sv|
|S|

E(Sv), (1.7)

where v is a value of an attribute, |S| is a size of set S, Sv is the subset of S
for which attribute A takes value v, and V (A) is the set of values the attribute
might take (e.g. the attribute colour might take the values red, green, or blue).
The attribute with the largest information gain is the attribute which best par-
titions the data set, and in our case is the property of a situation which most
determines if there is a good compromise candidate.
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The data describing any situation is continuous information, but attributes
are n-ary classifiers. To cope with this, the attributes partition the values into
ranges, such as every 0.05. The attributes used are listed below:

• λta, λtb, tatb. These three attributes are the distances between the key loca-
tions in the scenario. The distances can be anywhere from 0 to 224, and the
attributes break them up into ranges of 5 units.
• Ga, Gb. The goal values from 0 to 100, broken into ranges of 5 units.
• p. The value of p from 0 to 1, broken into ranges of 0.005.
• R(λta, λtb). This encodes the relationship between λta and λtb, while keep-

ing the values between 0 and 1 using the formula λta
λta+λtb

. It is broken into
ranges of 0.05.
• R(λta, tatb). This encodes the relationship between λta and tatb, while

keeping the values between 0 and 1 using the formula λta
λta+tatb

. It is bro-
ken into ranges of 0.05.
• R(λtb, tatb) This encodes the relationship between λtb and tatb, while keep-

ing the values between 0 and 1 using the formula λtb
λtb+tatb

. It is broken into
ranges of 0.05.
• R(Ga, Gb). This encodes the relationship between Ga and Gb, while keep-

ing the values between 0 and 1 using the formula Ga
Ga+Gb

. It is broken into
ranges of 0.05.
• Rl(Ga, λta, Gb, λtb) This encodes a linear relationship betweenGa, λta, Gb,

and λtb, while keeping the values between 0 and 1 using the formula Gaλta
Gaλta+Gbλtb

.
It is broken into ranges of 0.05.
• Re(Ga, λta, Gb, λtb) This encodes a exponential relationship betweenGa, λta, Gb,

and λtb, while keeping the values between 0 and 1 using the formula Gap
λta

Gapλta+Gbp
λtb

.
It is broken into ranges of 0.05.

Analysis Experiments
The data is first classified based on whether the performance of the optimal
behaviour is a 1% or greater improvement over the performance of MEU for
that scenario. Using equation (1.7), it can be seen that attribute with the largest
information gain is Re(Ga, λta, Gb, λtb) with a gain of 0.07243. Figure 1.2
shows a breakdown of the data as partitioned by the attribute. The x-axis is the
range of values of the attribute, and the y-axis is the percentage of the data that
falls in that range and is positively classified (the performance of the optimal
behaviour is a 1% or greater improvement over the performance of MEU).
The figure shows that the greatest likelihood of good compromise behaviour is
when the attribute is close to 0.5. This means that if Gapλta is close to Gbpλtb
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Figure 1.2 Breakdown of attribute Re(Ga, λta, Gb, λtb) when comparing
optimal to MEU. Each bar represents the fraction of scenarios with the at-
tribute in that value range where the optimal strategy is at least 1% better
than MEU. For example, whenRe is between 0.45 and 0.55, over 80% of the
time the optimal strategy is more than 1% better than MEU.

(when the expected utilities of the two targets are roughly equal), it is more
likely that optimal behaviour will confer a large advantage.

The second largest information gain is R(λta, λtb) with a gain of 0.06917.
The next two attributes with high gain are R(λta, tatb) and R(λtb, tatb), both
with a gain of 0.027.

Although on average EWF performs worse on average than MEU, it is in-
teresting to analyse the situations in which it performs better. If these situa-
tions could be recognised, then EWF could be applied only when they occur.
Furthermore, it may lead to insight on why EWF outperformed the other non-
optimal strategies. The data is analysed as done for the case of optimal vs.
MEU, and classified based on whether or not EWF out performs MEU. The top
two attributes in terms of information gain are R(λta, tatb) and R(λtb, tatb),
with gains of 0.1620 and 0.1569 respectively. Figure 1.3 shows a breakdown
of the data as classified by R(λta, tatb).

These results strongly suggest that good compromises using EWF occur
when the targets are relatively far away from the origin and close to each other.
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Figure 1.3 Breakdown of attribute R(λta, tatb) when comparing EWF to
MEU.

Prescriptive Analysis Discussion

The analysis shows that there are good compromises when the expected utility
is roughly equal. This is not too surprising, as expected utility incorporates
both the goal value and the likelihood of obtaining the target, such that when
one target has a value much greater than the other, the strategy of MEU should
be close to the optimal. The high gain associated with R(λta, λtb) is probably
an extension of this property, as the distances are a major component of the
expected utility.

Interestingly, for both the optimal strategy, as well as for EWF, the ratio of
the distance to one target to the distance between the targets played an impor-
tant role. When the targets are close together and far from the agent, then there
are better options for compromise behavior. This is consistent with the results
of Ghez, et al. discussed above in section 1.3.1. This may explain why humans
exhibit compromise when targets are close together. If so, it does not indicate
which phenomenon preceeded the other: did low-level compromise exist in
all reaching behaviors and was then evolved out in all but the most beneficial
cases, or was compromise behavior an addition in some cases because it was
so beneficial?
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1.3.2 Proscriptive Experiments

Although in the low-level prescriptive experiments compromise behaviour had
less benefit than predicted, it could be argued that the prescriptive case is not
best suited for eliciting positive results. It may be that compromise is more
useful in cases where there is one prescriptive goal and one proscriptive goal.

“...proscriptive sub-problems such as avoiding hazards should place a demand on the
animal’s actions that it does not approach the hazard, rather than positively prescribing
any particular action. It is obviously preferable to combine this demand with a prefer-
ence to head toward food, if the two don’t clash, rather than to head diametrically away
from the hazard because the only system being considered is that of avoid hazard”
(Tyrrell, 1993), p.170.

This section tests this claim by performing experiments similar to the pre-
scriptive case, but with one proscriptive goal. In these experiments, the en-
vironment contains a target and a danger in fixed locations. The danger can
“strike” the agent from a limited distance. The agent has a prescriptive goal to
be co-located with the target, and a proscriptive goal to avoid being struck by
the danger.

Formal Model
The model described in section 1.3.1 requires modification to match this new
scenario. The two environmental objects, the target (t) and the danger (d) are
treated separately with individual probabilities of remaining in the environment
(pt and pd, respectively). At each time step, there is a probability pn(λ) that the
predator will not strike or pounce on the agent. This probability is a function
of the distance between the agent and the danger, calculated from the agent’s
position λ. The experiments use four different versions of the pn(λ) function.
The agent also has a goal level associated with the target and the danger, (Gt
and Gd) that can vary with the quality of the resource and the damage due to
the predator. Other notation remains the same.

The application of equations (1.1) and (1.2) calculate the expected utility of



22 Compromise Strategies for Action Selection

being at λ:

EU(Aθ|t, d, λ) =ptpdpn(λ)EU(Aθ|t, d, λ′)+
pt(1− pd)EU(Aθ|t, λ′)+
pd(1− pn(λ))Gd+

(1− pt)pdpn(λ)EU(Aθ|d, λ′) (1.8)

EU(Aθ|t, λ) =Gtpλt, and, (1.9)

EU(Aθ|d, λ) =pn(λ′)pdEU(Aθ|d, λ′)+
(1− pn(λ′))Gd. (1.10)

The total expected utility (equation 1.8) is the expectation over four possible
situations: both target and danger are still there, but the danger does not strike;
the target remains, but the danger disappears (no possibility of a strike now);
the danger remains and strikes the agent (status of the target is not relevant);
and the target disappears, the danger remains but the danger does not strike.
When only the target remains, the optimal strategy is to go straight to the target,
as in equation (1.9). When the target disappears but the danger remains, the
agent must flee to a safe distance from the danger, as in equation (1.10). A
safe distance is a variable parameter called the danger radius. Once the agent
is outside the danger radius, it presumes that it is safe from the danger. The
area inside the danger radius is the danger zone.

In addition to the optimal strategy described above, three other action selec-
tion strategies are examined:

• MEU: The agent moves in accordance with the maximum expected utility
strategy, as described in section 1.3.1. Movement is directly to the target,
ignoring the danger, because the target has the higher utility. This is a non-
compromise strategy that could be expected to do poorly.
• Active goal: This strategy considers only one goal at a time: the danger when

in the danger zone and the target otherwise. Using this, the agent moves di-
rectly to the target unless within the danger zone. Within the danger zone,
the agent moves directly away from the danger until it leaves the zone. This
strategy zig-zags along the edge of the danger zone as the agent moves to-
ward the target. Active goal is also a non-compromise strategy that only acts
upon one goal at a time.
• Skirt: This strategy moves directly toward the target unless such a move

would enter the danger zone. In such a position, the agent moves along the
tangent edge of the danger zone until it can resume heading directly to the
target. Skirt is primarily a non-compromise strategy. Outside the danger ra-
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dius, the agent moves straight to the target. Inside the danger radius the agent
moves straight away from the danger.

The expected utility of each of these non-optimal mechanisms can be calcu-
lated for any particular scenario by using equations (1.8), (1.9) and (1.10), as
in the previous experiments.

For these experiments, four pn(λ) functions are used, all of with with a
danger radius of 20:

• Linear A: pn(λ) = 0.04× dλ+ 0.2 when dλ ≤ 20, 1 otherwise.
• Linear B: pn(λ) = 0.005× dλ+ .9 when dλ ≤ 20, 1 otherwise.
• Quadratic: pn(λ) = (dλ)2/400 when dλ ≤ 20, 1 otherwise.
• Sigmoid: pn(λ) = 1/(1 + 1.810−dλ) everywhere.

Linear A is a baseline strategy where the probability of a strike is high near the
danger, but low at the edge of the danger zone. Linear B makes the chance of
a strike low overall, thus increasing the tendency of the agent to remain in the
danger zone. This may generate more compromise behaviour. Quadratic has a
high probability of a strike for much of the danger zone, but drops off sharply
at the edge. This may encourage compromise behaviour near the edge of the
danger radius but not at the centre. Sigmoid should resemble quadratic, but the
area with low strike probability is larger, and there is the possibility of some
strike for every location in the environment, not just inside the danger radius.

Proscriptive Results
1000 scenarios were generated with a target at (50, 90) with a Gt = 100
and a danger at (60, 50) with Gd = −100. pt was varied systematically in
range [0.95; 1) and pd was varied systematically in the range [0.5; 1) (These
ranges were selected because they contain the most interesting behaviour. For
instance, when pt is too low, the probability that an agent will reach the target
quickly approaches zero. Related studies (Crabbe, 2002) indicated that com-
promise behaviour was greater when pt > 0.95). Once the scenario was gen-
erated, the expected utility for each of the three non-optimal strategies and the
optimal strategy was calculated for 200 points in the environment, for 200,000
data points calculated over 312 computer-days.

Figure 1.4 shows the results of the optimal strategy when pt = 0.995, pd =
0.99, and pn(λ) is Linear A. Within the danger zone, there is little display of
compromise action; the agent flees directly away from the danger at all loca-
tions, ignoring the target. There is compromise action displayed outside the
danger zone, to the lower right. The vectors point not at the target, but along
the tangent of the danger zone. This phenomenon occurs because the agent



24 Compromise Strategies for Action Selection

Figure 1.4 Optimal behaviour for the agent in proscriptive scenarios. The
target is located along the top of the plot, indicated by an open circle. The
danger is located near the centre of the plot, indicated by a filled circle. The
large circle on the plots is formed by the vectors pointing away from the
danger in areas inside the danger zone. Outside the danger zone, the vectors
point toward the target. The probability of the target remaining is high (pt =
0.995), the probability of the danger remaining is high (pd = 0.99) and
pn(λ) is Linear A. In most locations, the optimal strategy is to move directly
toward the target. Inside the danger zone, the optimal strategy is to move
directly away from the danger. On the side of the danger zone opposite the
target, the optimal strategy is to move to the target along the shortest path
while not entering the danger zone
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Figure 1.5 Optimal behaviour for the agent in proscriptive scenarios, similar
to figure 1.4 The parameters are the same as in (a), but the probability of the
danger remaining is low (pd = 0.5). The optimal behaviour is qualitatively
the same as for (a) except in the area on the side of the danger zone opposite
the target, where optimal behaviour is to move directly toward the target (see
text).

moves along the shortest path around the danger zone to maximise the likeli-
hood that the target will remain in the environment until the agent arrives. The
compromise in the lower right does not match the common implementations of
compromise action. In most architectures, the goal to avoid the danger would
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Figure 1.6 Optimal behaviour in situations where more compromise be-
haviour is shown. The figure should be interpreted in the same manner as
with figure 1.4. In (a) both the probability of the target and the danger re-
maining are low (pt = 0.95, pd = 0.5) and pn(λ) is Linear A. Compromise
behaviour is evident inside the danger zone because the optimal direction of
movement is no longer directly away from the danger.

not be active when the agent is in that area of the environment (since the agent
is too far away from the danger) (Arkin, 1998; Brooks, 1986). Thus one would
expect it to have no effect of the action selected.

When pd is reduced to 0.5 the compromise action in the lower right is less
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Figure 1.7 The probability of the target remaining is high (pt = 0.995),
the probability of the danger remaining is high (pd = 0.99), but pn(λ) is
Sigmoid. Within the centre of the danger zone, the optimal behaviour is to
ignore the danger and move directly toward the target. In areas closer to the
edge of the danger zone, the optimal strategy shifts to moving away from the
danger. At the extremity of the danger radius, the optimal strategy gradually
shifts back to moving toward the target.

pronounced (figure 1.5). The optimal strategy is to act as if the danger will
disappear before the agent enters the danger zone. This property is seen in
all the other experiments, i.e., when pd is high, optimal behaviour avoids the
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danger zone and exhibits compromise behaviour in the lower right region, but
when pd is low, the agent moves straight to the target in that region.

When lowering pt to 0.95 (with pd = 0.99, and pn(λ) as Linear A), the re-
sults are qualitatively identical to figure 1.4 (This and other additional plots can
be found in the electronic supplementary materials in Crabbe (2007)). When
pt = 0.95, pd = 0.5, and pn(λ) is Linear A, (i.e. low pt and low pd) predicted
compromise behaviour emerges (figure 1.6). The combination of both the ur-
gency to get to the target with the likelihood that the danger will disappear
leads to more target focused behaviour in the danger zone.

Examining the non-linear pn(λ) functions, compromise action is seen clearly
in all cases. Figure 1.7 shows pt = 0.995, pd = 0.99, and pn(λ) is sigmoid.
The compromise behaviour is evident both near the centre of the danger zone
and again near the edges as the probability of a strike drops gradually from
the danger. This also occurs when the pn(λ) is quadratic, though the transition
at the edge of the danger zone has the same discontinuity seen with the linear
functions.

Comparison between the optimal strategy and the other strategies described
above is shown in table 1.3. The table uses active goal as a baseline and com-
pares skirt and the optimal strategy to it. The MEU strategy was poor (less than
half as good as the other strategies across all trials, and 1/6 as good inside the
danger zone), so was omitted from the table. The percentages are of the average
expected utility for each strategy across all the starting positions and scenar-
ios (200,000 data points). Across all samples, the optimal behaviour performs
29.6% better than active goal, but skirt is nearly as good, performing 29.1%
better than active goal. When considering just those locations on the other side
of the danger zone from the target, the benefit is greater for optimal over ac-
tive goal, but still only slightly so over skirt. This trend continues for locations
inside the danger zone, and samples from each of the pn(λ) functions.

Proscriptive Discussion
An examination of the data reveals properties of the optimal strategy that were
not initially predicted (see section 1.3.2). In stable environments (figure 1.4
and1.5 ), the priority is to flee the danger. Even in cases where the target is
likely to disappear and the danger unlikely to remain more than a few time
steps, with a moderate chance of a strike, the optimal action is to flee the danger
first (figure 1.5).

Compromise behavior can be induced by reducing the pt and pd, and using
the functions that reduce the chance of a strike, making the danger zone safer,
and the target more urgent. The non-linear functions had the most unusual
qualitative result, the area in the center of the danger zone where the danger is
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Table 1.3 Results comparing optimal and skirt strategies to
active goal. The values reflect the average percent expected

utility improvement of the the samples. The rows are subsets of
the data set. “All” is across all scenarios and starting

positions; “opposite” is just the starting positions that are
opposite from the target (the lower right region); “Danger

Zone” is across the starting positions inside the danger
radius; “Linear A,” “Linear B,” “Quadratic,” and “Sigmoid”

are all positions when the pn(λ) is each of the named
functions. The data consistently shows that the skirt strategy is
nearly as good as the optimal one in all cases. All differences
over active goal were significant on a Mann-Whitney U-test to

a confidence of 0.999.

scenarios optimal over active goal skirt over active goal

all 29.6% 29.1%
opposite 64.9% 63.3%

Danger Zone 26.2% 26.1%
Linear A 40.9% 40.8%
Linear B 13.5% 13.1%
Quadratic 48.6% 48.5%
Sigmoid 16.7% 15.2%

ignored. We believe that this is because the probability of the strike is so high
that the agent would certainly fall victim, and only differentiating property
between possible moves is the target pt.

While low-level compromise is shown to be beneficial in the proscriptive
experiments, the experiments also show that it is not beneficial in the manner
expected, namely that instead of inside the danger zone, low-level compromise
is most beneficial outside the danger zone. Indeed, the comparison between the
optimal and the skirt strategies shows that the majority of the benefit comes
not from finding a compromise between two goals, but from preventing the
oscillation between acting on each goal, thus generating longer than necessary
paths along the edge of the danger zone. In the cases where the transition at
the edge of the danger zone was less behaviourly severe (i.e. the pn(λ) was
unlikely to generate a strike, so that optimal behaviour just inside and just
outside the zone are similar (when pn(λ) is Linear B or Sigmoid) then the
benefit of the optimal strategy is only thirteen to eighteen percent greater than
the active goal strategy that zig zags in and out of the danger zone.
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1.4 Final Discussion

This chapter has presented two sets of experiments analysing low-level com-
promise behaviour. The experimental setup was based on situations predicted
to be amenable toward good compromise actions (Tyrrell, 1993), and using en-
vironments that are commonly seen in the artificial agent community (Blum-
berg et al., 1996). The results show that compromise was not as beneficial as
predicted in the prescriptive cases, and while it was beneficial in the proscrip-
tive cases, it: a) took forms different from what was expected, and b) the vast
majority of benefit came from low-level compromise that served primarily to
shorten the overall path of the agent. This section will discuss the implications
of these findings.

1.4.1 High vs. Low-level Actions

Mounting experimental evidence (in this chapter and in others (Bryson, 2000;
Crabbe, 2004; Jones et al., 1999)) appears to show that compromise behaviour
is less helpful than predicted, and yet the intuition that compromise must have
greater impact can still be strong. A simple thought experiment makes it appear
even more so. Imagine an agent at a location l0 that needs some of resource
a and some of resource b. There is a quality source of a at l1, a location far
from a quality source of b at l2. There is a single low-quality source of both
a and b at l3. Let the utility of a at location ln be an. If there is some cost
of movement c (a chance of the resource moving away or a direct cost such
as energy consumed) then the agent should move to l3 whenever a3 + b3 −
c(l0l3) > a1 + b2 − c × min(l0l1 + l1l2, l0l2 + l1l2). Using the council-
of-ministers analogy, the a minister would cast some votes for l1, but also
some for l3. Similarly, the b minister would cast votes votes for both l2 and
l3. The agent might then select moving l3 as its compromise choice when it is
beneficial.

The key difference between the scenario just described and the experiments
described in earlier sections is the nature of the actions selected. The experi-
ments closely resembled the sort of compromise shown often in the ethological
literature, where the actions selected appear as a continuous blend of the non-
compromise actions, whereas the justification for compromise was posed as
a discrete voting system. With voting, the compromise action selected can be
radically different from the non-compromise actions, whereas blends tend to
resemble the the actions they are a blend of.

This difference arises due to the level at which the action is defined. Blend-
ing compromises take place at the lower levels, where the outputs are the motor
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commands for the agent. Thus changes allow for little variation in the output.
Voting compromises take place at a higher level, where each choice can re-
sult in many varied low-level actions. Although this distinction is highlighted
here, it is not common in literature. Tyrrell (Tyrrell, 1993) for example used the
two definitions interchangeably (it may be that this distinction was not made
by the early researchers in action selection in part because their experimental
environments were entirely discrete and grid-based, thus affording few action
options to the agent). As discussed in section 2, selection of optimal actions at
the low level is much more computationally difficult than selecting actions at
a high level.

It should be noted that the “three-layer architectures” in robotics do explic-
itly make this action level distinction, where higher layers select between mul-
tiple possible high-level behaviours, and then at lower layers, active behaviours
select low-level actions (Bonasso et al., 1997; Evans et al., 2008; Gat, 1991).
In existing systems, when and where compromise behaviour is included varies
from instance to instance in an ad hoc manner. Many modern hierarchical ac-
tion selection mechanisms that explicitly use voting-base compromise tend to
do so at the behaviour level only (Bryson, 2000; Pirjanian, 2000; Pirjanian
et al., 1998).

1.4.2 Compromise Behaviour Hypothesis

The experiments and insights discussed above, lead us to propose the following
Compromise Behaviour Hypothesis:

“Compromise at low levels confers less overall benefit to an agent than does
compromise at high levels. Compromise behaviour is progressively more use-
ful as one moves upward in the level of abstraction at which the decision is
made, for the following reasons: (1) In simple environments (e.g. two pre-
scriptive goals), optimal compromise actions are similar to the possible non-
optimal compromise actions as well as the possible non-compromise actions.
As such, they offer limited benefit. In these environments there is no possi-
bility of compromise at the higher levels. (2) In complex environments (e.g.
where multiple resources are to be consumed in succession such as the hypo-
thetical scenario depicted in the previous section) good compromise behaviour
can be very different from the active non-compromise behaviours, endowing
it with the potential to be greatly superior to the non-compromise. (3) In com-
plex environments, optimal or even very good non-optimal low-level actions
are prohibitively difficult to calculate, whereas good higher level actions are
not. Furthermore, easy to compute heuristics (such as Forces) are unlikely to
generate the radically different actions required for good compromise.”
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This hypothesis predicts that compromise behaviour will be beneficial in
more complex environments, where the computational cost of selecting an ac-
tion at a low level is prohibitive. In these environments, action selection at a
high level, with compromise, may be the best strategy.

1.5 Conclusion

The notion of compromise behaviour has been influential in the action selec-
tion community despite disagreements about what precisely it might be. By
examining the most common forms of compromise behaviour described by
ethologists or implemented by computer scientists (low-level prescriptive and
proscriptive), this chapter adds credence the idea that while it may exist in
nature, low-level compromise behaviour affords little benefit. The chapter pro-
poses that compromise is not especially useful at the low levels, but is useful at
higher levels. Future work will revolve around testing, validation or refutation
of this Compromise Behaviour Hypothesis.
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