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Abstract— This paper explores the development of a two
and one-half dimensional (2½-D) map structure to provide an
autonomous mobile robot with a more three-dimensional (3-
D) model of its environment than those afforded by current
map structures. The 2½-D map structure was created by
modifying the widely used evidence grid to store a height,
along with a probability value, in each cell location to
record the varying elevations of a 3-D environment. Results
show that this map structure is capable of providing an
autonomous mobile robot with a representation of a limited
3-D environment that will allow it to perform obstacle
detection, path planning, and to an extent, localization.

I. I NTRODUCTION

An autonomous mobile robot must possess some idea
of its surroundings in order to navigate autonomously.
This “idea” is usually presented to the robot in the form
of a map. In order for the map to be useful, the robot
needs to be able to perform four tasks using it: 1) obstacle
detection, 2) path planning, 3) localization, and 4) frontier
exploration. Currently, robots are able to perform all four
tasks as long as they operate in a single plane of motion
(a two-dimensional (2-D) environment) [2], [9], [11]. This
restricts the robot to operate in environments where the
ground is flat and smooth. In a more three-dimensional
(3-D) environment, the robot would have to account for
additional environmental structures and obstacles such as
ramps and cliffs. The map must be capable of storing these
features in order to provide the robot with the ability to
traverse or avoid these areas. For example, the robot must
be able to use its map to identify and move around steep
drops in elevations which might damage the robot while
identifying and traversing more gentle elevation changes.

Moravec uses 3-D evidence grids to model such envi-
ronments [5], [6]. This approach requires much memory
(16 megabytes to represent an 8 by 8 meter room) and
computational power. Thrun produced 3-D models by
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fitting a low-complexity planar model to collected data [3],
[10]. This approach was used to produced a 3-D model of
an environment above the ground—the robot could only
move around and localize in 2-D. These maps were used
to enhance the information obtained from an environment
and was not used for navigating the robot.

This paper presents a two and one-half dimensional
(2½-D)1 map structure that is a more compact 3-D model
of its environment which is computationally feasible and
provides navigational capabilities in such an environment.
This map structure was created by modifying a 2-D
evidence grid [4] to store a height and probability value
pair for each original 2-D cell. Using the 2½-D map
structure, a robot was shown to be capable of performing
obstacle detection, path planning, and localization.

II. T HE EVIDENCE GRID

A wide variety of map representation structures (such
as Voronoi diagrams, evidence grids, quadtrees, etc.) [1],
[4], [8] are currently capable of representing a robot’s en-
vironment. These maps usually represent the environment
in two dimensions. A 2-D map representation is sufficient
for robots in many controlled environments, however,
as robots are fielded in more rugged, 3-D terrain, these
models are insufficient. Instead, we propose an extension
to the 2-D evidence grid that enables a mobile robot to
model traversable surfaces in three dimensions.

A. The 2-D Evidence Grid

The 2-D evidence grid is one of the most popular map
structures for autonomous mobile robots. It is comprised
of an array of grid cells where each cell represents the
occupancy probability of a location in the environment.
The benefits of this map structure include the ability

1We define a 2½-D map as a structure that is capable of representing
partial three-dimensional information. It stores more information than a
two-dimensional map but does not provide a complete three-dimensional
representation of an environment.



Fig. 1. Hidden Obstacle.

for probabilistic learning in the face of uncertain sensor
information and the ability to easily fuse readings from
different sensors for the same location. Though its array
of grid cells can require more memory than other map
structures, the evidence grid allows fast, constant time
access to each cell in the map. In addition, numerous
algorithms have already been developed for exploration,
obstacle detection, path planning, and localization using a
2-D evidence grid.

B. The 3-D Evidence Grid

A 3-D evidence grid is an extension of the 2-D grid
to a 3-D array. For a full 3-D evidence grid, the size of
the grid increases with the number ofz layers required to
reliably represent the environment. If a fine resolution is
desired, or if thez range is large, the number ofz layers
would have to be large—adding to the size of the map
and to the computations involved in accessing, retrieving,
and using that map.

The resolution of thez layer is especially important
since it determines whether or not the robot can move from
its current cell location to another cell. Many wheeled
robots cannot roll over obstacles that are above a certain
height. For example, the maximum climbing height of
an obstacle that iRobot™’s ATRV-Jr. can roll over is
approximately 0.1 meters. Any difference in elevation
(from one cell to the next) greater than 0.1 meters must be
considered an obstacle. However, using a cell resolution
height of 0.1 meters is not fine enough to detect obstacles.
In Fig. 1, an obstacle is hidden from the robot since
the height used to represent each cell is taken from
the center of the cell in world coordinates—the actual
height of the object is not recorded (just the probability
that there is an obstacle somewhere in that cell). The
map would show two adjacent cells to be within the
robot’s climbing ability despite the obstacle being greater
than the climbing height. In order for the 3-D evidence
grid to work, each cell height should represent (at most)
half of the maximum climbing height of the robot (0.05
meters for the ATRV-Jr.). If each cell were to represent

a 0.125m×0.125m×0.05m volume of space, creating a
10m× 10m× 1m map would require 128,000 cells. To
represent a 100m× 50m× 50m parking structure would
require 3.2×108 cells. The memory required to store such
a grid, and the computational resources and time needed to
access and use such a large structure (e.g. for localization),
makes it infeasible to implement this map structure for
real-time 3-D movements.

III. 2½-D MAP REPRESENTATION

We developed a 2½-D map representation structure to
retain the benefits afforded by the evidence grid without
the dramatic increase in the map size when representing a
3-D environment. This section describes the structure of
this 2½-D map.

The 2½-D map structure consists of a two-dimensional
array where each (x, y) cell location contains a pair:
the height of the tallest object at that location, and the
probability that an object existsat that height. All heights
are stored as a relative measurement in reference to the
robot’s initial position as ground zero. Using a 16-bit
integer to represent centimeters of height, a map can be
created to provide the robot with information in the range
of ±327 meters from the robot’s starting altitude.

All of the cells are initialized to<0,0>. If the proba-
bility value for any cell is 0 (or less than a predetermined
threshold) then the robot treats that cell as an unknown
area and itsz value is not used for any calculations.
As the robot moves, its sensors obtain the location of
objects in the environment relative to the sensor. Since
the robot keeps track of its 3-D pose (x, y, z, roll , pitch,
yaw), knows the position and orientation of the sensor
on the robot, and obtains information on where objects
are relative to the sensor, the robot can perform a series
of transformations to determine the (x, y, z) position of
objects in the environment. It would then update the cells
of local x andy locations with the measuredz value and
change the probability value according to its sensor model.
The first time an object is detected for a certain cell, the
following update is performed on that cell:

Ht(x,y) = Hs (1)

Pt(x,y) = P(s|O) (2)

whereHt,(x,y) andPt,(x,y) are the new height and probability
value stored in the respective cell for the given (x,y)
location aftert readings (in this caset = 1). Hs is the
detected height of the object andP(s|O) is the probability
that the sensor returned the value it did given that an object
was actually there (obtained from the sensor model).



If an object is later detected for the same (x,y) location,
the following method is used to updated the height and
probability grid cells. If the height of the new sensor
reading,Hs, is greater than the stored height of the previ-
ous t−1 sensor readings,Ht−1(x,y), plus some tolerance,
T (which we set to be 0.1 meters), and the probability
value, P(s|O) is also above some predetermined limit,
then (1) and (2) are used as before. In other words, if
Hs > Ht−1(x,y) +T, then the new height and probability
value will replace the old values (as in the case for the
first reading at that location). If theP(s|O) value returned
does not provide us with a belief strong enough to cause
us to replace our current height value, then the reading
is ignored. The tolerance value,T, is used to account for
sensor noise. If the new reading is within the tolerance of
the old reading, then the robot can treat the new height
value as the same as the one stored.

If the new height is within the set tolerance of the old
recorded value,Ht−1(x,y)−T ≤ Hs≤ Ht−1(x,y) +T, then:

Ht(x,y) =
{

Hs if Hs > Ht−1(x,y)
Ht−1(x,y) if Hs≤ Ht−1(x,y)

(3)

Pt(x,y) =
P(s|O)Pt−1(x,y)

P(s|O)Pt−1(x,y) +P(s|¬O)(1−Pt−1(x,y))
(4)

where P(s|¬O) is the probability that the sensor would
have returned the value it did given that there was nothing
at that location—also provided by the sensor model.
Equation (4) uses Bayes’ rule to combine the previous
t−1 sensor readings with the current one. By increasing
the probability for the given height in this manner, we
increase our belief that the maximum height of the object
at that (x,y) location is indeed the value stored.

If the new height is below and outside the tolerance
level of the old reading,Hs < Ht−1(x,y)−T, then the new
sensor reading will be ignored and theHt(x,y) and Pt(x,y)
values will be the same as the old ones. In this way,
multiple detections of an object for an (x,y) location which
are below the height range will not affect the probability
value for that cell. Detecting a location’s height below its
recorded value does not significantly increase the belief
that our surface profile is correct (it only tells us that the
maximum height for that location can be anywhere from
that reading upwards) and is therefore ignored. It is also
important to note that objects in the robot’s environment
were assumed to be “complete” from the ground up. For
example, structures such as arches did not exists in our
testing environment. Though this assumption falls short of
modeling a true 3-D environment, it was made to facilitate
the initial development of the 2½-D map structure.

When a robot detects an object at a certain (x, y, z) loca-
tion, a line through empty space can be drawn from the 3-
D coordinates of the sensor to the position of the detected
object. Each corresponding cell along this line should
contain a height below the interpolated height between
the sensor and the detected obstacle. If the stored height
and probability cell pair indicates a strong probability of
a stored height at or higher than the interpolated value
(in situations where the first few readings were erroneous,
the object moved, or the current reading is false), then the
belief probability for that location will be decrease using
the value from the sensor model and (4). Meanwhile, the
stored height will remain unchanged. If there is no object
at that height, then the probability will keep decreasing
during subsequent scans until it drops below a threshold—
at which point the height at that location is considered
unknown. The next sensor reading which indicates an
object height (which can include the height of the ground)
at that (x,y) location will replace the previous height value
and update its probability using (1) and (2). Using this
method, the map can be updated to account for a changing
environment and erroneous sensor readings.

This storage and updating method was selected because
it provided the ability to represent and update only the
pertinent information concerning the robot’s environment.
In a situation where all structures are “complete”, the robot
is only concerned with the top of the structure at each
(x,y) location. In updating the map, the robot only needs
to know whether the new height reading is higher, the
same, or lower than the value currently stored. If the value
is lower, it is ignored since it does not provide any new
information about that location—the robot already knows
that the space is occupied. If the new reading is similar to
the stored one, then the robot has an increased belief that
the recorded height exists and will update its probability
value accordingly.

The tricky part occurs when the new reading is greater
than the stored height (plus the tolerance). The position
of most sensors (including the ones we used) are fixed
on the robot and cannot provided a full 3-D picture of
the environment with a single scan. Therefore, the robot
is only able to “see” a portion of its world at a time.
As its position and orientation changes during movement,
the robot can detect a higher portion of an object than it
was able to at its previous position. In this case, the new
reading completely replaces the map’s previously stored
values if the belief probability is high enough. If this
reading was erroneous, subsequent scans of empty space
below the stored value would correct the map. Since this



might take some time depending on the frequency that
the area is scanned, an alternative method would be to
hold the new reading separate from the stored value and
replace it only when it has obtained a strong enough belief.
However, this updating method was not implemented after
determining that setting a belief threshold was sufficient
for the sensor suite that we used.

IV. EVALUATION

To evaluate the 2½-D map structure described in the
previous section, we examined whether or not the robot
can use it to perform obstacle extraction, path planning,
and localization. The robot must be able to demonstrate
these three capabilities before it can perform frontier
exploration.

A. Obstacle Extraction

To show that the 2½-D map structure will actually
represent changes in elevation that can be used by the
robot, two maps were created of a ramp area in back of
Building 1 at the Naval Research Laboratory (NRL) in
Washington, D.C. (as pictured in Fig. 2(a)). The first map
(Fig. 2(b)) is a 3-D evidence grid with anx, y, and z
cell size of 0.125 meters. For demonstration purposes, the
figure only displays a portion of the map. As can be seen,
the 3-D evidence grid represents the smooth ramp as a
series of broken intervals separated by a height of 0.125
meters. Because 0.125 meters is greater than the climbing
height, this map will not allow the robot to accurately
differentiate some ramps from obstacles or even identify
many obstacles. Even at this coarse resolution, the map
contains 262,144 cells (256×64×16).

Fig. 2(c) is a map of the same ramp created using
the 2½-D map structure. The data incorporated into the
map were obtained from the robot’s 2 SICK™ laser
sensors as it made a single pass down the ramp. Each cell
containing usable data is displayed as shown in the figure
(the shadings were added to help distinguish between
neighboring cells) with each cell drawn from the recorded
height to the height of its lowest neighbor.

Using the maximum height of the occupied space at
each location, the robot can determine where it can and
cannot move by converting the map into a form similar to
a 2-D evidence grid.

For each cell, if the difference between the height of that
cell and the height of one of its neighbors is greater than
the robot’s maximum climbing distance, the transition is
marked as an obstacle. Since each cell represents only a
small portion of the world (0.125 meters in this map), it is

(a) Photograph of ramp.

(b) 3-D Evidence Grid with a trace of the robot’s recorded altitude
moving down the ramp.

(c) 2½-D map (with SICK readings).

(d) Converted 2½-D map.

Fig. 2. Ramp in back of Building 1 at NRL.

able to mark obstacles without limiting the areas around
the obstacle that the robot can maneuver in. This method
can also be used to determine negative obstacles such as
cliffs. If a drop in elevation is beyond what the robot can
handle safely, it will be able to determine that area as a
non-traversable boundary.

Fig. 2(d) was created using this method. The black
dots represent unknown areas, the white areas represent
traversable spaces, and the blocks represent obstacles for
the robot. The actual size of the original 2½-D map



only contains 32,768 cells (256×64×2)—fewer than the
262,144 cells used by the coarse 3-D evidence grid.

B. Path Planning

Using the method discussed in the previous section to
determine areas where the robot can and cannot move to,
the 2½-D map structure can also be used to generate paths
to a goal using a path planning algorithm that works on 2-
D evidence grids, such as the TRULLA [7] algorithm. The
converted 2½-D map (Fig. 2(d)) provides these algorithms
with all the information it would need to perform its path
planning.

Some algorithms, including TRULLA, allow cells to
be weighted to indicate more and less desirable paths.
In the converted 2½-D map, the weight of each cell
can incorporate the height difference between the current
cell and those around it. This weighing system can help
TRULLA determine the more desirable path in a rugged
environment (with multiple curbs, hills, ramps, etc.).

C. Localization

To test the localization capabilities of the 2½-D map
structure, we implemented a modified Continuous Lo-
calization [9] algorithm. Since this algorithm requires a
long-term map of an environment, we created such a map
of Room 105 (in Building 1 at NRL)2 by continuously
providing the robot with its exact location as it moved
about the room and recorded its sensor readings. Fig. 3(a)
is a panoramic view of the room and Fig. 3(b) is the long-
term 2½-D map structure of that room. The maximum
error in the generated map was less than 3 cells (0.375
meters). This map representation was created using a
128×128×2 size grid .

The main modification made to the original Continuous
Localization algorithm was in the way the short-term maps
are compared to the long-term map—since the actual
structure has changed. In a 2-D evidence grid registration
process, the difference between the occupancy probabil-
ities are used to align the maps. For the 2½-D model,
we use the difference between the stored heights. The
calculation of the match score for each map comparison
is determined by taking the sum of the absolute difference
betweenvalid cell heights of the two maps3. If multiple
registrations are found to produce a good match score,
then the weighted average of these (based on the actual

2We used the indoor laboratory because it was easier to develop an
accurate map to evaluate just the localization capabilities.

3Valid cells are those (x,y) locations which have a strong probability
belief of existing as determined by a threshold.

(a) Panoramic Photograph of Room.

(b) 2½-D Long-Term Map of Room.

Fig. 3. Room 105 in Building 1 at NRL.

score) is taken to determine thex, y, andyawcorrection to
update the robot’s location. Using thex, y correction, along
with the dead reckoned location, the actualx andy position
of the robot can be determined. That (x, y) cell location
in the long-term map will provide the actualz location
of the robot at the time of registration. The difference
between the actualz value and the height at which the
robot thought it was at will become thez correction for
the robot. Since the ATRV-Jr. obtains itsroll and pitch
values directly from the sensors, they are not subjected
to any systematic errors and are not corrected for in this
registration.

The robot was remotely controlled, while running a
modified continuous location algorithm, around the room
depicted in Fig. 3(a) (using Fig. 3(b) as its long-term
map). After a single lap, the robot’s actual position in
the room was measured and its corrected and uncorrected
pose estimates recorded. Comparing these values showed
that the estimated position of the robot (with correction)
placed it 0.047 meters from its actual position (with a 1°
rotation error) while the uncorrected estimate was off by
0.693 meters (with a 6° rotation error). From this test, it is
determined that the robot is able to localize itself using a
2½-D map structure within the tolerance range of the map
(roughly the size of a cell—since that is the accuracy of
the map) in a similar environment (a flat room).

V. D ISCUSSION ANDFUTURE WORK

As mentioned earlier, an assumption was made that
objects in the environment were “complete” from the
ground up—leaving no gaps directly below objects (such



as arches). This assumption was made to facilitate the
initial development of the map structure and future de-
velopments of the 2½-D map should explore methods to
represent “incomplete” objects such as arches.

Similar to the issue just mentioned, another item which
should be explored is how to represent a multi-layered en-
vironment. In a 3-D environment, structures exists which
can allow a robot to occupy a certain (x, y) location but
at different altitudes (such as overhead passes). The 2½-
D map structure currently does not provide the capability
to represent such an environment. One possibility might
be to stack multiple 2½-D maps on top of each other.
This could create a structure similar to a 3-D evidence
grid (which can represent multi-layered environments) but
with the resolution capability and lower computational and
memory requirements of the 2½-D map.

In addition, the testing of the 2½-D map structure’s
localization capability was conducted indoors. This facil-
itated the development of an accurate long-term map but
also limits the implications of the results since the ground
was relatively flat and smooth (not representative of most
3-D environments). To further explore the 2½-D map’s
ability to provide localization capabilities to a robot on a
more 3-D terrain, more testing would have to be performed
in such an environment and for long term navigation.

Once these issues are resolved, the frontier exploration
aspect of autonomous mobile robotics would just be an
extension of the 2-D algorithm using the converted 2½-D
map.

VI. CONCLUSIONS

This paper described a 2½-D map structure to represent
a 3-D environment for autonomous mobile robots. The
2½-D map structure was created by modifying a 2-D
evidence grid to store a height and probability value for
each (x, y) cell location. The alternative of extending the
2-D evidence grid to a full 3-D model had proved to
be prohibitively expensive (in memory and computational
requirements).

The new map structure was capable of storing an
environment with varying ground elevations (a ramp was
used for testing) to a high degree of precision while its
memory requirements was only double that of a 2-D
evidence grid. The robot was then able to use the map
to perform obstacle detection and path planning in a 3-D
environment—implementing existing algorithms created
for the 2-D evidence grid. The map structure was also
capable of providing the robot with the ability to localize

in the original 2-D laboratory environment. With this
2½-D map, we have provided an initial look into a map
representation structure that could be used in assisting
a robot’s transition from a constrained 2-D environment
into a more 3-D world.
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