Efficiently finding (nearly) minimal FST of repetitive
unsegmented demonstration data

Frederick L. Crabbe
Computer Science Department, US Naval Academy
572M Holloway Rd Stop 9F
Annapolis, Maryland 21402

Keywords:
Robots; plan learning; learning from demonstration; minimal programs

Abstract:
This paper presents an algorithm that enables a robot to learn from demonstration by inferring
a nearly minimal plan instead of the more common policy. The algorithm uses only the demon-
strated actions to build the plan, without relying on observation of the world states during the
demonstration. By making assumptions about the format of the data, it can generate this plan in

Oo(n®).

1 INTRODUCTION

Learning from Demonstration (LfD) is a recently
established field in which robot controllers are
developed from example data. In most cases,
this takes the form of learning a policy (Bert-
sekas, 2005) that maps world states directly to
outputs (Argall et al., 2009). There are however
other possible models for LfD, such as inferring
planning operators or even direct plans or pro-
grams. This paper examines the problem from
a non-policy perspective, inferring a plan repre-
sented as a Finite State Transducer (FST) from
example data that is repetitive (a set of actions is
repeated, with small variations each repetition).

By making the assumption of repetitive input
data, we enable the inference of a nearly mini-
mal size program from the data (minimality tends
to have good generalization properties (Blumer
et al.,, 1987)). In the general case, inferring a
minimal program is very expensive, and infer-
ring a minimal Finite State Automaton is NP-
complete(Gold, 1978; Pitt and Warmuth, 1993).
We claim that the repetitive nature of many robot
tasks makes this input-as-repeating-data a rea-
sonable assumption for many tasks. This assump-
tion, plus an assumption that the world state only
needs to be sampled at certain times in the repe-
titions, lead to fast algorithms, inferring an FST
in O(n®).

An example real-world repetitive task might

be the process of loading a container ship. In it
the loader must repeatedly: a) move container in
position; if load has shifted, b) repack; c¢) lift con-
tainer; d) move to location on ship; e) secure con-
tainer; if there is void space, f) fill with dunnage;
g) lock doors (McNamara, 2010). A robot at-
tempting to infer this algorithm might see a long
sequence of world states paired with actions. For
example, if we number world states arbitrarily,
and label actions as above, the observed sequence
might be: (0/a, 8/c, 8/d, 9/e, 8/g, 1/a, 5/b, 7/c,
9/d, 9/e, 6/g, 2/a, 9/c, 8/d, 2/e, 9/f, 2/g, 3/a,
5/b, 0/c, 8/d, 9/e, 8/, 2/g, 0/a, 5/c, 0/d, 9/e,
8/g). Our approach strips out the actions: (acde-
gabcdegacdefgabedefgacdeg) and uses this to de-
termine the basic loop, adding the world state in-
formation back in at the end, as shown in figure
1. As discussed below, the agent using this pro-
gram samples the world state at the start of each
pass through the loop, and uses that information
to determine all actions through that pass.

2 APPROACH

Because the general problem of inferring a min-
imal finite state machine from a data set is dif-
ficult, we make some restrictive assumptions on
the structure of the possible programs. We as-
sume all programs consist of a repeated sequence
of actions (no nested loops) where within individ-

(20)b e 20)/c

21/ @ 21)fg

(Srnar)220 @¢-@ G210 (57) G210k e¢-@

Figure 1: Contents of the loop in the program inferred in the loading example, represented as a Mealy Machine.
Each transition is labeled with a set of world states in parentheses, a slash, and then actions to take given
those world states. During execution, the world state is observed at the start, and that value is used to select
transitions throughout that pass in the loop. Thus, if in world state 1 at the start, the robot would move from
Start to GO, G6, G7, G8, G9, and finally G13, outputting (acdefg) for that pass through the loop. World states
5-9 are not used in the machine because they are never true at the beginning of a loop pass.

ual passes of the loop, there might be small de-
viations from the typical pass. We will infer the
machine from the observed behavior only, and ap-
ply the sensor observations of the demonstrator
at the end of the process. Thus, the formal prob-
lem is, given a demonstration sequence consisting
of world-state/action pairs, infer a minimal FST
such that the action sequence would be gener-
ated by repeated applications of that FST. Fol-
lowing Veloso and Veeraraghavan (Veeraraghavan
and Veloso, 2008), we assume that at the start of
each loop the world-state contains sufficient infor-
mation to determine the path through the FST.
The robot makes the decision about the relevant
properties of the environment at the start of the
pass through the loop, following branches deter-
mined at that start (in an extreme case, imagine
the robot consulting an information board at the
start of a pass, and using that information to de-
termine what actions to take through that pass).
The ramifications of this will be discussed in sec-
tion 5. For example, figure 2 shows the contents
of the loop where the robot executes action a then
b, and then if condition 0 is true, execute action
¢, or if condition 1 is true, execute action d.

Current state-of-the-art FSA inference al-
gorithms use a set of short strings as input
(M.Bugalho and Oliveira, 2005). The demonstra-
tion data for our problem is, in contrast, single
long sequence of actions. Our approach is to first
efficiently partition the action sequence using a
technique for finding approximate repetitions in
strings, and then use the set of substrings to gen-
erate the transducer. Of course, even given parti-
tioned actions, the problem of generating the min-
imal transducer is, as noted above, NP-complete.
However, the assumption that the input is known
at the beginning of each pass through the loop
provides us with an efficient algorithm to find the
minimal FST.

2.1 Notation

As in the above example, we will represent an ac-
tion in a sequence as a single character and a com-
plete action sequence as a string. When a string
has been partitioned into substrings, where each
substring represents a pass through the loop, each
substring will be labeled with a number, corre-
sponding to the matching world conditions that
must later be determined from the world state
that matches the start of each subsequence.

3 ALGORITHM

The algorithm consists of computing one or more
partitions of the action string, using the set of
strings in the partition to generate a FST, and
finally apply the world-state conditions from the
original data to create the FST.

3.1 Generating Partitions

The partitioning problem can be stated as, given
a string x of length n, generate a set of m
substrings, z[1..i1], z[i1 +1..i2), ..., Z[iy—1..n] that
will be used to generate a minimal FSA. To do
this, we rely on the assumption that most of
the iterations through the single loop are simi-
lar if not identical, with some steps inserted or
deleted. Under this assumption, the problem re-
sembles finding an approzimate repetition (Sim
et al., 2001). In an approximate repetition prob-
lem, a string p is a period of x, if © = pips...pm,
where each p; is an edited version of p. Given an
edit distance function 4(-, -), the problem becomes
finding the best p (p*), s.t. given all possible par-
titions p;,

p* = arg min max d(p, p;).
p 7

That is, assuming that x is made up of approxi-
mate repetitions of some string, the period p* is
the string for which there exists a partition of x
where the distance between p* and the substring

OO TG

Figure 2: FST inferred from the action sequence “ab-
cabd”.

(- (=)
(/d

Figure 3: A minimal FST for the actions sequence
“abcabd”, when partitioned with the period “ab”.

it is furthest from is less than any other combi-
nation of p;’s and partitions. As we shall see, the
process of finding p* will also partition the string
into its component p;.

The approximate repetition problem de-
scribed above is different from the sort of par-
titioning required for our problem in three ways.
First, since we a measuring the size of the overall
program, instead of the maximum distance from
p* we are looking for the sum of all the distances
between p* and each p;. Fortunately, this is eas-
ily fixed, as described below. Second, the sum of
the edit distances does not match perfectly with
the size the the resulting FSA. For example, if
x ="abcabd”, the p* was “abc” and the total esti-
mated program size is 4: 3 to generate the period
“abc”, plus 1 substitution for “abd” (figure 2).
However, selecting the period as “ab” also yields
an estimated program size of 4 (2 to generate the
period, plus two edits to generate “cabd”, yet this
partition results in a larger FST than the former
(figure 3). Thus the partition can under-estimate
the size of the resulting program. In practice, the
when the partition algorithm returns a bad par-
tition, it also returns a good one with the same
cost. The third difference between the approxi-
mate repetition problem and our partition prob-
lem is that the former looks at the pair-wise cost
between p* and each p;, whereas in the FST mul-
tiple p;’s can also interact. For example, given
x =“abcabcabcabdabd” and p =“abc”, the parti-
tion algorithm partitions to pg : “abc”, py :“abc”,
po :“abc”, p3 :“abd”, ps :“abd” and estimates a
cost of 5 (3 for pg, 0 for p; and po, one each for the
replacing of “c” with “d”). Of course, since the
“d” is the same for p3 and py4, the real cost should
be 4. Thus the partition can also over-estimate.
The implications of these two inaccuracies is dis-
cussed more is section 5.

If we allow p to be any string, the partitioning
problem is known to be NP-complete (Sim et al.,
2001), but if we assume that p occurs in x, then it
can be found in polynomial time. We can modify

the algorithm from Sim et al.(Sim et al., 2001) to
find p* for our problem, shown in algorithm 1.

Algorithm 1
Pmaz = 0
tmaz =0
For each p € Substrings(x)
1. Foreach {i |0 <i<n}
(a) Compute the edit distance table ¢ from p to
2.t=0
3. For each {i |0 <i<n}
(a) t; = ming<p<;(tn + 8(p, x[h + 1..4]))
4. if t, + |p| > tmazs tmaz = tns Dmaz = P

return Pmax

In the main loop (step 3) each ¢; is the total
edit distance using p as the period, up through
position i. In step 3a, we consider the cost of
partitioning from A to 4, which would be the dis-
tance from p to z[h + 1..7], plus the cost of all of
the other partitions, tj,.

The algorithm above not only finds the best p
for the string x, if we remember h for each term
selected by the min in step 3a, the resulting list of
h’s gives us the points to split the string x, thus
generating our partitions for the next stage.

3.2 Building the FST

Once we have broken the action sequence into
a set of subsequences, we can begin to find the
minimal FST that generates those strings. One
standard approach to this problem is to first build
a tree known as the Augmented Prefix Tree Ac-
ceptor (APTA) (M.Bugalho and Oliveira, 2005),
an FSA in tree form that generates each of the
action substrings (figure 4). Once the APTA is
built, there are several algorithms that attempt to
minimize it by merging pairs of merge-able states
(Lang et al., 1998). These algorithms search the
space of possible merges to find the minimal FSA.
Unfortunately, this approach also has exponential
time complexity.

If we include the assumption that the world-
state information given to the robot at the be-
ginning of each pass through the loop, then we
can consider the world-state information to be
the same for each or the steps in the subse-
quence. For example, if a world-state/action se-
quence was (1/a, 4/b, 2/c, 2/a, 3/b, 1/c) the ac-
tion sequence would be (abcabd), which is par-
titioned into (abc) and (abd). We then relabel

Figure 4: The APTA generated from the set of
strings, {“abed”, “abce”, “abed”}.

the actions with the world state at the start of
each subsequence: (1/a, 1/b, 1/c) and (2/a, 2/b,
2/d). If we treat our APTA as a FSA, temporar-
ily ignoring the world state, and label the tran-
sitions with just the actions, the result is a De-
terministic Finite-state Automaton (DFA). This
DFA can be minimized with known algorithms in
O(nlogn) time(Hopcroft, 1971). Once we have
a minimal DFA, we can add the world-state la-
bels to the transitions without harming the de-
terministic property of the automaton because of
our assumption about the structure of the world
state information. We can easily show that this
results in an unambiguous FST:

Lemma 3.1 Minimizing the APTA as a DFA,
and then applying the world states from the starts
of each subsequence to the entire subsequence
yields a minimal unambiguous FST.

Proof:

1. The original APTA contains no cycles, by def-
inition of tree, therefore the minimized DFA
contains no directed cycles, or it would accept
arbitrarily long strings not accepted by the
APTA.

2. When converting the DFA to an FST, the ad-
dition of constraints in the form of the world
states (the numbers) on the transitions cannot
enable a smaller machine. The FST could be
made smaller than the DFA only if adding the
world states enabled more merges on the min-
imal DFA. Since mergeability of two states is
still determined in part by the output charac-
ter, the additional constraints will not enable
more states to merge in either the minimal
or any other DFA. Therefore the FST is also
minimal.

3. Non-determinism in the FST could only come
from more than one transition from a node
with the same world-state on each transition.
Since each partition substring is uniquely la-
beled, ambiguity cannot arise from labels from

Figure 5: Final FST from the action sequence “adcd-
edcdebedebfdabedabexxbed”.

multiple substrings. Because there are no di-
rected cycles, when labeling the transitions for
a particular substring, each node can be vis-
ited at most once. Therefore the FST is un-
ambiguous.

Algorithm 2
1. Compute APTA from data, ignoring world-
state.

2. Minimize APTA as a deterministic finite state
automaton

3. For each data string d
(a) s = start state
(b) For each character ¢ € d

i. t =transition from s that matches c
ii. Label t with the world-state from d
iii. s =NextState(t)

3.3 Example

An example run through the algorithm follows.
Given an initial action sequence of “adcdedcde-
bedebfdabedabexxbed”, the partitioning portion
generates two potential partitions, each with an
estimated program size of 12. The first uses
“abed” as p, partitioning the string as, { “aded”
“eded” “ebcd” “ebfd” “abed” “abex” “xbed” }.
The second partition uses “ebcd” as p, but ends
up with the same partition. The FST builder
takes that partition and generates the FST shown
in figure 5.

3.4 Run time Analysis

In algorithm 1, the main loop is executed O(n?)
times. Building each distance table takes (letting
q = |p|, and i is from line 1 (a) in algorithm 1)
O(qi), so that all the tables take O(n?q), roughly
O(n?®). In step 3a, there are n comparisons in
each call to min, and ¢; is computed n times, for
a total of O(n?), therefore algorithm 1 is O(n®).
In algorithm 2 step 1 is O(n), step 2 can
be done in O(nlogn) (Hopcroft, 1971), and the
loop in step 3 is just O(n), making algorithm 2
O(nlogn) and the overall process O(n®).

a: place cup n: place filter

b: grasp pot o: grasp lid

¢c: pourinto cup p: grasp scoop
d: replace pot q: scoop coffee

e: grasp pen r: pour in basket
f: mark tally s: place scoop

g: place pen t: place lid

h: grasp cup u: replace basket
i turn off burner v: grasp pitcher
j: grasp basket w: fill pitcher

k: dump filter x: pour in maker
l: place basket y: place pitcher
m: grasp filter

Table 1: Actions in the coffee retrieval task.

Once caveat to this analysis is that it assumes
the action data genuinely comes from a loop and
there is a sensible period. If there is no good pe-
riod, such as when all the characters are unique,
all partitions are equally bad. In this case, al-
though p can be found quickly, all possible peri-
ods are equivalent, and all possible partitions of
the sequence for each candidate p are equivalent,
thus there are n22"~! total equivalent results. As
a practical matter, we cut off the number of par-
titions to 20 per period, but with input strings
that do have a component period, we do not hit
the threshold in practice.

4 EXPERIMENTAL TRIAL

To test the algorithm, we ran it on a small data
set gathered by observing the behavior of a single
individual retrieving coffee from the department
coffee maker over the period of five days. This
data set differs slightly from the type of data de-
scribe above in that while it is repetitive, the time
differences between each pass could be used to
partition the passes correctly. However, if we ig-
nore those breaks and run the data together into
a single stream, then it does fit into the paradigm
of the algorithm. The action set is described
in table 4. The behavior sequence we observed
was: “abcdefghabedefghabedefgjklmnopqrstu-
vwxhabcdefghabedefghabedefghi”. It correspond
to two normal coffee retrieval events, and event
where the pot was empty and needed to be re-
made, one normal coffee event, and a coffee re-
trieval at the end of the day, so the machine was
shut off.

4.1 Results

In the first stage of the process, algorithm 1 cor-
rection identifies “abcdefgh” as the period, corre-
sponding to a normal retrieval. Because the one
of the variations from the period is long compared
to the period itself, the algorithm 1 finds that the
cost of considering the variation to be a single par-
tition is equal to splitting the sequence in the mid-
dle and considering the first part as a suffix to one
partition and the second as it’s own. For example,
the target partition “abcdefgjklmnopqrstuvwxh”
is just as costly (24) as the partitions “abcdefg]
klmnopqrstuvwxh” and “abcdefgjklmnopq rstu-
vwxh”. Algorithm 1 generates nine partitions,
all of which differ in where they split the “make
new pot” event.

Of those nine, all are converted by algorithm
2 into equal size FST, as measured by number
of actions. The transducer that best corresponds
to the program the subject was running is shown
in figure 4.1a. The transducer corresponding to
the “abcdefgj klmnopqrstuvwxh” partition of the
make new pot event is shown in figure 4.1b. A
Lisp implementation of the algorithm, running on
a single 3GHz Intel Core i7, generates the nine
programs in 10.4 seconds.

5 DISCUSSION AND FUTURE
WORK

Although the algorithm is theoretically sound,
there are several areas of potential improvements
and elements that need to be addressed to incor-
porate it in to practical robotic system.

5.1 Splitting Long Sequences

As seen in the coffee data, when a particular pass
through the loop introduces a long chain of ac-
tions dissimilar to other passes, the partitioning
algorithm generates multiple partitions of that
pass, all having equal cost. This is especially com-
mon when there is an addendum at the end of a
pass. The algorithm has no way to determine
whether those actions are a suffix to the pass, a
prefix to the next pass, or both (some actions a
suffix and some a prefix).

We believe that differentiation between the
multiple resulting progrmas can best be done af-
ter their generation. Some FSTs may more natu-
rally match the world state changes (see below).
Another mechanism to differentiate would by to

(65421 0)/a\(3)/k

654210)/b (3 3)Ir
COEECORECD
654210)/c [3)/m 3)/s
D G | D
654210)/d {3)/n (3)/q (3
COREECORECY
(654210)e (3)lo 3)/u
COEECONRC)

(654210)/f {3)/p (3)Iv

(654210)/g 3)/w
3)/x
Cer) o Cez)

Figure 6: Two output machines from the coffee data. (a) shows the machine that most closely matches a human
interpretation, where the entire “make a new pot” event is a single partition. (b) show the machine where the
string “klmnopqrstuvwxh” was a separate partition.

actually try the FSTs and measure their success.
In the future we will examine both of these tech-
niques.

5.2 Generalizing World State

As described above, the approach taken here is
to attempt to infer a minimal program from only
observed actions of another agent. We reapply
the inputs in algorithm 2 to build the final FST.
In that algorithm we make no assumption about
how each set of inputs is related (e.g. the input
for pass 0 may or may not intersect with that
of pass 1). This approach misses some potential
generalization in the resulting programs. For in-
stance, if pass 0 and pass 1 have identical actions,
it would make sense to attempt to generalize the
world states at the start of both passes. Future
work will include applying logical machine learn-
ing techniques such as Version Space style learn-
ing(Mitchell, 1982) on the input sets to generalize
good descriptions of the states. This may have
ramifications on the partitioning that takes place
in our algorithm. As discussed above, if there
are several equally good partitions, some may be
eliminated based on the quality of the input gen-
eralization.

5.3 Data Assumptions

There are three primary assumptions made about
the data required for the algorithm to work: the
the data is repetitive, that the input to the robot
at the beginning of the loop is sufficient to de-
termine the behavior through that pass, and that
the correct period p occurs in the input string
z. We maintain that these assumptions are rea-
sonable for many kinds of robot tasks. Typical
robot applications are for repetitive tasks, from
manufacturing to maintenance to patrol. Many
other tasks such as food preparation and service
also consist of these sorts repetitive tasks, com-
plete with input arriving at the start of the loop
(e.g. the customer’s order). Finally, with a large
enough data set, the probability of the “common”
sequence of actions for a task is high. Although
there may exist a partition that results in fewer
overall edits, we prefer that the period be selected
from the data, as we believe that the best period
would be one that was actually displayed.

For future work, we will investigate ways to
loosen the assumptions on the data, allowing for
nested loops or input to be checked at other fixed
moments in execution. We will also attempt to

characterize bounds on the size of the output
compared to the true minimal machine.

5.4 Other Issues

There are some areas that this work does not ad-
dress that would be nonetheless important for a
fielded robot system. The first is the nature of
the fundamental actions is predefined. Many ac-
tions, such as “turn off burner” in the coffee ex-
ample, could be broken up into several sub-steps.
The number and nature of the base actions could
have effects on the performance of the algorithm.
Unfortunately this is a difficulty for all machine
learning algorithms applied to robots, where both
the actions and the states need to be defined in
advance.

Finally, because of the non-statistical nature
of the algorithm, it will attempt to incorporate
any action it receives as input. This means that
if the demonstrator takes spurious actions dur-
ing the display, these would be incorporated into
the program. Although it may be reasonable to
assume that during a teaching session, a demon-
strator would endeavor to minimize extra actions,
future work will be to develop mechanisms for
detecting and/or minimizing the impact of these
spurious actions.

6 CONCLUSION

This paper has presented an algorithm for infer-
ring a program from repetitive data. It uses a two
step approach, first partitioning the data by min-
imizing the edit distance between the proposed
partitions, treating each partition as a separate
pass through a loop, converting the passes to a
FSM and then minimizing that machine. It has
shown that under the assumptions that the data
was generated from a program containing a single
non-nested loop and that branches taken within
the loop are determined by input at the start of
the loop, we can find a nearly minimal program in
O(n®), instead of exponential time for the general
case. On data tested, the algorithm finds minimal
programs efficiently.

7 ACKNOWLEDGMENTS

The author would like to thank Chris Brown
and Rebecca Hwa for many helpful insights. This

work was supported with a grant from the Office
of Naval Research.

REFERENCES

Argall, B., Chernova, S., Veloso, M., and Brown-
ing, B. (2009). A survey of robot learn-
ing from demonstration. Robotics and Au-
tonomous Systems, 57(5):469-483.

Bertsekas, D. P. (2005). Dynamic Programming
and Optimal Control, volume 1. Athena Sci-
entific, Belmont, MA.

Blumer, A., Ehrenfeucht, A., Haussler, D., and
Warmuth, M. (1987). Occam’s razor. Infor-
mation Processing Letters, 24(6):377-380.

Gold, E. M. (1978). Complexity of automoton
identification from given data. Imform. Con-
trol, 37:302-320.

Hopcroft, J. (1971). Theory of machines and
computations, chapter An nlogn algorithm
for minimizing states in a finite automaton,
pages 189-196. Academic Press.

Lang, K. J., Pearlmutter, B. A., and Price, R. A.
(1998). Results of the abbadingo one dfa
learning competition and a new evidence-
driven state merging algorithm. In ICGI,
pages 1-12.

M.Bugalho and Oliveira, A. (2005). Inference of
regular languages using state merging algo-
rithms. Pattern Recognition, 38:1457-1467.

McNamara, J. J. (2010). 10 steps to load, stow
and secure a freight container. The Journal
of Commerce.

Mitchell, T. M. (1982). Generalization as search.
Artificial Intelligence Journal, 18(2):203—
226.

Pitt, L. and Warmuth, M. (1993). The mini-
mum consistent dfa problem cannot be ap-
proximated within any polynomial. J. Assoc.
Comput. Mach., 40(1):95-142.

Sim, J. S., Hiopoulos, C. S., Park, K., and Smyth,
W. (2001). Approximate periods of strings.
Theoretical Computer Science, 262:557-568.

Veeraraghavan, H. and Veloso, M. M. (2008).
Teaching sequential tasks with repetition
through demonstration. In Proceedings
of the 7Tth international joint conference

on Autonomous agents and multiagent sys-
tems(AAMAS), volume 3, pages 1357-1360.

