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A Dynamic Programming Algorithm Specification

The dynamic programming technique used in the pa-
per overlays a grid of points on top of the problem
space and calculates the maximum expected utility
of each location given optimal future actions. This
is done recursively starting at the target locations
and moving outward until values for all points are
calculated, and then repeating the process until the
values converge. Using the equations given in the
main paper, the expected utility of each grid point
in the environment can be calculated provided the
EU(Aθ|ta, tb, λ

′) function can be accurately deter-
mined and θ can be found. As the EUs are only
known at grid points, the local EU function must be
interpolated from the EU values of the surrounding
points in order to determine the EU of a movement
in an arbitrary direction. Using the interpolated
surfaces for the local values of EU(Aθ|ta, tb, λ

′), the
value of θ can be determined by searching for the an-
gle that maximises the function described by equa-
tion (3). Once the expected utility is determined
for a grid point, its value is then used to calculate
the expected utility of its neighbouring grid-points.
This process is repeated until values are determined
for all the grid points. Because the estimated utility
value can change for a point when the values of its
neighbours change, the values of all the points are re-
peatedly re-estimated until the values stabilise. The
pseudocode for the algorithm is given in figure 4.
Implementation details follow.

A.1 Interpolation

The algorithm for approximating the optimal strat-
egy is straightforward, but contains details that must
be carefully attended. The most important of these
are the interpolation of the expected utility function
and finding the maximum of equations (3) or (6).

With respect to the interpolation, the primary
question is what class of function to use as the in-
terpolating function. Equations (3) and (6) are non-
linear, and thus might be inaccurately modelled us-
ing a linear function. Interpolation using a cubic or
higher order function would require a large number

Open: list of grid-points to be updated.
Closed table of updated points.
N is the point currently being updated.
VN is the current EU estimate at N .
repeat

Open ← enqueue target locations
Closed ← ∅
repeat

N ← dequeue from Open
when N /∈ Closed

EU(Aθ|ta, tb, λ
′) ← interpolated EU

function from neighbours
VN ← maxθ p2EU(Aθ|ta, tb, λ

′)+
p(1− p)EU(Aθ|ta, λ′)+
p(1− p)EU(Aθ|tb, λ′)

Open ← enqueue neighbours of N
Closed ← add N

until Open = ∅
until convergence

Figure 4: The dynamic programming algorithm for
estimating the expected utility at all the grid points
in the environment. Description is found in the text.
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of sample points and greatly increase the complex-
ity. As will be seen, even the quadratic case can be
complex. The next two sections will consider and
compare the costs and benefits of quadratic and lin-
ear interpolation.

A.1.1 Quadratic Interpolation

Assuming a six term quadratic:

z = Ax2 + By2 + Cxy + Dx + Ey + F (9)

six points must be selected to determine the
coefficients. Figure 5 depicts this scenario for
estimating the EU function surrounding the point
(0, 0) in the first quadrant; the other quadrants
are reflections of this (in the algorithm, treating
each point under consideration as the origin of the
system and transforming the targets and dangers
to this new coordinate frame simplifies both coding
and explanation). From the origin, the agent
can move to any point on the circle one unit
from the origin, thus it is most important for the
interpolated function to be accurate along that
circle. The six points that are closest to the circle
change depending upon the portion of the circle in
question. In the angle range (0; π

6 ], the six closest
points are {(1, 0), (1, 1), (2, 0), (1,−1), (0, 1), (2, 1)}.
In the range (π

6 ; π
4 ], the closest points are:

{(1, 0), (1, 1), (2, 0), (1, 2), (0, 1), (2, 1)}. In
the range (π

4 ; π
3 ], the closest points are

{(1, 0), (1, 1), (0, 2), (1, 2), (0, 1), (2, 1)}, and
in the range (π

3 ; π
2 ], the closest points are

{(1, 0), (1, 1), (0, 2), (1, 2), (0, 1), (−11)}. At the
angles π

6 ,π
4 , and π

3 , the circle is equi-distant between
the two points not in the neighbouring regions, so
points can be chosen arbitrarily.

Thus, to use quadratic interpolation, the function
must be interpolated sixteen times around the cir-
cle, the maximum must be found of equations (3)
or (6) in each of the regions, and then the maxi-
mum of these maxima must be found. Due to the
computational expense of finding the maxima (see
below), this can be a costly overall process, encour-
aging the consideration of using the linear interpo-
lation for faster results.

A.1.2 Linear Interpolation

When examining the closest three points for linear
interpolation, the circle is partitioned into three seg-
ments: (0; π

8 ], (π
8 ; 3π

8 ], and ( 3π
8 ; π

2 ]. In the first and
third range, the area inside the triangle made by
those three points, ({(1, 0), (1, 1), (2, 0)} in the case
of first region), does not contain the portion of the
circle in question, making the use of those points
an extrapolation rather than interpolation. Thus, it
is preferable (i.e. more accurate) to use the same 3
points, {(1, 0), (1, 1), (0, 1)}, for the entire quadrant.

(1,0) (2,0)

(1,1)(0,1)

(0,0)

(0,2)

(−1,1) π/4

π/6

π/3

(1,−1)

(2,1)

(1,2)

Figure 5: The points used for interpolation.

This has the added benefit of simplifying the inter-
polation and maximisation process greatly.

If considering the use of linear interpolation, it is
helpful to know its relative accuracy compared to
the quadratic interpolation. While it is difficult to
determine the “correct” values of the function in the
general two target case (that is the function the in-
terpolation is being used to find), one can can com-
pare the interpolated values to a calculated value in
a single target case. Assume that a single target is
located at location (10, 10), with a utility of 1 and p
is 0.99, and the EU at location (0, 0) must be deter-
mined. The true EU values of the surrounding points
can be calculated using equation (4), and then can
be used for interpolation. In this case, the true EU
of a point on the circle can also be calculated, such
as at angle π

4 , using the same equation. The true
EU at π

4 is 0.87626836. Using quadratic interpola-
tion, the estimated value of π

4 is 0.87626817. Using
the linear interpolation, the estimated value at that
same point is 0.87617810. Here the quadratic inter-
polation yields a better value.

Further, the linear interpolation can produce poor
maxima in certain situations. In particular, take the
example above, but with the target at location at lo-
cation (0.2, 10). In this case, the calculated value at
(0, 1) is the largest of the three points used for in-
terpolation, and therefore that value (and the direc-
tion π

2 ) will be the maximum of a linear interpolated
function in the first quadrant. In this situation, the
direction of the true maximum is 1.55079899 radians.
The correct EU value is 0.91349888. Quadratic in-
terpolation yields a value of 0.91349886, and linear
interpolation yields 0.91348892. This problem can
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Figure 6: Two interpolated quadratic functions. For
each function, the x values used for interpolation are
1,2, and 3. The function describing a smooth space uses
y values of 4, 5, and 4, respectively. The function de-
scribing the discontinuous space uses y values of -10, 5,
4. Note how the one that crosses the discontinuity has a
high crown which often over-estimates the true value in
the range (2;3).

be partially addressed by using different interpola-
tion points when this situation occurs. If the three
interpolation points are all on one side of the unit cir-
cle, and the middle point is the largest, then the lin-
ear interpolation can find a maximum at an arbitrary
angle away from the largest point. It is only when
one of the corner points is the largest of the three
that this false can maximum occur. Thus, if the
point (0, 1) is the largest of {(1, 0), (1, 1), (0, 1)}, the
used points are shifted to be {(−1, 0), (0, 1), (1, 0). In
the case with the target at (0.2, 10), this new version
of linear interpolation yields a value of 0.91349854,
and a maximum around 1.551 radians. Experience
has shown that linear interpolation of real problems
agrees with the quadratic interpolation to three dec-
imal places.

There is also a difficulty with quadratic interpola-
tion, namely it is very sensitive to discontinuities in
the EU space. If one of the points used for interpo-
lation has a value that is widely different from the
other values, then the interpolated function becomes
very steep, resulting in values too large by a great
deal (figure 6). This problem is exacerbated by the
number of points used, making it harder to avoid
crossing such discontinuities. It is impossible to use
only those interpolation points on one side of the dis-
continuity because the location of the discontinuities
are unknown. Thus, while the quadratic does tend
to be more accurate, it can be inaccurate in cer-
tain situations, especially when there are prescrip-
tive goals that can cause discontinuities. Because of
this issue and because linear was significantly faster
than quadratic, linear interpolation was used in the

results reported here.

A.2 Maximisation

Once an equation has been interpolated, it must be
combined with the other terms in equation (3) or (6),
yielding in the case of equation (3), and assuming λ
is (0, 0):

EU(Ai|ta, tb, λ) =p2(Ax + By + C)+

p(1− p)Gap
√

(x−tx
a)2+(y−ty

a)2+

p(1− p)Gbp
√

(x−tx
b )2+(y−ty

b )2 ,
(10)

to be maximised along the constraining function

0 =x2 + y2 − 1.

Closed form techniques require taking the derivative
of equation (10). It can be parameterised, yielding,

EU(Ai|ta, tb, λ) =

p2(A cos(t) + B sin(t) + C)+

p(1− p)Gap
√

(cos(t)−tx
a)2+(sin(t)−ty

a)2+

p(1− p)Gbp
√

(cos(t)−tx
b )2+(sin(t)−ty

b )2 , (11)

but the derivative of (11) (shown in in figure 7) is not
solvable by algebraic methods. Similarly, the par-
tial derivatives of equation (10) are nearly as com-
plex, thus eliminating the use of Lagrange multipli-
ers (Bertsekas, 1982).

Instead, the maximum must be found using nu-
merical methods. This can be done using any of the
standard techniques, but because equation (12) is
complex, using it for a numerical technique is com-
putationally expensive. Instead, the maximum of
the function can be found using a method that does
not take the derivative at all, such as Brent’s method
(Press et al., 2002). The experiments in the paper
use Brent’s method to find the maximum of the pa-
rameterised version of the EU equation (equation
(11)) so that it could operate with just one variable.

The method assumes that it can bracket the max-
imum and that the function is parabolic within that
bracket. This is a reasonable assumption in this case
because the ranges being looked at at are small (one
must find the maximum of each quadrant separately
because EU function was interpolated separately)
and smooth.

Brent’s Method takes two end points of the region
and a point in the middle, interpolates a parabola,
and uses the critical point on the parabola as the
estimate of the maximum. It uses this new point
to replace one of the original three points, interpo-
lates a new parabola, continuing until convergence.
Because of this strategy, if the function is concave

3



0 =

p2(B cos(t)−A sin(t))+

Ga(1− p)p1+
√

(−tx
a+cos(t))2+(−ty

a+sin(t))2 log(p)(−2(−txa + cos(t)) sin(t) + 2 cos(t)(−tya + sin(t)))

2
√

(−txa + cos(t))2 + (−tya + sin(t))2
+

Gb(1− p(p1+
√

(−tx
b +cos(t))2+(−ty

b +sin(t))2 log(p)(−2(−txb + cos(t)) sin(t) + 2 cos(t)(−tyb + sin(t)))

2
√

(−txb + cos(t))2 + (−tyb + sin(t))2
(12)

Figure 7: The derivative of equation (11)

up, then the method will find the minimum, and if
it as concave down it will find the maximum. If the
method finds a minimum rather than a maximum,
one can return the larger of the two end points as the
maximum of that quadrant. Once the maxima of the
quadrants are found, the maximum of the function
is the largest of those four. This can then be used as
the value of EU(Aθ|ta, tb, λ) in equation (3) or (6).

B Prescriptive Analysis Experiments

While on average, low-level compromise appears to
have little benefit, there may be scenarios where the
Optimal or EWF strategies are significantly better
than the MEU. This section uses the idea of infor-
mation gain from information theory to attempt to
determine if this is so.

Information gain is the technique used in the de-
cision tree algorithms ID3 and C4.5 (Mitchell, 1997;
Quinlan, 1983; Quinlan, 1993). The technique be-
gins with a data set and a classification of the data
elements. The data here are the situations generated
in the prescriptive experiments, and the classifica-
tion is whether or not the scenario has a compromise
strategy (either EWF or optimal) with an EU bet-
ter than MEU. The technique then considers a set
of n-ary attributes which partition the data set. For
each attribute, the technique considers the informa-
tion gain of applying that attribute to partition the
data set. Information gain is the decrease in entropy
of the data set, where entropy is:

E(S) =
∑
i∈C

−pi log2 pi (13)

S is a data set, i is a category of the classification,
and pi is the proportion of S categorised as i. En-
tropy measures the inverse of the purity of a data set
with respect to the classification. A set is most pure
when all the data have the same classification, and
least pure when the data is classifies evenly across
all categories.

The information gain of dividing set S based on

attribute A is defined as:

Gain(S, A) = E(S)−
∑

v∈V (A)

|Sv|
|S|

E(Sv), (14)

where v is a value of an attribute, |S| is a size of set
S, Sv is the subset of S for which attribute A takes
value v, and V (A) is the set of values the attribute
might take (e.g. the attribute colour might take the
values red, green, or blue). The attribute with the
largest information gain is the attribute which best
partitions the data set, and in our case is the prop-
erty of a situation which most determines if there is
a good compromise candidate.

The data describing a situation is continuous in-
formation, but attributes are n-ary classifiers. To
cope with this, the attributes partition the values
into ranges, such as every 0.05. The attributes used
are listed below:

• λta, λtb, tatb. These three attributes are the dis-
tances between the key locations in the scenario.
The distances can be anywhere from 0 to 224,
and the attributes break them up into ranges of
5 units.

• Ga, Gb. The goal values from 0 to 100, broken
into ranges of 5 units.

• p. The value of p from 0 to 1, broken into ranges
of 0.005.

• R(λta, λtb). This encodes the relationship be-
tween λta and λtb, while keeping the values be-
tween 0 and 1 using the formula λta

λta+λtb
. It is

broken into ranges of 0.05.

• R(λta, tatb). This encodes the relationship be-
tween λta and tatb, while keeping the values be-
tween 0 and 1 using the formula λta

λta+tatb
. It is

broken into ranges of 0.05.

• R(λtb, tatb) This encodes the relationship be-
tween λtb and tatb, while keeping the values be-
tween 0 and 1 using the formula λtb

λtb+tatb
. It is

broken into ranges of 0.05.
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Figure 8: Breakdown of attribute Re(Ga, λta,
Gb, λtb) when comparing optimal to MEU.

• R(Ga, Gb). This encodes the relationship be-
tween Ga and Gb, while keeping the values be-
tween 0 and 1 using the formula Ga

Ga+Gb
. It is

broken into ranges of 0.05.

• Rl(Ga, λta, Gb, λtb) This encodes a linear re-
lationship between Ga, λta, Gb, and λtb, while
keeping the values between 0 and 1 using the
formula Gaλta

Gaλta+Gbλtb
. It is broken into ranges

of 0.05.

• Re(Ga, λta, Gb, λtb) This encodes a exponential
relationship between Ga, λta, Gb, and λtb, while
keeping the values between 0 and 1 using the
formula Gapλta

Gapλta+Gbpλtb
. It is broken into ranges

of 0.05.

B.1 Optimal vs. MEU

The data is first classified based on whether the
performance of the optimal behaviour is a 1% or
greater improvement over the performance of MEU
for that scenario. Using equation (14), it can be seen
that attribute with the largest information gain is
Re(Ga, λta, Gb, λtb) with a gain of 0.07243. Figure
8 shows a breakdown of the data as partitioned by
the attribute. The x-axis is the range of values of
the attribute, and the y-axis is the percentage of the
data that falls in that range and is positively classi-
fied (the performance of the optimal behaviour is a
1% or greater improvement over the performance of
MEU). The figure shows that the greatest likelihood
of good compromise behaviour is when the attribute
is close to 0.5. This means that if Gapλta is close to
Gbp

λtb (when the expected utilities of the two tar-
gets are roughly equal), it is more likely that optimal
behaviour will confer a large advantage.

The attribute with the next largest information
gain is R(λta, λtb) with a gain of 0.06917. Figure
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Figure 9: Breakdown of attribute R(λta, λtb) when
comparing optimal to MEU.
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Figure 10: Breakdown of attribute R(λta, tatb) when
comparing optimal to MEU.

9 shows a breakdown of the data as classified by
the attribute. Once again, the greatest likelihood of
good compromise behaviour is when the attribute is
close to 0.5, or in this case when λta and λtb are
roughly equal.

The next two attributes with high gain are
R(λta, tatb) and R(λtb, tatb), both with a gain of
0.027. Figure 10 shows a breakdown of the data
as classified by R(λta, tatb) (the plot of the other at-
tribute is qualitatively identical). While the data in
this figure is less distinct than in the previous fig-
ures, it does appear to show that there are few good
compromises when the targets are relatively close to
the agent but far away from each other.

B.2 Exponentially Weakening Forces vs. MEU

Although on average EWF performs worse than
MEU, it is interesting to analyse the situations in
which it performs better. If these situations could be
recognised, then EWF could be applied only when
they occur. Furthermore, it may lead to insight
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Figure 11: Breakdown of attribute R(λta, tatb) when
comparing EWF to MEU.
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Figure 12: Breakdown of attribute R(λtb, tatb) when
comparing EWF to MEU.

on why EWF outperformed the other non-optimal
strategies. The data is analysed as in the previous
section, and classified based on whether or not EWF
out performs MEU. The top two attributes in terms
of information gain are R(λta, tatb) and R(λtb, tatb),
with gains of 0.1620 and 0.1569 respectively. Figure
11 shows a breakdown of the data as classified by
R(λta, tatb) and figure 12 shows a breakdown of the
data as classified by R(λtb, tatb).

These graphs strongly suggest that good compro-
mises using EWF occur when the targets are rel-
atively far away from the origin and close to each
other. This is backed up by examining the next high-
est attribute, tatb (0.09223) in figure 13. Here, good
compromises are more likely when tatb is small, that
is, the two targets are close together.

The last attribute examined is p, with an informa-
tion gain of 0.07903. Figure 14 shows its breakdown.
It shows that good performance peaks at a p range of
0.91-0.915. This is consistent with previous results
that good compromises occur with p > 0.9 (Crabbe,
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Figure 13: Breakdown of attribute tatb when com-
paring EWF to MEU.
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Figure 14: Breakdown of attribute p when compar-
ing EWF to MEU.

2002). That study only looked at p with a granular-
ity of 0.1, and was thus unable to determine which
values of p > 0.9 were best.

There is some overlap between the good attributes
for the optimal behaviour and for EWF, namely that
the targets be relatively close together and far away
from the agent. There is no evidence to explain
why Re(Ga, λta, Gb, λtb) does not appear to be a fac-
tor for EWF, instead having an information gain of
0.004855.

C Additional Proscriptive Results

When examining the proscriptive scenarios, if pt is
reduced to 0.95, such that the liklihood of the target
being in the environment is relatively low (from the
position (60, 30) the probability that the target is
still there when an agent following the MEU strategy
gets there is 0.044), then one might expect that this
would cause the agent to move more strongly to the
target, even when in the danger zone. Figure 15
shows that this is not the case. Instead, the optimal
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Figure 15: Reducing pt has no effect on the qualitative
behaviour (pt = 0.95, pd = 0.99, and pn(λ) is Linear A).

strategy continues to be to flee the danger directly.
When using Linear B with high pt and pd, the

behaviour is identical to figure 2(a). This is surpris-
ing because the high liklihood of not being struck
was expected to encourage compromise behaviour in
the danger zone. Lowering pt, results in some slight
compromise behaviour, seen in figure 16. The figure
shows a close up of the top of the danger zone as
well as the target. Inside the danger zone there is
some slight tilting of the arrows toward the target.
When pt is high but pd is low (figure 17), this com-
bines with the low probability of a strike to result in
obvious compromise behaviour. In this case, when
an agent is one unit away from the danger, its over-
all probability of escaping unscathed is 0.921. When
both pt and pd are low, the behaviour is similar to
figure 17, but more pronounced (figure 18).

With the non-linear pn(λ) functions, compro-
mise action is seen clearly in all cases (figure 19).
As predicted there is some more compromise be-
haviour toward the edges, but there is surprising
non-compromise in the centre. This is similar to
what is found in cases when pn(λ) is sigmoid, as in
figure 3(b).
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