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Abstract

Among many properties suggested for action selection
mechanisms, a prominent one is the ability to select com-
promise actions, i.e. actions that are not the best to sat-
isfy any active goal in isolation, but rather compromise
between the multiple goals. This paper briefly reviews
the history of compromise behaviour and performs ex-
perimental analyses of it in an attempt to determine how
much compromise behaviour aids an agent. It concludes
that optimal compromise behaviour has a surprisingly
small benefit over non-compromise behaviour in the ex-
periments performed, it presents some reasons why this
may be true and hypothesises cases where compromise
behaviour is truly useful. In particular, it hypothesises
that a crucial factor is the level at which an action is
taken (low level actions are specific, such as “move left
leg”; high level actions are vague, such as “forage for
food”). The paper hypothesises that compromise be-
haviour is more beneficial for high-level actions than low-
level actions.

Keywords: Action selection; Compromise behaviour;
High-level actions; Low-level actions.

1 INTRODUCTION

Agents act. An agent, be it a robot, animal, or piece of soft-
ware, must repeatedly select actions from a set of candidates.
A controller is the mechanism within an agent that selects
the action. The question of how to design controllers for such
agents is the action selection problem. Researchers who con-
sider the action selection problem have identified potential
properties of these controllers. One such property is the abil-
ity to exhibit compromise behaviour. A controller exhibits
compromise behaviour when the agent has multiple conflict-
ing goals, yet the action selected is not the optimal action for
achieving any single one of the those goals, but is good for
achieving several of those goals in conjunction. For example,
a predator stalking two prey might not move directly toward
one of the prey, but in between the two, in case one flees
(Hutchinson, 1999). The action would not be optimal for in-
dividual goals to catch either prey, yet comes to a compromise
between them.

The ability to select a compromise action conveys a benefit
to an agent– the optimal action changes in light of other of
the agent’s goals. There has been disagreement on the benefi-
ciality of compromise behaviour in both animals and artificial
agents. This paper investigates the history of compromise
behaviour, its various definitions, and the degree to which
it (under the most common definitions) confers a behavioural
advantage, concluding that the disagreement about the utility
of compromise behaviour arises from a fundamentally impre-
cise notion of what it is. Finally, this paper proposes a new
hypothesis for when compromise behaviour is truly beneficial:
when the agent selects actions at a high level rather than a

low one.

2 BACKGROUND

In order to understand compromise behaviour, it is instruc-
tive to examine its history in terms of ethology, comparative
psychology, behavioural ecology, artificial intelligence, plan-
ning, and robotics. After describing some basic background,
this section will describe each of these disciplines in turn, with
an emphasis on their relation to the question of compromise
behaviour.

2.1 DEFINITIONS OF COMPROMISE

In many approaches to animal behaviour, the full ramifica-
tions of an action are weighed in light of the current situation
(see section 2.4). Because this can be computationally ex-
pensive (see section 2.5) a computational simplification is to
divide the action selection problem into subgoals, solve those
optimally, and combine the solutions (see section 2.2). It is
with respect to this latter strategy that compromise behaviour
(acting such that no single subgoal is optimally satisfied) is
most often considered (Tyrrell, 1993).

Definitions of compromise behaviour can be categorised on
two major dimensions, the level of the action and whether the
goals are prescriptive or proscriptive. Each of these dimen-
sions is defined in detail below.

One of the primary characteristics of the different versions
of compromise depends upon the abstraction level of the ac-
tions selected by the agent. For instance, a low-level action
might be for an agent to contract left quadriceps 3 cm. A
higher level action might be to transfer itself to a particular
location. At the highest levels, an action might be to forage
for food, or mate. The distinction is based on the level of
specificity given by the action; the first is as specific as pos-
sible, while the third leaves flexibility as to how it is to be
accomplished. The nature of a particular action selection sit-
uation varies based on the level of the actions involved. As
will be seen, different authors consider compromise behaviour
at different levels.

The other dimension of distinction is the prescriptive or
proscriptive nature of the agent’s goals. Prescriptive goals
are those that are satisfied by the execution of an act, such as
the consumption of a resource. Proscriptive goals encourage
an agent to not perform certain actions in certain situations.
These goals are not satisfied by a particular action, but can
be said to have been satisfied over a period of time if offend-
ing actions are not performed. These goals include avoidance
goals, such as remaining at a safe distance from a predator.
This paper will not explicitly consider evolutionary goals that
are always active for the life of the agent, such as maximising
the chance of survival or maximising the chance of reproduc-
tive success.

The remainder of this section will review the history of the
concept of compromise behaviour from the point of view of the
above mentioned fields, demonstrating how the perspectives
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of compromise behaviour developed.

2.2 ETHOLOGY

Ethology (the study of animal behaviour) and the study of
artificial agents are both concerned with the nature of be-
haviour and the selection of action. The former considers
animal behaviour descriptively and analytically (Tinbergen,
1950), while the latter considers it synthetically via the con-
struction of agents (Pfeifer and Scheier, 1999; Todd, 1992).

Traditionally, the ethologist studies animals in their natu-
ral environment, focusing on how they behave in the presence
of multiple simultaneous drives. One of the main results of
ethology is the identification of fixed action patterns (FAPs)
(Brigant, 2005; Dewsbury, 1978; Lorenz, 1981), where an ani-
mal exhibits fixed behaviour when it receives a particular type
of stimulus. One common example is of the greylag goose
(Anser anser), which will exhibit a behaviour of rolling an
egg back into its nest using a fixed motion pattern, complet-
ing the motion pattern even if the egg is removed (Lorenz,
1981). Careful observation of this and similar behaviours led
researchers to hypothesise that these individual action pat-
terns are controlled by separate innate modules that compete
for expression in the animal’s behaviour (Burkhardt, 2004).

The idea that the modules might compete for expression in
behaviour led to investigations into how these conflicts might
be resolved. Hinde (1966) lists nine different resolution mech-
anisms observed in animals. These mechanisms include ex-
hibiting just one behaviour, alternating between the multiple
behaviours, and compromise behaviour.

Natural compromise behaviour takes multiple forms. First,
it is either unimodal or bimodal in the input. In unimodal in-
put, signals from different sensors of the same type (each ear,
for example) cause the animal to consider each a separate goal
(Lund et al., 1997). Bimodal input combines signal from two
different types sensors (eyes and ears, for example) for com-
promise. In both cases, compromise is typically considered
a result of competition for effector mechanisms at a low level
(Hinde, 1966). Thus if one FAP controls only leg motion while
another only head movement, their simultaneous expression
would not be considered compromise behaviour but rather
superposition.

Low-level, prescriptive, unimodal compromise has been
observed in the crustacean Armadillium when performing
tropotaxis toward two light sources (Müller, 1925), and katy-
dids when performing phonotaxis (Bailey et al., 1990; Latimer
and Sippel, 1987; Morris et al., 1978). The fish Crenilabris
displays low-level prescriptive, bimodal compromise in its ori-
entation behaviour between its reaction to light and its reac-
tion to the direction of gravity (von Holst, 1935).

Evidence for high-level compromise behaviour in nature
is less clear, though it may be argued that it can be seen
in blue herons, which select sub-optimal feeding patches to
avoid predation by hawks in years when the hawk attacks
are frequent (Caldwell, 1986). Similar behaviour has been
shown in minnows (Fraser and Cerri, 1982), sparrows (Grubb
and Greenwald, 1982), pike and sticklebacks (Milinksi, 1986).
Indeed, a great many studies suggest that animals balance the
risk of predation against foraging or other benefits (Brown and
Kotler, 2004; Lima, 1998).

2.3 COMPARATIVE PSYCHOLOGY

Concurrent with the developments in ethology was a compet-
ing branch of study, comparative psychology, that examined
many of the same issues (Dewsbury, 1978). This approach
differed from ethology in that individual phenomena were
studied in isolation, and there was much greater emphasis
placed on learning over that of innate mechanisms (Thorpe,

1979). Researchers went to great length to ensure in their
experiments that only one drive was active in the test animal
(Dewsbury, 1992). This enabled the experimenter to delve
deeply into questions about that particular behaviour with-
out interference from others, but it limited investigation into
interaction of behaviours. In recent years, the branches of
ethology and comparative psychology have been synthesised
(Dewsbury, 1992), but early theoretical work had important
influences in artifical intelligence (see section 2.5).

2.4 OPTIMAL BIOLOGICAL APPROACHES

Modern trends in biology have employed formal models and
optimisation techniques borrowed from decision theory and
operations research (Clemen, 1996; Hillier and Lieberman,
2002) in order to determine optimal behaviour. Behavioural
ecology is the study of the interaction between an organism’s
environment and its behaviour, as shaped via natural selec-
tion (Krebs and Davies, 1997). Under the assumption that
selection optimises behaviour to maximise reproductive suc-
cess, to understand animal behaviour it is important to anal-
yse it with techniques that optimise objective functions that
describe reproductive success. For example, in the field of for-
aging theory (Stephens and Krebs, 1986), techniques such as
linear programming (Hillier and Lieberman, 2002) or dynamic
programming (Bertsekas, 2005) are used to find optimal for-
aging behaviour in terms of such features as maximising en-
ergy intake and minimising exposure to predators (Brown and
Kotler, 2004; Houston and McNamara, this volume; Lima,
1998; McNamara and Houston, 1994; Seth, this volume). In
these studies, optimisation is used as a basis of comparison
and explanation toward natural selection; it is not posited
as the decision making process the animal itself uses. Opti-
misation is computationally expensive, such that the time to
compute solutions grows exponentially with the complexity.
Complicated problems cannot be solved in short periods of
time (Bertsekas, 2005).

When examining behavioural choice with these optimal
techniques, compromise behaviour is not an explicit issue be-
cause the techniques combine the subgoals into a single objec-
tive function to be optimised. As such, optimal solutions to
the individual sub-goals are not considered, only the solution
to the overall objective function.

2.5 ARTIFICIAL INTELLIGENCE AND PLANNING

The field of planning within artificial intelligence was delayed
in development until the advent of robotic hardware suffi-
ciently sophisticated to exhibit agent-like behaviour (Fikes
and Nilsson, 1971). The approaches used came from the op-
erations research and computer science communities, where
the agent attempted to formulate a mathematical proof of the
correct action to take in the agent’s current situation, with
influence from comparative psychology (Newell and Simon,
1976).

A typical planning problem is represented as a conjunc-
tion of logical relatively high-level predicates. For example, a
hypothetical hospital robot might have a planning goal:

Have(robot,medicine003) ∧ In(robot,room342), indicating
that the robot should both be in possession of the medicine
and be in the correct hospital room.

From the planning perspective, this is a single goal that
is to be achieved by achieving each of its component parts
such that there comes a time when both are simultaneously
true. The individual predicates, also known as sub-goals, can
conflict with each other. For example the robot can take
actions so as to make the In(robot,room342) to be true while
Have(robot,medicine003) is false. The robot must then take
actions to make Have(robot,medicine003) that may in turn
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make In(robot,room342) false. This conflict is different from
the conflict between FAPs in that it arises from the order
actions are performed, not in which sub-goal will be achieved.
If multiple sub-goals are inherently in conflict such that they
cannot both be simultaneously true, then the overall goal is
unattainable. Further, because subgoals cannot be partially
satisfied (they are simply true or false) it is impossible for
the agent to trade in some quality in the satisfaction of one
subgoal in order to improve the quality of others. A survey
of the state of the art in planning can be found in Gallab et
al. (2004).

Other features of the planning problem also bear resem-
blance to features of the compromise behaviour question. For
instance, often a single action can move the agent closer to
the satisfaction of more than one of the goal literals. This
“positive interference” (Russell and Norvig, 2003) is unlike
compromise behaviour however, in that there is nothing lost
in the selection of this action. Negated literals in a goal (e.g.
¬In(robot,room342)) are unlike proscriptive goals in that they
they must only be not true at some point for the goal to be
satisfied, as opposed to never becoming true.

For the reasons described above, the notion of compromise
behaviour was unfamiliar to AI researchers until the 1980s
(Brooks, 1986), and optimality under compromise was unex-
amined.

A major drawback of the AI approaches is that attempts to
prove correct actions can be prohibitively expensive in moder-
ately complex environments. If an agent is limited to just ten
actions at any time, then each step into the future increases
the number of possible outcomes to consider by a factor of ten.
If the solution to the current problem is twenty steps long,
Then the program must examine on the order of 1020 pos-
sible sequences (Russell and Norvig, 2003). For comparison,
there have been (estimated) 1018 seconds since the beginning
of the universe (Bridle et al., 2003). This high computation
cost prevents using these techniques for planning behaviour
with low-level actions, where solutions to problems might be
many hundreds of steps long.

2.6 BEHAVIOUR BASED ROBOTICS

Eventually, the inability of robotic systems to solve certain
problems of the real world (such as those with multiple simul-
taneous goals) forced roboticists to re-evaluate their approach.
In the real world, agents have conflicting goals that must be
selected from, and they must be able to adjust quickly to un-
forseen events. For instance, the agent may find a previously
unknown obstacle or discover that an action did not have the
desired effect.

The result of the re-evaluation, behaviour-based robotics,
borrows from ethology the idea that there are multiple in-
nate behaviours that are triggered by sensory input. In the
extreme formulation, advocates maintain that all intelligent
behaviour can be constructed out of suites of these competing
mechanisms (Arkin, 1998; Brooks, 1986; Brooks, 1997). Some
have attempted to explain human-level cognition using simi-
lar modular approaches (Carruthers, 2004). One advantage to
the behaviour-based approach is that the innate reactive sys-
tems do not need to plan with low-level actions, and thus are
practical to implement. Another advantage is that conflicting
goals can be represented.

Because the approach borrows heavily from the etholog-
ical tradition, it has the same concerns. These concerns
include how conflicts between innate behaviours can be re-
solved, and whether compromise behaviour itself an impor-
tant property for controllers. In 1993, Tyrrell introduced a
list of fourteen requirements for action selection mechanisms
drawn from ethology. Of these, number twelve was “Compro-

mise Candidates: the need to be able to choose actions that,
while not the best choice for any one sub-problem alone, are
best when all sub-problems are considered simultaneously.”
(Tyrrell, 1993, p. 174) In justifying this rule, Tyrrell used a
“council-of-ministers” analogy. In this perspective, there are
a collection of “ministers” or experts on achieving each of the
agent’s goals. Each minister casts votes for courses of action
that it predicts will solve the goal with which that minister is
associated. For example, it might cast five votes for its high-
est ranked action, four for the next highest ranked, and so on.
The agent then selects the action that receives the most votes.
Note that this characterisation of compromise is of high-level
compromise. Tyrrell’s list has had significant impact on the
Action Selection field (Bryson, 2000; Decugis and Ferber,
1998; Girard et al., 2002; Humphrys, 1996), and a number
of researchers have developed systems to meet the criteria he
set out (Avila-Garcia and Canamero, 2004; Blumberg, 1994;
Blumberg et al., 1996; Crabbe and Dyer, 1999; Maes, 1990;
Montes-Gonzales et al., 2000; Werner, 1994; Avila-Garcia and
Canamero, 2004).

2.7 CURRENT STATUS

Although some researchers in behaviour-based robotics con-
sidered it “obviously preferable to combine [the] demand [to
avoid a hazard] with a preference to head toward food, if the
two don’t clash, rather than to head diametrically away from
the hazard because the only system being considered is that
of avoid hazard,” (Tyrrell, 1993) more recent modelling work
generated results that seem to contradict the claim (Bryson,
2000; Crabbe, 2004; Jones et al., 1999), in that artificial
agents without the ability to select compromise actions often
perform as well on tasks as those that can select compromise
actions. If valid, these results suggest that the appropriation
of this idea from ethology was not necessary for high perform-
ing artificial agents. A central thesis of this paper is that this
error occurred in the case of compromise behaviour because
it had been poorly defined, in particular, that no distinction
was drawn between high-level compromise and low-level com-
promise. Although low-level compromise is what is seen in
much of the action selection literature, its existence was jus-
tified by arguments concerning high-level compromise. This
equivocation has caused confusion on these topics.

Some artificial agent researchers that use ethological ideas
directly are those that design systems not to perform better
in the sense of scoring higher on a metric, but to appear more
natural to observers. These systems appear in the areas of
computer graphics and video gaming, where a naturalistic
appearance to a human viewer is necessary to maintain the
desired illusion (Iglesias and Luengo, 2005; de Sevin et al.,
2001; Thorisson, 1996; Tu, 1996).

Although work mentioned above (Bryson, 2000; Crabbe,
2004; Jones et al., 1999) implies that compromise behaviour is
less useful that originally thought, this work is not conclusive.
The next section will attempt to analyse the nature of low-
level compromise behaviour more thoroughly.

3 EXPERIMENTS

In order to understand the properties of compromise be-
haviour, it is helpful to examine the optimal behaviour in po-
tential compromise situations. As discussed above, there are
multiple formulations of the action selection problem. The
experiments here will closely examine those most often de-
scribed in the ethological and behaviour-based robotics lit-
erature, low-level prescriptive and low-level proscriptive. As
the compromise formulations investigated here are low-level,
the domain is defined to be that of navigation of a mobile
agent, similar to several authors’ simulated domains (Maes,
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1990; Tyrrell, 1993) or to navigating mobile robots (Choset
et al., 2005). In the simulations, space is continuous, but time
is discrete, such that the action at each time step is defined
as a movement of one distance unit at any angle. Slightly
different models are required for each of the proscriptive or
prescriptive situations.

3.1 PRESCRIPTIVE EXPERIMENTS

The initial experiments test a scenario where an agent has
a goal to be co-located with one of two target locations in
the environment. These could be locations of food, water,
potential mates, or shelter, etc. At any moment either or both
of the targets can disappear from the environment, simulating
the intrusion of environmental factors. The agent must select
an action that maximises its chances of co-locating with a
target before it is removed from the environment.

This scenario is approximated by placing an agent at the
origin on a plane. Two targets are placed on the plane, one
in the first and one in the second quadrant in the y-range of
(0; 100), and x-ranges of (−100; 0) for one target and (100; 0)
for the other. Each target will be referred to as ta and tb.
The agent can sense the location of each target. Sensor infor-
mation takes the form of complete knowledge of the locations
of both targets’ (x, y) coordinates. Because the quality of the
individual targets may vary, or the types of the targets may
be different, the agent has two independent goals to be co-
located with them. The strength of the goals are in the range
(0; 100). Each goal will be referred to as Ga and Gb. The dy-
namism in the environment is represented with a probability
p. This is the probability that any object in the environment
will still exist after each time step. That is, any object will
spontaneously disappear from the environment at each time
step with probability 1 − p. Time is divided into discrete,
equal sized time-steps. The agent moves at a constant speed,
and therefore a constant distance per time step. All distances
are measured in the number of time steps it takes the agent
to travel that distance. Notationally, ij is the distance from
some location i to some location j. An agent’s action selec-
tion problem is to select an angle θ in which direction to move
for the next time step. θ is continuous, so the environment is
also continuous and the size of the set of actions being selected
from is infinite.

Once the agent has executed its action, it is again faced
with the same action selection problem. If one of the targets
has disappeared, the best action is to move directly to the
other target. Compromise behaviour in this task is the selec-
tion of any direction to move that is not directly toward either
target. Any action selected that is in the direction of one of
the targets cannot be a compromise action because it is also
the action that is optimal for achieving one of the sub-goals.
As the agent repeatedly selects an action, the path it follows
resembles a piece-wise linear approximation of a curved path
to one of the targets.

3.1.1 FORMAL MODEL

An analysis of compromise candidates is performed using Util-
ity Theory (Howard, 1977). Utility Theory assigns a set of nu-
merical values (utilities) to states of the world. These utilities
represent the usefulness of that state to an agent. Expected
Utility (EU) is a prediction of the eventual total utility an
agent will receive if it takes a particular action in a particular
state. The Expected Utility (EU) of taking an action Ai in a
state Sj is the sum of the product of the probability of each
outcome that could occur and the utility of that outcome:

EU(Ai|Sj) =
X

So∈O

P (So|Ai, Sj)Uh(So) (1)

where O is the set of possible outcome states, P (So|Ai, Sj) is
the probability of outcome So occurring given that the agent
takes action Ai in state Sj , and Uh(So) is the historical utility
of outcome So (defined below).

Let U(t) be the utility to the agent of consuming t. Assum-
ing the agent is rational, the set of goals to consume objects
will be order isomorphic to the set of the agent’s utilities of
having consumed the objects. That is, every possible utility
corresponds to a matching goal value, such that the order of
the utilities from least to greatest is the same as the order of
the corresponding goals. Therefore, EU calculated with utili-
ties is order isomorphic with EU calculated with goals instead.
For the purposes here, it will be assumed that the goals and
utilities are equivalent (U(t) = Gt).

A rational agent is expected to select the action with the
largest EU. The historical utility of a state is defined as the
utility of the state plus future utility, or the maximum of the
expected utility of the actions possible in each state:

Uh(S) = U(S) + max
Ai∈A

EU(Ai|Sj), (2)

where A is the set of possible actions. The maximum is found
because of the assumption that a rational agent will always act
to maximise its expected utility. An agent can calculate EU
using multiple actions in the future by recursively applying
equations (1) and (2).

Low-level prescriptive compromise behaviour is analysed
by comparing an approximation of optimal behaviour with
several non-optimal but easy to generate behaviours. The op-
timal behaviour is approximated based on the dynamic pro-
gramming technique used by Hutchinson (Hutchinson, 1999).
The technique overlays a grid of points on top of the prob-
lem space and calculates the maximal expected utility of each
location given optimal future actions. This is done recur-
sively starting at the target locations and moving outward
until stable values have been generated for all grid points. As
with similar dynamic programming techniques, the time to
convergence increases as the number and variety of targets
increases.

The value calculated is the expected utility of optimal ac-
tion at an environmental location when the two targets are
still remain: EU(Aθ|ta, tb, λ). λ is the agent’s location in the
environment, θ is the angle of the optimal move for the agent
and λ′ is 1 unit away from λ in direction θ. By equations 1
and 2 the expected utility of being at λ is:

EU(Aθ|ta, tb, λ) =p2EU(Aθ|ta, tb, λ
′)+

p(1− p)EU(Aθ|ta, λ′)+

p(1− p)EU(Aθ|tb, λ′), (3)

EU(Aθ|ta, λ′) =Gapλ′ta , and, (4)

EU(Aθ|tb, λ′) =Gbp
λ′tb . (5)

The total expected utility (equation 3) is the expectation over
four possible situations after an action: both targets there,
both targets gone, ta there but tb gone, and vice versa (the
EU of both targets gone is zero). When one of the targets
disappears from the environment, the optimal action for the
agent to take is to move directly to the other target, as shown
in equations 4 and 5. A formal specification of the algorithm
is given in the supplementary material.

It is typically computationally prohibitive for an agent to
calculate the optimal action using a technique similar to the
one described here (the program used for these experiments
takes between five and twenty minutes to converge in these
two target scenarios). Instead, many researchers propose easy
to compute action selection mechanisms that are intended
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Figure 1: Vector field showing the optimal strategy for
a two prescriptive goal scenario. ta is located in the
upper left corner, and tb is located in the upper right.
Ga is 100, Gb is 50. The arrows’ lengths are uniform
and have no significance. Each arrow direction repre-
sents the optimal direction of movement for the agent at
that location. A greater proportion of the arrows point
toward the upper left, reflecting the larger value of Ga.
While the arrows near the targets point directly at the
respective targets (indicating non-compromise behaviour
is optimal), many of the arrows, especially those in the
shaded region in the lower right, point directly at nei-
ther target, indicating that in those regions, compromise
actions are indeed optimal.

to approximate the optimal action. (Cannings and Orive,
1975; Fraenkel and Gunn, 1961; Houston and McNamara,
this volume; Hutchinson and Gigerenzer, 2005; McNamara
and Houston, 1980; Römer, 1993; Seth, this volume; Stephens
and Krebs, 1986) . The mechanisms can be divided into two
categories: those that select a single target and move directly
toward it, and those that exhibit some sort of compromise
behaviour. In the former category, considered here are:

• Closest (C): select the closest target.

• Maximum Utility (MU): select the target with the higher
utility.

• Maximum Expected Utility (MEU): select the target
with the higher expected utility if it were the only target
in the environment (MEU is a non-compromise strategy
because it can only select a direction to move that is di-
rectly toward one of the targets, and is therefore optimal
for one of the agent’s sub-goals in isolation).

Of action selection mechanisms that exhibit compromise be-
haviour, examined here are:

• Forces (F): the agent behaves as if it has two forces act-
ing on it, where the strength of the force is proportional
to the utility of the target divided by the square of the
distance between the agent and the target location. Let
AngleTo() be a function of two locations that returns

the angle from the first location to the second. If Va

is the force vector from Ta, the the direction of Va is

AngleTo(λ, Ta) and the magnitude of Va is Ga/λTa
2
.

The direction the agent moves (θ) is:

θ = AngleTo(λ, Va + Vb)

• Signal Gradient (SG): The agent behaves as if it is fol-
lowing a signal gradient. The targets emit a simulated
“odour” that falls with the square of the distance from
the target. The initial strength of the odour is propor-
tional to the utility of the target. The agent moves to
the neighbouring location that has the strongest odour
as the sum of the odour emanating from each of the two
targets. That is,

θ = AngleTo(λ, arg max
λ′

(Ga/λ′Ta
2

+ Gb/λ′Tb
2
))

• Exponentially Weakening Forces (EWF): This strategy
is identical to the forces strategy, except the pulling
effects of the targets falls exponentially with distance,
rather than quadratically. The magnitudes of the two

vectors are GapλTa and Gbp
λTb . It is predicted that

since expected utility falls exponentially with distance,
this strategy may perform better than forces.

The expected utility of each of these non-optimal mecha-
nisms can be calculated for any particular scenario by using
equations (3), (4) and (5), where the action θ is the one rec-
ommended by the strategy, not the optimal action (further
experiments and results that describe the effects of the initial
parameters on compromise can be found in the supplementary
material).

3.1.2 PRESCRIPTIVE RESULTS

The results reported here are based on 50,000 scenarios. Each
scenario was a set of parameters (Ga, Gb, ta, tb) selected ran-
domly from a uniform distribution. The simulations were
written in Lisp, compiled in Franz Allegro Common Lisp,
version 7.0, and run on a cluster of twenty five Sun Blade
1500s, for 347 computer-days. For each scenario, the expected
utility of each of the action selection mechanisms described
in the previous section were computed: closest (C), maxi-
mum utility (MU), maximum expected utility (MEU), forces
(F), signal gradient (SG), and exponentially weakening forces
(EWF). The expected utilities of optimal behaviour using the
dynamic programming technique were computed (an exam-
ple of the optimal behaviour is shown in figure 1). Table
1 compares the three non-compromise mechanisms (C, MU,
and MEU), using the worst performer (MU) as a baseline.
The table reports the average percentage improvement of the
strategy over MU (e.g. the closest strategy performs on av-
erage 9% better than the maximum utility strategy). It also
reports the percentage of cases where the strategy selected
the correct action of the two possible. MEU is the best of
the three as it selects the better target in most cases and its
overall expected utility is 15% better than MU. MEU selects
the worse target only 0.68% of the time. The table also shows
that Closest is a better strategy than Maximum Utility. This
may be so because the expected utility of a target falls ex-
ponentially with distance, so that closer targets have higher
expected utility than targets with higher raw utilities.

Table 2 compares the compromise based mechanisms with
the best non-compromise strategy, MEU. It shows both the
average percentage improvement improvement over MEU and
the percentage improvement over MEU in the single best sce-
nario. There are three important aspects of this table. The

5



MU C MEU
% correct 70.29 79.99 99.32
% over MU 0.0 9.35 (3.97) 15.31 (3.44)

Table 1: Comparison of non-compromise strategies.
Each strategy is listed in the column. The first row re-
ports the percentage of times that strategy makes the
correct selection. The second row reports the strategy’s
performance improvement over MU. Numbers in paren-
theses are the standard deviation. The numbers are
generated from the 50,000 trials. Percentage improve-
ment is calculated as (Score of Strategy A - Score of
MU)/Score of MU . All differences were significant on a
Mann-Whitney U-test to a confidence of 0.999.

first is that the optimal strategy is only 1.1% better than the
non-compromise based MEU. This contradicts the intuition
(discussed above) that optimal behaviour would be signifi-
cantly better than a non-compromise approach. The result
is consistent however, with the non-continuous space experi-
ments of Crabbe (2002) and the study in Hutchinson (1999).

The second important aspect is that all of the non-optimal
compromise based strategies performed worse than the MEU
strategy. These results may help explain why some re-
searchers have found that compromise behaviour is unhelpful
(Jones et al., 1999; Bryson, 2000; Crabbe, 2004): the com-
monly used tractable compromise strategies perform worse
than a non-compromise strategy.

The final aspect of table 2 to note is that EWF is the
best performing of the easy to compute compromise strategies
tested. While it is not conclusive, this may imply that the ap-
proach of decreasing the influence of farther targets exponen-
tially is a good one for developing action selection strategies.
Examining the score for the best scenario for EWF shows that
it is nearly as high as the best scenario for optimal.

3.1.3 Prescriptive Discussion

With respect to animals and natural action selection, the re-
sults presented here imply that animals that exhibit low-level
prescriptive compromise behaviour are either: behaving non-
optimally; using an as yet unproposed compromise based ac-
tion selection strategy; or behaving in that manner for rea-
sons other than purely to compromise between two targets.
Hutchinson (1999) suggests three possible reasons for what
appears to be low-level prescriptive compromise behaviour: 1)
a desire to not tip off potential prey that it is being stalked,
2) it is a part of a strategy to gather more sense data before
committing to a target, or 3) that computational issues yield
simple mechanisms that exhibit compromise style behaviour.
Hutchinson’s reasons are particularly interesting in light of
MEU being the best non-compromise strategy. This strategy
requires not only detailed knowledge of the targets’ locations
and worths, but also that the agent knows p. It may be that
apparent low-level compromise is an attempt to gather more
information about the targets, or that, lacking knowledge of p,
animals are unable to use the MEU strategy, in which case the
compromise signal gradient or EWF strategies might be the
best (although results from foraging theory suggest that ani-
mals are able to estimate p accurately (Stephens and Krebs,
1986)). Per Hutchinson’s third suggestion, Houston et al.
(this volume) suggest that behavioural characteristics can be
“side-effects” of rules that evolved in environments that differ
from where they are being used, or that the objective func-
tion and criteria being maximised are more complex than the

F SG EWF Optimal
% over MEU -4.07 -2.79 -2.47 1.12
% over MEU 4.84 4.82 20.56 22.73
(best case)

Table 2: Comparison of compromise strategies to the
non-compromise maximum expected utility (MEU). For
each strategy, the average expected utility improvement
over MEU is given in the first line. The best expected
utility improvement over MEU in a single scenario is pro-
vided in the second line. The optimal strategy performs
the best, but is less beneficial than expected. The non-
optimal strategies (F, SG, and EWF) are all worse than
the non-compromise MEU, though EWF is the best of
that set. Differences in the averages were significant on
a Mann-Whitney U-test to a confidence of 0.99.

scenarios in which they are being tested.

Ghez, et al. (1997) showed that when humans performed a
reaching task, a narrow angle between targets led to low-level
compromise behaviour, while a wide angle did not. They hy-
pothesise that for widely separated targets, the brain treated
each as a separate concept or category, but that for narrowly
separated targets, the brain is unable to tease them apart,
thus reacting to their superposition. By analysing reaction
time, Favilla (2002) showed that humans do appear to be
switching mental strategies when changing between compro-
mise and non-compromise behaviour, even when the tasks re-
main the same. These results may indicate that low-level com-
promise is a side-effect of other computational mechanisms.

With respect to higher-level actions, the behavioural ecol-
ogy evidence is much less clear that natural compromise is
occurring. For instance in the cases of an animal sub-optimal
feeding patches to avoid heightened predator activity, this be-
haviour could be explained by the animal downgrading the
quality of the feeding patch (the Gx) because of the pres-
ence of the predators. The animal then compares the utili-
ties of the two directly rather than considering compromise
behaviour (Stephens and Krebs, 1986). Alternatively, the an-
imal could be abstracting the problem so that it might be
solved optimally.

3.2 PROSCRIPTIVE EXPERIMENTS

Although in the low-level prescriptive experiments compro-
mise behaviour had less benefit than predicted, it could be
argued that the prescriptive case is not best suited for elic-
iting positive results. It may be that compromise is more
useful in cases where there is one prescriptive goal and one
proscriptive goal.

“...proscriptive sub-problems such as avoiding haz-
ards should place a demand on the animal’s actions
that it does not approach the hazard, rather than
positively prescribing any particular action. It is
obviously preferable to combine this demand with
a preference to head toward food, if the two don’t
clash, rather than to head diametrically away from
the hazard because the only system being consid-
ered is that of avoid hazard” (Tyrrell, 1993)

This section tests this claim by performing experiments
similar to the prescriptive case, but with one proscriptive goal.
In these experiments, the environment contains a target and
a danger in fixed locations. The danger can “strike” the agent
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from a limited distance. The agent has a prescriptive goal to
be co-located with the target, and a proscriptive goal to avoid
being struck by the danger.

3.2.1 FORMAL MODEL

The model described in section 3.1 requires modification to
match this new scenario. The two environmental objects,
the target (t) and the danger (d) are treated separately with
individual probabilities of remaining in the environment (pt

and pd, respectively). At each time step, there is a probabil-
ity pn(λ) that the predator will not strike or pounce on the
agent. This probability is a function of the distance between
the agent and the danger, calculated from the agent’s position
λ. The experiments use four different versions of the pn(λ)
function. The agent also has a goal level associated with the
target and the danger, (Gt and Gd) that can vary with the
quality of the resource and the damage due to the predator.
Other notation remains the same.

The application of equations (1) and (2) calculate the ex-
pected utility of being at λ:

EU(Aθ|t, d, λ) =ptpdpn(λ)EU(Aθ|t, d, λ′)+

pt(1− pd)EU(Aθ|t, λ′)+
pd(1− pn(λ))Gd+

(1− pt)pdpn(λ)EU(Aθ|d, λ′) (6)

EU(Aθ|t, λ) =Gtp
λt, and, (7)

EU(Aθ|d, λ) =pn(λ′)pdEU(Aθ|d, λ′)+

(1− pn(λ′))Gd. (8)

The total expected utility (equation 6) is the expectation over
four possible situations: both target and danger are still there,
but the danger does not strike; the target remains, but the
danger disappears; the danger remains and strikes the agent;
and the target disappears, the danger remains but the danger
does not strike. When only the target remains, the optimal
strategy is to go straight to the target, as in equation (7).
When the target disappears but the danger remains, the agent
must flee to a safe distance from the danger, as in equation
(8). A safe distance is a variable parameter called the dan-
ger radius. Once the agent is outside the danger radius, it
presumes that it is safe from the danger. The area inside the
danger radius is the danger zone.

In addition to the optimal strategy described above, three
other action selection strategies are examined:

• MEU: The agent moves in accordance with the maxi-
mum expected utility strategy, as described in section
3.1.1. Movement is directly to the target, ignoring the
danger, because the target has the higher utility. This
is a non-compromise strategy that could be expected to
do poorly.

• Active goal: This strategy considers only one goal at
a time: the danger when in the danger zone and the
target otherwise. Using this, the agent moves directly
to the target unless within the danger zone. Within the
danger zone, the agent moves directly away from the
danger until it leaves the zone. This strategy zig-zags
along the edge of the danger zone as the agent moves
toward the target. Active goal is also a non-compromise
strategy that only acts upon one goal at a time.

• Skirt: This strategy moves directly toward the target
unless such a move would enter the danger zone. In such
a position, the agent moves along the tangent edge of the
danger zone until it can resume heading directly to the

target. Skirt is primarily a non-compromise strategy.
Outside the danger radius, the agent moves straight to
the target. Inside the danger radius the agent moves
straight away from the danger.

The expected utility of each of these non-optimal mecha-
nisms can be calculated for any particular scenario by using
equations (6), (7) and (8), as in the previous experiments.

For these experiments, four pn(λ) functions were used, all
of with with a danger radius of 20:

• Linear A: pn(λ) = 0.04 × dλ + 0.2 when dλ ≤ 20, 1
otherwise.

• Linear B: pn(λ) = 0.005 × dλ + .9 when dλ ≤ 20, 1
otherwise.

• Quadratic: pn(λ) = (dλ)2/400 when dλ ≤ 20, 1 other-
wise.

• Sigmoid: pn(λ) = 1/(1 + 1.810−dλ) everywhere.

Linear A was a baseline strategy where the probability of a
strike was high near the danger, but low at the edge of the
danger zone. Linear B makes the chance of a strike low over-
all, thus increasing the tendency of the agent to remain in the
danger zone. This may generate more compromise behaviour.
Quadratic has a high probability of a strike for much of the
danger zone, but drops off sharply at the edge. This may
encourage compromise behaviour near the edge of the dan-
ger radius but not at the centre. Sigmoid should resemble
quadratic, but the area with low strike probability is larger,
and there is the possibility of some strike for every location
in the environment, not just inside the danger radius.

1000 scenarios were generated with a target at (50, 90) with
a Gt = 100 and a danger at (60, 50) with Gd = −100. pt was
varied systematically in range [0.95; 1) and pd was varied sys-
tematically in the range [0.5; 1) (These ranges were selected
because they contain the most interesting behaviour. For in-
stance, when pt is too low, the probability that an agent will
reach the target quickly approaches zero. Related studies (see
(Crabbe, 2002) and supplementary material) indicated that
compromise behaviour was greater when pt > 0.95). Once
the scenario was generated, the expected utility for each of
the three non-optimal strategies and the optimal strategy was
calculated for 200 points in the environment, for 200,000 data
points calculated over 312 computer-days.

3.2.2 PROSCRIPTIVE RESULTS

Figure 2(a) shows the results of the optimal strategy when
pt = 0.995, pd = 0.99, and pn(λ) is Linear A. Within the dan-
ger zone, there is little display of compromise action; the agent
flees directly away from the danger at all locations, ignoring
the target. There is compromise action displayed outside the
danger zone, to the lower right. The vectors point not at the
target, but along the tangent of the danger zone. This phe-
nomenon occurs because the agent moves along the shortest
path around the danger zone to maximise the likelihood that
the target will remain in the environment until the agent ar-
rives. This compromise in the lower right does not match the
common implementations of compromise action. In many ar-
chitectures, the goal to avoid the danger would not be active
when the agent is in that area of the environment (since the
agent is too far away from the danger) (Arkin, 1998; Brooks,
1986). Thus one would expect it to have no effect of the action
selected.

When pd is reduced to 0.5 the compromise action in the
lower right is less pronounced (figure 2(b)). The optimal
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(a) (b)

Figure 2: Optimal behaviour for the agent in proscriptive scenarios. The vectors point in the direction of optimal
movement at each given location. As before, the all vectors are unit length. Each target is located along the top of
the plot, indicated by an open circle. Each danger is located near the centre of the plot, indicated by a filled circle.
The large circle on the plots is formed by the vectors pointing away from the danger in areas inside the danger zone.
Outside the danger zone, the vectors point toward the target. In (a) the probability of the target remaining is high
(pt = 0.995), the probability of the danger remaining is high (pd = 0.99) and pn(λ) is Linear A. In most locations,
the optimal strategy is to move directly toward the target. Inside the danger zone, the optimal strategy is to move
directly away from the danger. On the side of the danger zone opposite the target, the optimal strategy is to move
to the target along the shortest path while not entering the danger zone. In (b), the parameters are the same as in
(a), but the probability of the danger remaining is low (pd = 0.5). The optimal behaviour is qualitatively the same
as for (a) except in the area on the side of the danger zone opposite the target, where optimal behaviour is to move
directly toward the target (see text).
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(a) (b)

Figure 3: Optimal behaviour in situations where more compromise behaviour is shown. The figure should be
interpreted in the same manner as with figure 2. In (a) both the probability of the target and the danger remaining
are low (pt = 0.95, pd = 0.5) and pn(λ) is Linear A. Compromise behaviour is evident inside the danger zone because
the optimal direction of movement is no longer directly away from the danger. In (b) the probability of the target
remaining is high (pt = 0.995), the probability of the danger remaining is high (pd = 0.99), but pn(λ) is Sigmoid.
Within the centre of the danger zone, the optimal behaviour is to ignore the danger and move directly toward the
target. In areas closer to the edge of the danger zone, the optimal strategy shifts to moving away from the danger.
At the extremity of the danger radius, the optimal strategy gradually shifts back to moving toward the target.
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strategy is to act as if the danger will disappear before the
agent enters the danger zone. This property is seen in all the
other experiments, i.e., when pd is high, optimal behaviour
avoids the danger zone and exhibits compromise behaviour in
the lower right region, but when pd is low, the agent moves
straight to the target in that region.

When lowering pt to 0.95 (with pd = 0.99, and pn(λ) as
Linear A), the results are qualitatively identical to figure 2(a)
(This and other additional plots can be found in the supple-
mentary material). When pt = 0.95, pd = 0.5, and pn(λ) is
Linear A, (i.e. low pt and low pd) predicted compromise be-
haviour emerges (figure 3(a)). The combination of both the
urgency to get to the target with the likelihood that the dan-
ger will disappear leads to more target focused behaviour in
the danger zone.

Examining the non-linear pn(λ) functions, compromise ac-
tion is seen clearly in all cases. Figure 3(b) shows pt =
0.995, pd = 0.99, and pn(λ) is sigmoid. The compromise be-
haviour is evident both near the centre of the danger zone
and again near the edges as the probability of a strike drops
gradually from the danger. This also occurs when the pn(λ)
is quadratic (see the supplementary material).

Comparison between the optimal strategy and the other
strategies described above is shown in table 3. The table uses
active goal as a baseline and compares skirt and the optimal
strategy to it. The MEU strategy was poor (less than half
as good as the other strategies across all trials, and 1/6 as
good inside the danger zone), so was omitted from the ta-
ble. The percentages are of the average expected utility for
each strategy across all the starting positions and scenarios
(200,000 data points). “All” is across all scenarios and start-
ing positions; “opp” is across just the starting positions that
are opposite from the target (the lower right region); “DZ”
(danger zone) is across the starting positions inside the dan-
ger radius; “Lin A” is all positions when the pn(λ) is Linear
A; “Lin B”is all positions when the pn(λ) is Linear B; “Quad”
is all positions when the pn(λ) is Quadratic; and “Sig” is all
positions when the pn(λ) is Sigmoid. Across all samples, the
optimal behaviour performs 29.6% better than active goal,
but skirt is nearly as good, performing 29.1% better than ac-
tive goal. When considering just those locations on the other
side of the danger zone from the target, the benefit is greater
for optimal over active goal, but still only slightly so over skirt.
This trend continues for locations inside the danger zone, and
samples from each of the pn(λ) functions.

3.2.3 PROSCRIPTIVE DISCUSSION

An examination of figures 2 and 3 reveals properties of the
optimal strategy that were not initially predicted (see section
3.2.1). In stable environments (figure 2), the priority is to
flee the danger. Even in cases where the target is likely to
disappear and the danger unlikely to remain more than a few
time steps, with a moderate chance of a strike, the optimal
action is to flee the danger first (figure 2(b)).

The pattern of optimal behaviour in figure 3(b) is as pre-
dicted around the edge of the danger zone (i.e. the Sigmoid
pd(λ) function generates low-level compromise behaviour that
gradually disappears as one moves farther from the danger),
but not at all what was expected in the centre (fleeing the dan-
ger directly), with the optimal behaviour ignoring the danger
entirely. This occurs because in that region the probability
of a strike falls very little as the agent moves away from the
danger, yet the probability of reaching the target still falls
exponentially with distance. The agent is likely to be struck
no matter action it takes, so its best course of action is to
move toward the target.

While low-level compromise is shown to be beneficial in the

optimal over skirt over
scenarios active goal active goal

all 29.6% 29.1%
opp 64.9% 63.3%
DZ 26.2% 26.1%

Lin A 40.9% 40.8%
Lin B 13.5% 13.1%
Quad 48.6% 48.5%
Sig 16.7% 15.2%

Table 3: Results comparing optimal and skirt strategies
to active goal. The values reflect the average percent
expected utility improvement of the the samples. The
rows are subsets of the data set. The first row is across all
the data points. The second row is just those points in a
region on the side of the danger opposite the target. The
third row is those points within the danger zone. The
fourth through seventh rows are for each of the pn(λ)
functions, across all locations in the environment. The
data consistently shows that the skirt strategy is nearly
as good as the optimal one in all cases. All differences
over active goal were significant on a Mann-Whitney U-
test to a confidence of 0.999.

proscriptive experiments, the experiments also show that it is
not beneficial in the manner expected, namely that instead of
inside the danger zone, low-level compromise is most benefi-
cial outside the danger zone. Indeed, the comparison between
the optimal and the skirt strategies shows that the majority of
the benefit comes not from finding a compromise between two
goals, but from preventing the oscillation between acting on
each goal, thus generating longer than necessary paths along
the edge of the danger zone. In the cases where the transition
at the edge of the danger zone was less behaviourly severe (i.e.
the pn(λ) was unlikely to generate a strike, so that optimal
behaviour just inside and just outside the zone are similar–
when pn(λ) is Linear B or Sigmoid– then the benefit of the
optimal strategy is only thirteen to eighteen percent greater
than the active goal strategy that zig zags in and out of the
danger zone.

4 FINAL DISCUSSION

This paper has presented two sets of experiments analysing
low-level compromise behaviour. The experimental setup was
based on situations predicted to be amenable toward good
compromise actions (Tyrrell, 1993), and using environments
that are commonly seen in the artificial agent community
(Blumberg et al., 1996). The results show that compromise
was not as beneficial as predicted in the prescriptive cases,
and while it was beneficial in the proscriptive cases, it: a) took
forms different from what was expected, and b) the vast ma-
jority of benefit came from low-level compromise that served
primarily to shorten the overall path of the agent. This sec-
tion will discuss the implications of these findings.

4.1 HIGH VS. LOW-LEVEL ACTIONS

Mounting experimental evidence (in this paper and in oth-
ers (Bryson, 2000; Crabbe, 2004; Jones et al., 1999)) ap-
pears to show that compromise behaviour is less helpful than
predicted, and yet the intuition that compromise must have
greater impact can still be strong. A simple thought exper-
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iment makes it appear even more so. Imagine an agent at
a location l0 that needs some of resource a and some of re-
source b. There is a quality source of a at l1, a location
far from a quality source of b at l2. There is a single low-
quality source of both a and b at l3. Let the utility of a at
location ln be an. If there is some cost of movement c (a
chance of the resource moving away or a direct cost such as
energy consumed) then the agent should move to l3 whenever
a3 + b3 − c(l0l3) > a1 + b2 − c×min(l0l1 + l1l2, l0l2 + l1l2).
Using the council-of-ministers analogy, the a minister would
cast some votes for l1, but also some for l3. Similarly, the b
minister would cast votes votes for both l2 and l3. The agent
might then select moving l3 as its compromise choice when it
is beneficial.

The key difference between the scenario just described and
the experiments described in earlier sections is the nature of
the actions selected. The experiments closely resembled the
sort of compromise shown often in the ethological literature,
where the actions selected appear as a continuous blend of the
non-compromise actions, whereas the justification for compro-
mise was posed as a discrete voting system. With voting, the
compromise action selected can be radically different from the
non-compromise actions.

This difference arises due to the level at which the action is
defined. Blending compromises take place at the lower levels,
where the outputs are the motor commands for the agent.
Thus changes allow for little variation in the output. Voting
compromises take place at a higher level, where each choice
can result in many varied low-level actions. Although this
distinction is highlighted here, it is not common in literature.
Tyrrell (Tyrrell, 1993) for example used the two definitions
interchangeably (it may be that this distinction was not made
by the early researchers in action selection in part because
their experimental environments were entirely discrete and
grid-based, thus affording few action options to the agent).
As discussed in section 2, selection of optimal actions at the
low level is much more computationally difficult than selecting
actions at a high level.

It should be noted that the “three-layer architectures” in
robotics do explicitly make this action level distinction, where
higher layers select between multiple possible high-level be-
haviours, and then at lower layers, active behaviours select
low-level actions (Bonasso et al., 1997; Gat, 1991). In ex-
isting systems, when and where compromise behaviour is in-
cluded varies from instance to instance in an ad hoc manner.
Many modern hierarchical action selection mechanisms that
explicitly use voting-base compromise tend to do so at the be-
haviour level only (Bryson, 2000; Pirjanian, 2000; Pirjanian
et al., 1998).

4.2 COMPROMISE BEHAVIOUR HYPOTHESIS

The experiments and insights discussed above, lead us to pro-
pose the following Compromise Behaviour Hypothesis:

“Compromise at low levels confers less overall benefit to
an agent than does compromise at high levels. Compromise
behaviour is progressively more useful as one moves upward
in the level of abstraction at which the decision is made, for
the following reasons: (1) In simple environments (e.g. two
prescriptive goals), optimal compromise actions are similar to
the possible non-optimal compromise actions as well as the
possible non-compromise actions. As such, they offer limited
benefit. In these environments there is no possibility of com-
promise at the higher levels. (2) In complex environments
(e.g. where multiple resources are to be consumed in succes-
sion such as the hypothetical scenario depicted in the previ-
ous section) good compromise behaviour can be very different
from the active non-compromise behaviours, endowing it with

the potential to be greatly superior to the non-compromise.
(3) In complex environments, optimal or even very good non-
optimal low-level actions are prohibitively difficult to calcu-
late, whereas good higher level action are not. Furthermore,
easy to compute heuristics (such as Forces) are unlikely to
generate the radically different actions required for good com-
promise.”

This hypothesis predicts that compromise behaviour will
be beneficial in more complex environments, where the com-
putational cost of selecting an action at a low level is pro-
hibitive. In these environments, action selection at a high
level, with compromise, may be the best strategy.

5 CONCLUSION

The notion of compromise behaviour has been influential in
the action selection community despite disagreements about
what precisely it might be. By examining the most common
forms of compromise behaviour described by ethologists or im-
plemented by computer scientists (low-level prescriptive and
proscriptive), this paper adds credence the idea that while
it may exist in nature, low-level compromise behaviour af-
fords little benefit. The paper proposes that compromise is
not especially useful at the low levels, but is useful at higher
levels. Future work will revolve around testing, validation or
refutation of this Compromise Behaviour Hypothesis.
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