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Abstract

Devising a solution to the action selection prob-
lem rests on a definition of which actions are
preferable over others. Among many properties
suggested for action selection mechanisms, one
prominent one is the ability to select compro-
mise actions, i.e. actions that are not the best
to satisfy any active goal in isolation, but rather
compromise between the multiple goals. This pa-
per performs a mathematical and experimental
analysis of compromise behavior in an attempt
to determine exactly how much compromise be-
havior aids an animat. It concludes that opti-
mal compromise behavior is a small improvement
over non-compromise behavior, but commonly
proposed easy to compute compromise mecha-
nisms are worse than non-compromise behavior.
It further analyzes the properties of situations
when compromise behavior is distinctly better
than non-compromise behavior.

1. Introduction

Traditional Artificial Intelligence planning systems use
search in order to fully characterize the space of actions
a robotic agent (or animat) can select in a given situ-
ation. The animat considers the outcomes of possible
actions into the future until it finds sequences of actions
that achieve its goals. One feature of this approach is
that given enough time, a planning system can deter-
mine the optimal actions for the animat. Of course, the
issue of time is a fundamental problem for these plan-
ning systems: the animat may not have at its disposal
the time needed in order to discover the optimal actions.
In fact, often the amount of time required exceeds the
age of the universe.

Behavior-based approaches to robotics and animats
in general have been introduced to address these sorts
of problems (Brooks, 1986, Arkin, 1998). These dis-
tributed reactive-style approaches are designed to gen-

erate “good enough” actions in a very small amount
of time. Without optimality, there arises the impor-
tant question of exactly what “good enough” means.
In his now classic Ph.D. thesis, Tyrrell (Tyrrell, 1993)
introduced a list of fourteen requirements for Action
Selection Mechanisms. Of these, number twelve was
“Compromise Candidates: the need to be able to
choose actions that, while not the best choice for any
one sub-problem alone, are best when all sub-problems
are considered simultaneously.” (p. 174) Tyrrell’s list
has had significant impact on the Action Selection
field (e.g., Humphrys, 1996, Decugis and Ferber, 1998,
Bryson, 2000, Girard et al., 2002), and a number of
researchers have developed systems to meet the cri-
teria he set out (e.g., Werner, 1994, Blumberg, 1994,
Crabbe and Dyer, 1999). Meanwhile biologists have
noted apparent compromise behavior among animals
selecting between multiple targets (Morris et al., 1978,
Latimer and Sippel, 1987, Bailey et al., 1990). The
ability to consider compromise actions in an uncertain
world makes great intuitive sense. When multiple goals
interact, solving each optimally is not always optimal
for the overall system. From the perspective of an an-
imat in an environment where desired resources might
go away at a moment’s notice, a compromise movement
in a direction in-between the resources might increase
the animat’s likelihood of obtaining one resource in the
event that the other becomes unavailable.

Recent work has generated empirical results that
seem to contradict the claim that the ability to con-
sider compromise candidates is necessary (Bryson, 2000,
Crabbe, 2002, Jones et al., 1999). Yet there have been
few in-depth analyses of the nature of compromise ac-
tions and their effect on the overall success of an animat.
This paper presents an extension of the work by Crabbe
(Crabbe, 2002) and Hutchinson (Hutchinson, 1999) to
investigate the nature of compromise actions, where an
animat is faced with choosing between two destinations
in the environment.



2. Problem Formulation

In this paper, we examine the situation where an ani-
mat has a goal to be co-located with one of two target
locations in the environment. These could be, for in-
stance, the locations of food, water, potential mates, or
shelter. At any moment either or both of the targets can
disappear from the environment. The animat must se-
lect an action that maximizes its chances of co-locating
with a target before it disappears. This model is drawn
from several scenarios in biology. For example, frogs or
cricket males sometimes advertise for mates by emitting
calls. The males may disappear with respect to the fe-
male through a cessation of signaling. This can occur
either due to the actions of predators, the arrival of a
competing female, or for internal reasons such as energy
conservation. Another scenario in biology is that of a
hunter such as a cat stalking prey such as birds in a
flock, where an individual bird can fly at any moment
(Hutchinson, 1999).

To approximate this type of scenario, we place an an-
imat at the origin on a plane. Two targets are placed on
the plane, one in the first and one in the second quad-
rant: Ta and Tb. The animat can sense the location of
each target. Because the quality of the individual targets
may vary, or the types of the targets may be different,
the animat has two independent goals to be co-located
with them. We call the strength of the goals Ga and
Gb. The dynamism in the environment is represented
with a probability p. This is the probability that any
object in the environment will still exist after each time
step. That is, any object will spontaneously disappear
from the environment at each time step with probability
1 − p. Notationally, Dj

i is the distance from some loca-
tion i to some location j, such that DTa

(0,0) is the distance
from the origin to the location of Ta. All distances are
measured in the number of time steps it takes the animat
to travel that distance.

When presented with this problem, the animat must
select one action from the set of candidate actions. Be-
cause the task is a navigation task, all the candidate
actions are movements to a location one time step away.
Because the environment is continuous, not a discrete
grid as in Tyrrell(Tyrrell, 1993), there are infinite candi-
date actions in our framework, each moving to a point on
the unit circle centered at the animat’s location. Com-
paring to Tyrrell’s discrete world, our action choice may
seem like some sort of “blending” of two choices. We ar-
gue that in fact, our formulation is identical to Tyrrell’s
except that the set of candidate actions our animats se-
lect from is much larger, i.e. infinite.

Once the animat has executed its action, it is again
faced with the same action selection problem, unless one
of the targets has disappeared and the best action is to
move directly to the other target. As the animat repeat-
edly selects an action, the path it follows resembles a
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Figure 1: A possible path taken by an animat after repeated

selection of a compromise candidate action. A marks the

starting location of the animat, and Ta and Tb mark the

locations of the targets.

piece-wise linear approximation of a curved path (figure
1).

It should be noted that the formulation used in this
paper is one possible formulation. Another common
formulation is where one of the goals is “proscriptive”,
that is, demands that certain actions not be performed.
For example, a goal to avoid a hazard would proscribe
against approaching the hazard. While Tyrrell explic-
itly used a proscriptive goal formulation as an exam-
ple, he specifically hypothesized that “[m]ore gener-
ally, a compromise candidate, which might be bene-
ficial to two or more systems to an intermediate de-
gree, may be preferable to any of the candidates which
are most beneficial for one system alone.” (p. 170)
(Tyrrell, 1993) This general hypothesis implies both the
prescriptive version of the problem analyzed in this pa-
per, as well as the proscriptive version1. Tyrrell’s gener-
alized hypothesis can be seen in the inclusion of pre-
scriptive compromise behavior in many action selec-
tion mechanisms, such as Werner (Werner, 1994) and
Montes-Gonzales et al. (Montes-Gonzales et al., 2000).
Furthermore, outside the animat community, biologists
have advocated in favor of the prescriptive version of
compromise behavior for some time (Morris et al., 1978,
Latimer and Sippel, 1987, Bailey et al., 1990).

3. Analytical Set-up

In order to investigate compromise candidates, we will
analyze the initial configuration using Utility Theory
(Howard, 1977). Utility Theory assigns a set of numeri-
cal values (utilities) to states of the world. These utilities
represent the usefulness of that state to an animat. Ex-
pected Utility (EU) is a prediction of the eventual total
utility an animat will receive if it takes a particular ac-
tion in a particular state. The Expected Utility (EU) of
taking an action A in a state S is the sum of the product

1By prescriptive, we mean that both goals are positive, enticing
the animat to do something, rather than prohibiting actions.



of the probability of each outcome that could occur and
the utility of that outcome:

EU(A|S) =
∑

So∈Outcomes

P (So|A,S)Uh(So) (1)

where P (So|A,S) is the probability of outcome So oc-
curring given that the animat takes action A in state
S, and Uh(So) is the historical utility of outcome So as
defined below.

Assuming the animat is rational, the set of goals to
consume objects will be order isomorphic2 to the set of
the animat’s utilities of having consumed the objects.
Therefore, EU calculated with utilities is order isomor-
phic with EU calculated with goals instead. For our
purposes, we will assume that the goals and utilities are
equivalent (Ga = U(Ta)).

Because a rational animat is expected to select the
action with the largest EU, the historical utility of a
state is the utility of the state plus future utility, or the
max of the expected utility of the actions possible in each
state:

Uh(S) = U(S) + max
A∈Actions

EU(A|S). (2)

An animat can calculate EU using multiple actions in
the future by recursively applying equations (1) and (2).

3.1 Optimal Behavior

We analyze compromise behavior by comparing a close
approximation of optimal behavior with several non-
optimal but easy to generate behaviors. We approxi-
mate the optimal behavior based on the technique used
by Hutchinson (Hutchinson, 1999). This technique over-
lays a grid of points on top of the problem space and
calculates the maximal expected utility of each location
given optimal future actions. This is done recursively
starting at the target locations and moving outward un-
til stable values have been generated for all grid points.

The value we are trying to calculate is the expected
utility of acting optimally at some location in a state
where the two targets are still in the environment:
EU(Opt|Ta, Tb, (x, y)). If θ is the angle of the optimal
move for the agent at location (x, y) and (x′, y′) is 1 unit
away from (x, y) in direction θ, then by equations 1 and

2“Two totally ordered sets (A,≤) and (B,≤) are order iso-
morphic iff there is a bijection from A to B such that for all
a1, a2 ∈ A, a1 ≤ a2 iff f(a1) ≤ f(a2).”(Weisstein, 2001)

2 the expected utility of being at (x, y) is:

EU(Opt|Ta, Tb, (x, y)) =p2EU(Opt|Ta, Tb, (x′, y′))+
p(1− p)EU(Opt|Ta, (x′, y′))+
p(1− p)EU(Opt|Tb, (x′, y′)),

(3)

EU(Opt|Ta, (x′, y′)) =Gap
DTa

(x′,y′) , and, (4)

EU(Opt|Tb, (x′, y′)) =Gbp
D

Tb
(x′,y′) . (5)

the total expected utility is the expectation over four
possible situations: both targets there, both targets
gone, a there but b gone, and vice versa. When one
of the targets disappears from the environment, the op-
timal action for the animat to take is to move directly
to the other target, as shown in equations 4 and 5.

Using the above equations, the expected utility of each
grid point in the environment can be calculated pro-
vided EU(Opt|Ta, Tb, (x′, y′)) can be accurately deter-
mined and θ can be found. If (x′, y′) is a grid-point, this
can be done easily, otherwise the local EU function must
be interpolated from the expected utility values of the
surrounding grid points. Using the interpolated surfaces
for the local values of EU(Opt|Ta, Tb, (x′, y′)), the value
of θ can be determined by searching for the angle that
maximizes the function described by equation 3. Once
the expected utility is determined for a grid point, its
value is then used to calculate the expected utility of
its neighboring grid-points. This process is repeated un-
til values are collected for all the grid points. Because
the estimated utility value can change for a point when
the values of its neighbors change, the values of all the
points are repeatedly re-estimated until the values stabi-
lize. The pseudocode for the algorithm is given in figure
2.

3.2 Action Selection Mechanisms

It is typically computationally prohibitive for an an-
imat to calculate the optimal action using a tech-
nique similar to the one described in the previ-
ous section. Instead, most ethologists and AI
researchers propose easy to compute action se-
lection mechanisms that are intended to approxi-
mate the optimal behavior (Cannings and Orive, 1975,
Fraenkel and Gunn, 1961, Römer, 1993). The mecha-
nisms can be divided into two categories: those that
select a single target and move directly toward it, and
those that exhibit some sort of compromise behavior. In
the former category, we will consider:

• Closest (C): select the closest target.

• Maximum Utility (MU): select the target with the
higher utility (Ga or Gb).



Open is a list of grid-points that need to be updated.
Closed table of updated points.
N is the point currently being updated.
VN is the current EU estimate at N .
repeat

Open← enqueue target locations
Closed← ∅
repeat

N ← dequeue from Open
when N /∈ Closed

EU(Opt|Ta, Tb, (x′, y′)) ← interpolated EU
function from neighboring points

VN ← max equation 3
Open ← enqueue neighbors of N
Closed← add N

until Open = ∅
until convergence

Figure 2: Algorithm for estimating the expected utility at all

the grid points in the environment.

• Maximum Expected Utility (MEU): select the target
with the higher expected utility if it were the only

target in the environment (pDTa
(0,0)Ga vs. p

D
Tb
(0,0)Gb)

Of action selection mechanisms that exhibit compromise
behavior, we will examine:

• Forces (F): the animat behaves as if it has two forces
acting on it, where the strength of the force is pro-
portional to the utility of the target divided by the
square of the distance between the animat and the
target location (e.g. M = Ga

DTa
(0,0)

).

• Signal Gradient (SG): The animat behaves as if it
is following a signal gradient. The targets emit a
simulated “odor” that falls with the square of the
distance from the target. The initial strength of the
odor is proportional to the utility of the target. The
animat moves to the neighboring location that has
the strongest odor as the sum of the odor emanating
from each of the two targets.

• Exponentially Weakening Forces (EWF): The pulling
effects of the targets in the previous two mecha-
nisms fall quadratically with distance, whereas the
expected utility of targets falls exponentially with
distance. Exponentially Weakening Forces tries to
model this by behaving just as with the Forces mech-
anism, but the strength of the forces falls exponen-
tially with distance, rather than quadratically. The
magnitudes of the two vectors are Gap

DTa
(x,y) and

Gbp
D

Tb
(x,y) .

The expected utility of each of these mechanisms can
be calculated for any particular scenario by using equa-

tions 3, 4 and 5. Let n be the number of time steps
it takes to come within a single move of a target using
one of the mechanisms. Let Te be the the eventual target
that the animat arrives at, and ε be the distance between
the animat after n steps and Te. Finally, let DTa

x be the
distance from the location of the animat after the xth
time step to the target Ta; let V be the current strategy,
and EU(V |x) be the expected utility after time step x.
For the first n time steps, the expected utility at any
time step x of using strategy V can be figured by:

EU(V |x) =p2EU(V |x + 1) + p(1− p)pD
Tb
x+1Gb+

p(1− p)pDTa
x+1Ga, (6)

where the location of x+1 is determined by the strategy.
The expected utility of the final step (when the animat
is within ε of Te) is:

EU(V |n) =(1− pε)pεpD
Tf
Te Gf + (1− pε)pεGe + p2εGe.

(7)

These two equations can be combined to yield:

EU(V |0) =

p2n

[
(1− pε)pεpD

Tf
Te Gf + (1− pε)pεGe + p2εGe

]
+

n∑
i=1

p2i−1(1− p)
[
pD

Tb
i Gb + pDTa

i Ga

]
(8)

Using this equation, we can evaluate each of the ac-
tion selection mechanisms by generating a large number
of scenarios and comparing the expected utility of each
of the mechanisms with each other and with optimal be-
havior.

4. Experiments

In the first set of experiments we calculate and compare
the expected utility of various strategies. In the second
set, we determine some properties of scenarios that lead
to good behavior by some of the strategies. For the ex-
periments, we generated 50,000 compromise scenarios.
In these scenarios, Target a (Ta) was randomly placed
in the x-range of (−100; 0) and the y-range of (0; 100).
Target b (Tb) was randomly placed in the x-range of
(0; 100) and the y-range of (0; 100). The utility of each
target is randomly generated in the range of (0; 100). We
also randomly generated p, the probability that a target
would remain in the environment per time step, in the
range [0.9; 1)3.

4.1 Strategy Comparison Experiments

For each scenario, we calculated the expected utility of
each of the action selection mechanisms described in

3Below 0.9, the probability that the animat would reach either
of the targets approaches zero and is therefore less interesting.



C MU MEU
% best 0.1471 0.5309 99.32
avg % EU over C 0.0 4.130 12.62
avg % EU over MU 9.353 0.0 15.31
avg % EU over MEU -5.960 -8.491 0.0

Figure 3: Comparison of non-compromise strategies. For

each strategy, the percentage of situations where that strat-

egy works best is provided, along with the average expected

utility improvement of each strategy compared to the other

strategies.

the previous section: closest (C), maximal utility (MU),
maximum expected utility (MEU), forces (F), signal gra-
dient (SG), and exponentially weakening forces (EWF).
We also estimated the expected utility of optimal behav-
ior using the technique in section 3.. We compare the
three non-compromise mechanisms (C, MU, and MEU)
in the table in figure 3. In the table, we show the percent-
age of scenarios each strategy was the best (had highest
expected utility). We also compare the average percent-
age improvement of expected utility using each strategy
to using the other strategies. We see that the maxi-
mum utility strategy is clearly the best of the three as it
almost always selects the better target and its overall ex-
pected utility is from 12% to 15% better than the other
two strategies. It is interesting to note that Closest is
a better strategy than Maximum Utility. This is likely
because the expected utility falls exponentially with dis-
tance, so that closer targets are more useful than better
targets.

The table in figure 4 compares the compromise based
mechanisms with MEU. It shows both the average % im-
provement over MEU and the % improvement over MEU
in the single best scenario. There are three interesting
things to note in this table. The first is that the optimal
strategy is only 1.1% better than the non-compromise
based MEU. This is somewhat surprising, as one would
expect that the optimal behavior would be much higher
than a non-compromise approach. This result is con-
sistent with the non-continuous space experiments of
Crabbe (Crabbe, 2002) and the much smaller study in
Hutchinson (Hutchinson, 1999). The result might also
explain the results of researchers who find compromise
behavior unnecessary. If the environment is sufficiently
forgiving, the small improvement of optimal compromise
behavior may go unnoticed.

The second thing to note is that all of the non-optimal
compromise based strategies are worse than the MEU
strategy. In order to double check these surprising re-
sults, we selected 50 initial configurations for which
we calculated the expected utility using each of the
strategies and we re-estimated the expected utility us-
ing Monte Carlo simulation. For each situation we ran
100,000 trials where an animat ran the selected strat-

F SG EWF Optimal
avg -4.074 -2.791 -2.465 1.121
best 4.844 4.819 20.56 22.73

Figure 4: Comparison of compromise strategies to the non-

compromise MEU. For each strategy, the average expected

utility improvement over MEU and the single best expected

utility improvement over MEU is provided.

egy, and at each time step we randomly determined if
each target remained in the environment. A trial ended
when a target was reached or both targets disappeared.
The total utility of all reached targets was divided by
the number of trials to estimate the expected utility.
We found that of the 50 scenarios selected, the Monte
Carlo estimated expected utilities agreed with the di-
rectly calculated expected utilities to, on average, four
decimal places, lending support the the accuracy of fig-
ure 4. These results may further explain why some re-
searchers have found that compromise behavior is unnec-
essary: the commonly used compromise strategies per-
form worse than a non-compromise strategy. With re-
spect to natural animals, this result implies that animals
that exhibit compromise behavior are either: a) behav-
ing non-optimally; b) using an as yet unproposed com-
promise based action selection strategy (or at least one of
which we are unaware); c) behaving in that manner for
reasons other than purely to compromise between two
targets (Hutchinson (Hutchinson, 1999) suggests several
other possible reasons for what appears to be two-target
based compromise behavior).

The final property of figure 4 to note is that EWF is
the best performing of the easy to compute compromise
strategies that we tested. While it is certainly not con-
clusive, this may imply that the approach of decreasing
the influence of farther targets exponentially is a good
one for developing action selection strategies. If we ex-
amine the best scenario for EWF, we see that it is nearly
as good as the best scenario for optimal. This brings up
the questions of when are optimal and EWF most ben-
eficial.

4.2 Analysis Experiments

While the conclusions of the previous section may be
true as an average across all the initial scenarios gen-
erated, there may be types cases where the Optimal or
EWF strategies are significantly better than the MEU.
In this section, we use the idea of information gain from
information theory to attempt to determine if this is so.
For example, in previous work on a discrete two-choice
simplification of the problem, Crabbe (Crabbe, 2002)
claimed that a p > 0.9 was most important for there to
be good compromise behavior, followed by the distances
to the targets to be equal.



4.2.1 Information Theory

In order to analyze the properties of the situations in
which there are good compromise candidates, we use
the idea of information gain. This is the same tech-
nique used in the decision tree algorithms ID3 and C4.5
(Mitchell, 1997, Quinlan, 1983, Quinlan, 1993). The
technique begins with a data set and a classification of
the data elements. Our data will be the situations gener-
ated in previous experiments, and our classification will
be whether or not the scenario has a compromise strat-
egy with an EU better than MEU. The technique then
considers a set of n-ary attributes which partition the
data set. For each attribute, the technique considers the
information gain of applying that attribute to partition
the data set. Information gain is the decrease in entropy
of the data set, where entropy is:

E(S) =
∑

i∈Categories

−pi log2 pi (9)

S is a data set, i is a category of the classification, and pi

is the proportion of S categorized as i. Entropy measures
the inverse of the purity of a data set with respect to the
classification. A set is most pure when all the data have
the same classification, and least pure when the data is
classifies evenly across all categories.

The information gain of dividing set S based on at-
tribute A is defined as:

Gain(S, A) = E(S)−
∑

v∈V alues(A)

|Sv|
|S|

E(Sv), (10)

where v is a value of an attribute, |S| is a size of set S,
Sv is the subset of S for which attribute A takes value
v, The attribute with the largest information gain is the
attribute which best partitions the data set, and in our
case is the property of a situation which most determines
if there is a good compromise candidate.

The data describing a situation is continuous informa-
tion, but attributes are n-ary classifiers. To cope with
this, the attributes partition the values into ranges, such
as every 0.05. The attributes we use are listed below:

• DTa

(0,0), D
Tb

(0,0), D
Tb

Ta
. These three attributes are the

distances between the key locations in the situation.
The distances can be anywhere from 0 to 224, and
the attributes break them up into ranges of 5 units.

• Ga, Gb. The goal values from 0 to 100, broken into
ranges of 5 units.

• p. The value of p from 0 to 1, broken into ranges of
0.005.

• R(DTa

(0,0), D
Tb

(0,0)). This encodes the relationship be-

tween DTa

(0,0) and DTb

(0,0), while keeping the values be-

tween 0 and 1 using the formula
DTa

(0,0)

DTa
(0,0)+D

Tb
(0,0)

. It is

broken into ranges of 0.05.

• R(DTa

(0,0), D
Tb

Ta
). This encodes the relationship be-

tween DTa

(0,0) and DTb

Ta
, while keeping the values be-

tween 0 and 1 using the formula
DTa

(0,0)

DTa
(0,0)+D

Tb
Ta

. It is

broken into ranges of 0.05.

• R(DTb

(0,0), D
Tb

Ta
) This encodes the relationship between

DTb

(0,0) and DTb

Ta
, while keeping the values between 0

and 1 using the formula
D

Tb
(0,0)

D
Tb
(0,0)+D

Tb
Ta

. It is broken into

ranges of 0.05.

• R(Ga, Gb). This encodes the relationship between
Ga and Gb, while keeping the values between 0 and
1 using the formula Ga

Ga+Gb
. It is broken into ranges

of 0.05.

• Rl(Ga, DTa

(0,0), Gb, D
Tb

(0,0)) This encodes a linear re-

lationship between Ga, DTa

(0,0), Gb and DTb

(0,0), while
keeping the values between 0 and 1 using the for-

mula
GaDTa

(0,0)

GaDTa
(0,0)+GbD

Tb
(0,0)

. It is broken into ranges of

0.05.

• Re(Ga, DTa

(0,0), Gb, D
Tb

(0,0)) This encodes a exponential

relationship between Ga, DTa

(0,0), Gb and DTb

(0,0), while
keeping the values between 0 and 1 using the formula

Gap
D

Ta
(0,0)

Gap
D

Ta
(0,0)+Gbp

D
Tb
(0,0)

. It is broken into ranges of 0.05.

4.2.2 Optimal

We first classify the data based on whether the perfor-
mance of the optimal behavior is a 1% or greater im-
provement over the performance of MEU for that sce-
nario. Using equation 10, we find that attribute with
the largest information gain is Re(Ga, DTa

(0,0), Gb, D
Tb

(0,0))
with a gain of 0.07243. Figure 5 shows a breakdown of
the data as partitioned by the attribute. The x-axis is
the range of values of the attribute, and the y-axis is
the percentage of the data that falls in that range and
is positively classified (the performance of the optimal
behavior is a 1% or greater improvement over the per-
formance of MEU). In the figure we see that the greatest
likelihood of good compromise behavior is when the at-
tribute is close to 0.5. This means that if Gap

DTa
(0,0) is

close to Gbp
D

Tb
(0,0) (when the expected utilities of the two

targets are roughly equal), it is more likely that optimal
behavior will confer a large advantage. This makes sense
that the good compromise behavior would occur when
the targets have the same expected utility.

The attribute with the next largest information gain is
R(DTa

(0,0), D
Tb

(0,0)) with a gain of 0.06917. Figure 6 shows
a breakdown of the data as classified by the attribute.
Once again, we see that the greatest likelihood of good
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Figure 5: Breakdown of attribute Re(Ga, DTa
(0,0), Gb, D

Tb
(0,0))

when comparing optimal to MEU.
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Figure 6: Breakdown of attribute R(DTa
(0,0), D

Tb
(0,0)) when com-

paring optimal to MEU.

compromise behavior is when the attribute is close to
0.5, or in this case when DTa

(0,0) and DTb

(0,0) are roughly
equal. We believe this is another manifestation of the
need for a balance in expected utility for there to be
good compromise behavior.

The next two attributes with high gain are
R(DTa

(0,0), D
Tb

Ta
) and R(DTb

(0,0), D
Tb

Ta
), both with a gain of

0.027. Figure 6 shows a breakdown of the data as classi-
fied by R(DTa

(0,0), D
Tb

Ta
) (the plot of the other attribute is

qualitatively identical). While the data in this figure is
less distinct than in the previous figures, it does appear
to show that there are few good compromises when the
targets are relatively close to the animat but far away
from each other.

4.2.3 Exponentially Weakening Forces

Although on average EWF performs worse than MEU,
it is interesting to analyze the situations in which it per-
forms better. If these situations could be recognized,
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Figure 7: Breakdown of attribute R(DTa
(0,0), D

Tb
Ta

) when com-

paring optimal to MEU.
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Figure 8: Breakdown of attribute R(DTa
(0,0), D

Tb
Ta

) when com-

paring EWF to MEU.

then EWF could be applied only when they occur. Fur-
thermore, it may lead to insight on why EWF outper-
formed the other non-optimal strategies. The data is
classified based on whether or not EWF out performs
MEU. The top two attributes in terms of information
gain are R(DTa

(0,0), D
Tb

Ta
) and R(DTb

(0,0), D
Tb

Ta
), with gains of

0.1620 and 0.1569 respectively. Figure 8 shows a break-
down of the data as classified by R(DTa

(0,0), D
Tb

Ta
) and fig-

ure 9 shows a breakdown of the data as classified by
R(DTb

(0,0), D
Tb

Ta
).

These graphs strongly suggest that good compromises
using EWF occur when the targets are relatively far
away from the origin and close to each other. This is
backed up by examining the next highest attribute, DTb

Ta

(0.09223) in figure 10. Here we see that good compro-
mises are more likely when DTb

Ta
is small, that is, the two

targets are close together.
The last attribute we examine is p, with an informa-

tion gain of 0.07903. Figure 11 shows its breakdown. It
shows that good performance peaks at a p range of 0.91-
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Figure 11: Breakdown of attribute p when comparing EWF

to MEU.

0.915. This is consistent with Crabbe’s previous results
that good compromises occur with p > 0.9. That study
only looked at p with a granularity of 0.1, and was thus
unable to determine which values of p > 0.9 were best.

There is some overlap between the good attributes
for the optimal behavior and for EWF, namely that
the targets be relatively close together and far away
from the animat. We have no evidence to explain why
Re(Ga, DTa

(0,0), Gb, D
Tb

(0,0)) does not appear to be a factor
for EWF, instead having a paltry information gain of
0.004855.

5. Conclusions and Future Work

In this paper we have analyzed the properties of ac-
tion selection mechanisms in a scenario that has been
of interest to both biologists and AI researchers in the
past. We believe the paper makes several contributions.
First, it derives a closed form equation for calculating
the expected utility of any strategy in the multiple goal
scenario (equation 8). This equation can also be triv-
ially extended to any number of goals. As part of on-
going work, it has been modified to describe a proscrip-
tive goal scenario was well. Next, the paper shows that
among non-compromise strategies, closest is better than
maximum utility, but the maximum expected utility is
the best of the three. Maximum expected utility should
be used if a non-compromise strategy is desired. When
comparing compromise strategies, this paper concludes
that optimal behavior performs only slightly better than
maximum expected utility, and all other known compro-
mise strategies perform worse than maximum expected
utility. From this we conclude that animals that exhibit
apparent compromise behavior are either using some un-
known strategy or are doing so for some other reason. Of
the non-optimal compromise strategies tested, exponen-
tially weakening forces was the best, suggesting that if
a better non-optimal compromise strategy exists, it may



also involve forces that fall exponentially with distance.
This is a clear area of potential future work. When an-
alyzing when the optimal and exponentially weakening
forces strategies are better, we concluded that good op-
timal strategies occur when the expected utility of the
two targets are equal. We further concluded that good
scenarios for the optimal strategy occur when the tar-
gets are far away from the origin and close together. For
the exponentially weakening forces strategy, we also con-
cluded that good scenarios occur when the targets are
far away and close together. Explaining why equality of
the expected utility of the targets does not appear to be
a factor is another area of future work.
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