U.S. NAVAL ACADEMY
COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

Al [l &
s i
| & /'1'

N ¥

> SN =

” | _SCIENTIA K
Vil

The McCallum Projection, Lifting, and Order-Invariance

Brown, Christopher W.

USNA-CS-TR-2005-02

May 3, 2005

USNA Computer Science Dept. o 572M Holloway Rd Stop 9F o Annapolis, MD 21403

The McCallum projection, lifting, and
order-invariance®

Christopher W. Brown
Computer Science Department, Stop 9F
United States Naval Academy
572M Holloway Road
Annapolis, MD 21402
wcbrown@usna. edu

April 22, 2005

Abstract

The McCallum Projection for Cylindrical Algebraic Decomposition
(CAD) produces a smaller projection factor set than previous projections,
however it does not always produce a sign-invariant CAD for the set of
input polynomials. Problems may arise when a (k 4 1)-level projection
factor vanishes identically over a k-level cell. According to McCallum’s
paper, when this happens (and k+1 is not the highest level in the CAD) we
do not know whether the projection is valid, i.e. whether or not a sign-
invariant CAD for the set of input polynomials will be produced when
lifting is performed in the usual way. When the k-level cell in question
has dimension 0, McCallum suggests a modification of the lifting method
that will ensure the validity of his projection, although to my knowledge
this has never been implemented.

In this paper we give easily computable criteria that often allow us
to conclude that McCallum’s projection is valid even though a projection
factor vanishes identically over a cell. We also improve on McCallum’s
modified lifting method.

We’ve incorporated the ideas contained in this paper into QEPCAD,
the most complete implementation of CAD. When McCallum’s projec-
tion is invalid because of a projection factor not being order-invariant
over a region on which it vanishes identically, at least a warning message

*This article was originally posted on my website in September 2001 as MOTS2001.1.ps.gz.
It is now being reformatted and republished as a USNA CS Department Technical Report.
All references to “current” are to be taken as “current as of 1 September, 2001.

ought to be issued. Currently, QEPCAD may print warning messages
that are not needed, and may fail to print warning messages when they
are needed. Our implementation in QEPCAD ensures that warning mes-
sages are printed when needed, and reduces the number of times warning
messages are printed when not needed. Neither McCallum’s modified
lifting method nor our improvement of it have been implemented in QEP-
CAD — the design of the system would make implementing such a feature
quite difficult.

1 Introduction

The McCallum Projection [11] (and the Improved McCallum Projection [3]) rep-
resents a huge improvement over the original projection [6] for CAD construc-
tion, as the projection factor set it produces is much smaller. Unfortunately,
it also involves a slightly more complicated idea of lifting. In particular, lifting
becomes difficult when a projection factor vanishes identically over some set (for
example, as (z +y)z — (x —y) vanishes identically over (x =0,y = 0)). Accord-
ing to McCallum’s original paper, when a projection factor vanishes identically
over a region of dimension greater than zero, the projection fails (unless that
projection factor is of the highest level). If a projection factor vanishes identi-
cally over a region of dimension zero, then a “delineating polynomial” must be
added to the lift basis in that step (once again, unless that projection factor is
of the highest level). The key idea is that iterating the lifting process requires
not simply sign-invariance, but the stronger property of order-invariance, and
while a polynomial is sign-invariant over a region over which it is identically
zero, it is not necessarily order-invariant.

In this paper, we describe more precise (and yet still easily computable) criteria
for determining when order-invariance is required, when a delineating polyno-
mial needs to be added to ensure order-invariance, and what that delineating
polynomial should be. These improvements are of considerable practical im-
portance. When the McCallum projection fails, either direct and substantial
work by hand is required of the user, or the McCallum Projection needs to be
abandoned in favor of far costlier projections.

We consider in this paper the QEPCAD system, which provides the most com-
plete implementation of CAD. When the McCallum Projection requires the
addition of a delineating polynomial, QEPCAD fails! ! Not only doesn’t QEP-
CAD currently include facilities for adding delineating polynomials, but its ar-
chitecture makes it extremely difficult to add such a feature. Thus, apart from

Hn fact, the current situation is worse: QEPCAD warns the user if a projection factor not
of the highest level vanishes identically over a positive dimensional cell, but simply ignores
cases in which a projection factor vanishes over a 0-dimensional cell! It may be possible that
QEPCAD gives incorrect answers as a result.

any performance benefit of not adding unnecessary delineating polynomials,
identifying only those cases in which they are truly necessary is critical.

These improvements have been implemented in QEPCAD, with the result that
for the first time the user is able to use the McCallum Projection and be assured
that, in the absence of error messages (such as “A Delineating Polynomial Must
Be Added”), the McCallum Projection is definitely valid. When a projection
factor P vanishes identically over cell c:

1. We determine whether order-invariance is really required for P (described
in Section 4), if not QEPCAD simply continues.

2. When c is 0-dimensional we determine whether a delineating polynomial
must be added to ensure the order-invariance of P over ¢ (described in
Section 2), if so, we print an error message, otherwise QEPCAD simply
continues.

3. When c has positive dimension, we are sometimes able to determine that
no delineating polynomial is needed to ensure the order-invariance of P
over ¢ (described in Section 3) and in this case QEPCAD simply continues
— otherwise we print an error message.

This paper assumes that the reader is familiar with the McCallum projection
and the basic methods of CAD and quantifier elimination by CAD as explained
in, for example, [7] or [2].

2 The zero-dimensional case

Suppose that P(z1,...,Zk11) is a projection factor that vanishes identically at a
point @ = (1, ..., ak), i.e. P(ag,...,ar,2x+1) = 0. In this section we consider
the problem of constructing a decomposition of the line a x R into regions in
which the order of P is constant.

2.1 Minimal delineating polynomials

When projection factor P(x1, ..., zs1) vanishes identically over a point o € R¥,
we know that P has order greater than 0 in a X R, but we don’t know whether
or not the order of P is constant in that line. Suppose ¢ is the smallest index
for which at least one of the t-order partials of P is not identically zero over «,
and let Dp be the set of all t-order partials of P. We know that the order of
P in a x R is t almost everywhere, but at finitely many points the order may

be greater than t. In fact, the order of P in o X R is greater than ¢ at exactly
those points at which all the elements of Dp are zero.

We would like to introduce a “delineating polynomial” to define our decompo-
sition of & x R. A delineating polynomial is a nonzero polynomial in R[xj41]
whose roots include the xj11-coordinate of every point in o x R at which the
order of P is greater than ¢t. McCallum points out that any element of Dp that
is not identically zero over a@ may be used as a delineating polynomial. How-
ever, while the vanishing of such a polynomial is a necessary condition for an
increase in the order of P, it is not a sufficient condition. All elements of Dp
must vanish at a point in a x R for the order to increase. A polynomial which
vanishes at exactly the the zji-coordinate of every point in a x R at which
the order of P is greater than ¢ will be called a minimal delineating polynomial.
The vanishing of a minimal delineating polynomial provides a necessary and
sufficient condition for the increase in order of P.

Constructing a minimal delineating polynomial is quite easy. If we define

S: {Q(ala"'7akamk+l) | Q S DP}

the order of P is greater than t at exactly the points of the form (aq, ..., ax,),
where (3 is a zero of all the elements of S. If G is the GCD of the elements of .5,
then the roots of G are exactly the common roots of the elements of S — i.e.
G is a minimal delineating polynomiall

Thus, instead of choosing one of the non-zero elements of Dp and using it as a
delineating polynomial (as suggested in [11]), we use the GCD of all non-zero
elements of Dp as a delineating polynomial.

2.2 In practice

One of the practical benefits of computing a minimal delineating polynomial
when faced with a projection factor P(x1,...,2x+1) that vanishes identically
over a point o € R* is that one often finds that the minimal delineating poly-
nomial is constant, meaning that no polynomial needs to be added at all! Some
examples illustrate this point.

Example 1 Consider the polynomial P = (z +y — 1)z + (y — 1) and the
point o = (0,1). P vanishes identically over «, so according to the McCallum
projection we need to add a delineating polynomial to decompose o X R into
regions in which P is order-invariant.

Dp={P,=2P/=2+1,P.,=x+y—1}

Thus, S = {2,z + 1,0} and G, the GCD of the elements of S, is 1. This means
that even though P vanishes identically over «, the order if P is invariant in
a X R. Thus, no delineating polynomial is needed!

Example 2 In the “X Axis Ellipse” problem (see Section 6.1), a well-known
problem in the literature, the polynomial

P(a,b,c,z) = b*x? — a’x? — 2b%cx + b2c* — a*b? + o?

appears as a projection factor (it is the resultant of two initial polynomials).
The point o = (1,1,0) is a zero-dimensional cell in the CAD constructed for
this problem, and P vanishes identically over «.

Do — P, = —2az? — 2ab?® + 2a, P, = 2bx? — 4bcx + 2bc? — 2ba?,
P= P.= 20z + 2b%¢, P, = 2b%x — 20’z — 2b%c

Thus, S = {—22% 22? — 2, —2x,0} and G, the GCD of the elements of S, is
1.Thus, no delineating polynomial is needed!

2.3 Must non-constant minimal delineating polynomials
always be added?

From the perspective of QEPCAD, if a delineating polynomial really does need
to be added, we are out of luck. Moreover, a considerable amount of work will be
required to modify the program to allow the addition of delineating polynomials.
So, is all hope lost when we compute a minimal delineating polynomial and it
is non-constant? Not always!

Let P(z1,...,2k+1) be our familiar projection factor that vanishes identically
over a point & € R*¥. When we lift over a during CAD construction, P is
typically one of many (k 4 1)-level projection factors, and we compute a lift
basis, namely a squarefree basis constructed from substituting « into all (k+1)-
level projection factors, which defines our decomposition of o x R. If this lift
basis already “contains” the minimal delineating polynomial we’ve computed
(i.e. the squarefree part of the minimal delineating polynomial divides the
product of the basis polynomials), then there’s nothing to “add”!

This might seem unlikely, but in fact it’s not. In Anai’s Problem (see Sec-
tion 6.2), we have a projection factor P(s,z,z1,22) = sz2 — 23. The point o =
(0, —1,0) is a zero-dimensional cell in the CAD constructed for this problem, and
P vanishes identically over a. Dp = {Ps = a2, P, = 0, Py, = —2x1, P,, = s},
and thus S = {z2,0,0,0} and the minimal delineating polynomial is x5. From
this we see that the order of P in o x R is 1 everywhere but (0, —1,0,0), where
it is higher (order 2, specifically). It seems that we must add a delineating
polynomial. However, x5 is itself a projection factor, and thus a part of the lift
basis. Therefore, the minimal delineating polynomial doesn’t need to be added,
it’s already there! [Note that as a quantifier elimination problem, the vanishing
projection factor would not cause difficulties because it is at the highest level,
so sign-invariance suffices. What the above argument shows is that what we
actually get an order-invariant decomposition.|

3 Dimension greater than zero

In Section 2.1 we deal with the vanishing of projection factor P over a point a by
considering the system of all t-order partials of P. We often find that the system
is inconsistent, and therefore determine that P is actually order-invariant over
«. In this section we try to apply the same ideas to the situation in which P
vanishes over a region of higher dimension.

3.1 In theory

If ¢ is a k-level cell in a CAD, it is a connected, open subset of some variety
defined by all the projection factors of level k or less that are zero in the cell.
In other words, if f1,..., fs are the projection factors of level k or less that are
zero in ¢, then ¢ is an open subset of V(< f1,..., fs >).

For a (k+ 1)-level projection factor P, the smallest order taken on by P in ¢ x R
is the smallest index t such that some element of Dp, the set of all t-th order
partials of P, is not in < fi,..., fs >. The question of whether or not P is in
fact order invariant over ¢ becomes a decision problem:

(Fw1) - Ga) Gangr) [Fon | N\ [a=0]
q€Dp

where F. is a defining formula for the cell ¢. This could be solved by CAD,
or by other methods. If the formula is true, then P is not order-invariant over
¢, otherwise P is order invariant over c¢. In fact, when the above formula is
true, this same approach could be used to provide a decomposition of ¢ X R into
regions in which P is order-invariant.

Thus, we can in theory deal with the problem posed by a vanishing projection
factor. However, in practice it’s not clear how attractive such a solution would
be. At the very least one may say that QEPCAD would require a major overhaul
to make such things work.

3.2 In practice

In the previous section we saw how to deal with the problem posed by a vanishing
projection factor ... in theory, at least. The question we consider here is whether
there is a quick and easy test that will, in many practical cases, detect that the
polynomial P is in fact order-invariant over positive-dimensional cell ¢, even
though it vanishes identically over c¢. Another example will illustrate this point.

Example 4 In the “edge-square product” problem (see Section 6.3), we have
the projection factor

P(z,y,x1,22) = 2109 — 2 — 1

and the cell ¢ = {(—1,y,0) € R? | y € (8,7)}. Clearly, P vanishes identically
over ¢, and ¢ has dimension 1. However, notice that y does not appear in P.
In fact, because P depends only on = and x1, and because the values for x and
1 are constant within ¢, this is really just an instance of our zero-dimensional
problem — Dp = {—1,29,21}, S = {—1,22,0}, and the GCD of the elements
of S is 1. Thus, P has invariant order 1 in ¢ X R.

In practice, cases in which a projection factor vanishes identically over a region
of dimension greater than one are often of this type. The hard part is figuring
out whether c is really constant in all the coordinates corresponding to variables
that occur in P.

Our approach is to forgo a true decision procedure for determining whether ¢
is really constant in all the coordinates corresponding to variables that occur in
P and, instead, settle for a fast procedure that is sometimes able to to prove
that c is constant in all the coordinates corresponding to variables that occur in
P. Hopefully, the procedure will be able prove that coordinates are constant in
many situations in which this problem actually occurs. It is certainly fast, and
is able to prove that coordinates are constant for the few uncontrived examples
we have found to run it on.

The procedure is called “CONSTCOORDTEST”. It takes a level k, a k-level
cell ¢, and a polynomial P in the variables z1,...,z. CONSTCOORDTEST
returns SUCCESS if it is able to prove that ¢ is constant in all the coordinates
corresponding to variables that occur in P, and FAILURE otherwise — which
means that it’s unable to prove this statement true, not necessarily that the
statement is false. Appendix B presents (without proof) a proposal for a true
decision procedure for this problem, which points to ways that CONSTCO-
ORDTEST could be strengthened to return SUCCESS in more cases.

CONSTCOORDTEST (k,c, P)

1. set a = {} (note: a grows to be sort of a generalized sample point, where
some coordinates are given values while others remain free, like (x =

-Ly=yz= 0))
2. for ¢ from 1 to k do
(a) set ¢; to the i-level ancestor of ¢
(b) if ¢; is a sector then

i. if deg,,(P) =0, add z; = z; to a, otherwise return FAILURE

(c) if ¢; is a section then

i. set L to the set of i-level projection factors of which ¢; is a sec-
tion (by definition of “section” none of these polynomials vanish
identically on ¢;—1)

ii. set L’ to the set of all elements of L evaluated at z; = «;, where
«; is the ith coordinate of the sample point for ¢;

iii. set L* to the set of all elements of L' “evaluated at a” (this is
actually a partial evaluation, since some of the entries of a are
of the form z; = ;)

iv. if any element of L* is the zero polynomial then add z; = «; to
a, otherwise
if degs,(P) = 0 then add x; = x; to a, otherwise return FAIL-
URE

3. return SUCCESS

To prove that this algorithm is correct, we will show that after i iterations, if
the algorithm has not returned FAILURE, all the coordinates that are assigned
values in a are “correct” for ¢;, in the sense that ¢; is constant in those co-
ordinates with those values (although, of course, ¢; may be constant in other
coordinates as well).

The ¢ = 0 case is trivial since a = 0.

Suppose i > 0, consider the beginning of the ith iteration of the loop Step 2.
By induction, a is “correct” for ¢;_1 in the above sense.

c; is a sector : Step 2.b determines the course of this iteration. If x; appears
in P, FAILURE is returned (as it clearly should be). If z;; does not appear
in P, then we leave a unaltered and, because ¢; inherits its coordinates
for {z1,...,x;—1} from ¢;_1, a is “correct” for ¢; after the ith iteration.

¢ is a section : Step 2.c(i) sets L to the set of i-level projection factors of
which ¢; is a section. If f is a continuous real-valued function defined over
c;—1 whose graph over c;_; intersects ¢; in at least one point, then by the
usual definitions for CAD:

¢; is the graph of f over ¢;_1 < (Ip € L)(Va € ¢;—1)[p(@, f(@)) = 0]
0
Now, if f(x1,...,2,-1) = B, and § is the ith coordinate of at least one
point in ¢;, (1) tells us

c; is the graph of f = 8 over ¢;_1 < (Ip € L)(Va € ¢;—1)[p(a, B) = 0]
(2)
Of course, “c; is the graph of f = 3 over ¢;_1” means that ¢; has constant
ith coordinate with value 8. Therefore, we have the following result:

”

4

Theorem 1 Let (is the ith coordinate of at least one point in ¢;. Cell ¢;
has constant ith coordinate if and only if

(Fp € L)(Va € ¢i—1)[p(@, B) = 0] 3)

Now, our “G” will be «;, the ith coordinate of the sample point for c;.
Thus, Theorem 1 becomes: ¢; has constant ith coordinate if and only if

(Fp e L)(Va € ci_1)p(@, o) = 0]

Step 2.c(ii) sets L’ to be the set of all p € L evaluated at x; = «;, so we
may restate the above as: ¢; has constant 7th coordinate if and only if

(Fqg e LY (Va € ¢;_1)[q(@) = 0]

Recall that a is a “partial sample point” in which variables are only given
values if the associated coordinates in ¢;_; have been proven by previous
loop iterations to be constant. If we let “|,” denote “evaluation at a” in
this sense, then ¢|,(@) = g(@) for any @ € ¢;—1. Step 2.c(iii) computes
L* = {q|q such that ¢ € L'}. So the above may be restated as: ¢; has
constant ¢th coordinate if and only if

(Bq € L)(Var € ¢ia)g(@) = 0] (4)

Now consider the test in Step 2.c(iv). If there is an element ¢ in L* that
is the zero polynomial then clearly (Va € ¢;—1)[g(@) = 0], which means
that (4) is true, which in turn means that ¢; has constant ith coordinate
(with value «;). Therefore, if Step 2.c(iv) determines that the coordinate
is constant, it is correct. Otherwise, it either returns FAILURE or x; does
not appear in P and it proceeds without assuming that the x;-coordinate
is constant in ¢;. Thus, after i iterations, a is “correct” for ¢;.

When CONSTCOORDTEST returns success, we find a minimal delineat-
ing polynomial for P just as we did in Section 2.1 for the zero-dimensional
case. If this minimal delineating polynomial is constant, we know that P

is in fact order-invariant in ¢ x R. Thus, once again, there is no need for
QEPCAD to report failure.

When is order-invariance really needed

McCallum notes that when our goal is to construct a sign-invariant CAD, as it is
for quantifier elimination, order-invariance of projection factors is not required
at the highest level. At lower levels we need order-invariance to ensure that
subsequent lifting steps are valid, but at the highest level there are no subsequent

lifting steps, and thus sign-invariance is sufficient. A projection factor that is
identically zero in some region ¢ X R is certainly sign-invariant in the region, and
therefore we don’t need to worry about delineating polynomials in this case.

In fact whenever the projection factor in question does not have a derivation
as a resultant or discriminant of other projection factors only sign-invariance
is required. In [3] it is pointed out that only sign-invariance is required for
coefficients, and clearly only sign-invariance is required of input polynomials,
regardless of their level. In practice many cases in which projection factors
vanish identically involve polynomials that have no derivations as resultants or
discriminants. This test is an important tool for recognizing situations in which
the McCallum projection/lifting method seems to fail, but in fact does not.

5 Conclusion

The McCallum Projection produces much smaller projection factor sets than
previous projections, which makes it feasible to attack larger problems than
would otherwise have been possible. Unfortunately, CAD construction is compli-
cated by the requirement of sign-invariance rather than simply order-invariance
of projection factors in cells. This requirement sometimes causes the McCal-
lum projection to “fail”, and sometimes requires the addition of a “delineating
polynomial” during lifting.

In theory, adding delineating polynomials does not add significantly to compu-
tational costs. In practice, however, it complicates implementation. In the case
of QEPCAD, grafting the facilities for adding delineating polynomials would
be a significant undertaking. When the McCallum projection fails, we have a
bigger problem. Either another projection must be used, which will likely result
in a much larger projection factor set, or human intervention will be needed to
break the problem up into subproblems for which the McCallum projection can
be used.

This paper refines the criteria for determining when delineating polynomials
are needed, what delineating polynomial is needed, and when the McCallum
projection fails. The result is that we can often safely use the original lifting
method with the McCallum projection. Our implementation in QEPCAD of
these criteria means that, for the first time, the McCallum projection can be
used and, in the absence of error messages, is proved to be valid. Some future
implementation of CAD will doubtless allow for the addition of delineating
polynomials (or, in the terminology of [3], allow for adding points to CAD’s).
Such an implementation would still benefit from the criteria developed in this

paper.

10

6 Appendix A: Problems

This appendix describes some of the basic quantifier elimination problems con-
sidered in this paper.

6.1 The x-axis ellipse problem

The x-axis ellipse problem, a special case of the general ellipse problem posed
by Kahan [10], is a traditional benchmark problem for quantifier elimination
algorithms. (See for example [9], [8]) The problem asks when the ellipse (z —
c)?/a® 4+ y?/b* = 1 lies in the unit circle. Of course we require a and b to be
non-zero, and in fact we are only interested in the case where they are positive.
The formula

a>0 A b>0 A [0 (z—c)?+a?y’—
(V) (Vy) a2b2:0—>m2+y2—1§0]

expresses this as a quantifier elimination problem.

6.2 Anai’s problem

In [1], Hirokazu Anai applies the Virtual Term Substitution method of quanti-
fier elimination [12] to problems in control theory. The particular problem we
examine is the last example posed in the paper, which finally boils down to the
following quantifier elimination problem:

s>0Axy >0A2 +1>0A810 — 22 >0
/\[L’Q.’K1+$220/\8($1+1)20

Aoz +22)s — 23 — 22 >0AN2— 21 —29 >0
AN—10<sAs<0

(EIl)(EIQ)

6.3 The edge-square product problem

Consider the complex segment L = {z +i | x € [0,2]}, and the complex square
S={z+iy | x € [2,4],y € [-1,1]}. Quantifier elimination can be used to
determine the complex product of S and L. Since there are the easily derived
necessary conditions that the product lies in the box [—1, 9] x i[—6, 6], the prod-

11

uct can be expressed as all pairs (z,y) satisfying:

T=2x122 —Y2 N Yy=2x1y2 + T2 A
0<z1<2 N 2<z29<4 A
@) @)@ | UTE =2

AN —1<x<9 N 6<y<6

This problem appears in [4].

7 Appendix B: A true decision procedure for
CONSTCOORDTEST

Here is a simple algorithm, “CONSTCOORDDECIDE”, which takes a k-level
cell ¢ and a (k + 1)-level projection factor P and determines whether or not
the coordinates of the points in ¢ are constant for all coordinates corresponding
to variables appearing in P. It returns SUCCESS when this is the case, and
FAILURE otherwise. The algorithm is impractically slow, but a fast, though
weaker, variant of it is the previously discussed CONSTCOORDTEST.

CONSTCOORDDECIDE(k, ¢, P)

1. set a = {} (note: a grows to be sort of a generalized sample point, where
some coordinates are given values while others remain free, like (x =

-Ly=y,2=0))
2. set F'={}
3. for i from 1 to k do

(a) set ¢; to the i-level ancestor of ¢

(b) if ¢; has dimension 0, add z; = «; to a, where «; is the ith coordinate
of the sample point for ¢;

(c) if ¢; is a sector then
i. if deg,,(P) =0, add z; = z; to a, otherwise return FAILURE
(d) if ¢; is a section cell of dimension greater than zero then

i. set L to the set of i-level projection factors of which ¢; is a section
ii. set L' to the set of all elements of L “evaluated at a” (this is
actually a partial evaluation, since some of the entries of a are
of the form x; = x;), removing any that are identically zero
iii. set L* to the set of all elements of L’ evaluated at x; = a;, where
«; is the ith coordinate of the sample point for ¢;

12

iv. if any element of L* is in the ideal defined by the irreducible com-
ponent of V(F') that contains ¢; (note that either all elements of
L* are in the radical of the ideal generated by the elements of
F, or none are) then add z; = «; to a, otherwise

if degy,(P) = 0 then set F' = F UL’ and add z; = z; to a,
otherwise return FAILURE

4. return SUCCESS

As a simple example, let P(x1,xo, 23,24, 2) = (11 — 24 +1)22 — 21 and let ¢ be
the 1-dimensional cell in R* constructed via the following lifting steps:

cell type sections of ... sample point coord.
Level 1 | section {z1} a3 =0
Level 2 | sector — ag =3/2
Level 3 | section {zs + x2} as = —3/2
Level 4 | section | {z3zy + xo + 21} g =1

At the start of the 4th iteration of CONSTCOORDDECIDE, F = {z3 + 22}
and a = {1 = 0,29 = x9,x3 = x3}. First L is set to {xsz4 + 22 + 1}, then
L’ is set to {x3x4 + 22}, and finally L* is set to {x3 + z2}. Clearly, the one
and only element of L* is in the ideal defined by the one and only component
of V(F'), and therefore coordinate 4 of every point in ¢ has the value 1.

In practice CONSTCOORDTEST seems to be reasonably successful at recog-
nizing when a cell’s coordinates are constant at each coordinate corresponding
to a variable that appears in P. This can perhaps be explained as follows: The
elements of F' are polynomials in the variables that do not appear in P. The
discriminant of P and other projection factors descended from P do not con-
tain these variables, so if they appear in L, then the ideal membership from
Step 3.d(iv) reduces to simple zero testing, which is precisely what CONSTCO-
ORDTEST does.

References

[1] Anar, H. Solving LMI and BMI problems by quanti-
fier elimination. In Proc. of IMACS-ACA’98 (http://www-
troja.fifi.cvut.cz/aca98/proceedings.html, 1998), R. Liska, Ed. Electronic
Proceedings.

[2] ArRNON, D. S., CoLLINs, G. E.; AND McCALLUM, S. Cylindrical alge-
braic decomposition I: The basic algorithm. SIAM Journal on Computing
13, 4 (1984), 865-877.

13

3]

[10]

[11]

[12]

BrownN, C. W. Improved projection for cylindrical algebraic decomposi-
tion. Journal of Symbolic Computation 32, 5 (November 2001), 447-465.

BrownN, C. W. Simple CAD construction and its applications. Journal of
Symbolic Computation 31, 5 (May 2001), 521-547.

CAVINESS, B., AND JOHNSON, J. R., Eds. Quantifier Elimination and
Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic
Computation. Springer-Verlag, 1998.

CoLriNs, G. E. Quantifier elimination for the elementary theory of real
closed fields by cylindrical algebraic decomposition. In Lecture Notes In
Computer Science (1975), vol. Vol. 33, Springer-Verlag, Berlin, pp. 134—
183. Reprinted in [5].

CoLLiNs, G. E., AND HoNG, H. Partial cylindrical algebraic decompo-
sition for quantifier elimination. Journal of Symbolic Computation 12, 3
(Sep 1991), 299-328.

DoLzMANN, A.,; AND STURM, T. Simplification of quantifier-free formulae
over ordered fields. Journal of Symbolic Computation 24, 2 (Aug. 1997),
209-231. Special Issue on Applications of Quantifier Elimination.

Hong, H. Simple solution formula construction in cylindrical algebraic
decomposition based quantifier elimination. In Proc. International Sympo-
stum on Symbolic and Algebraic Computation (1992), pp. 177-188.

KAHAN, W. Problem no. 9: An ellipse problem. SIGSAM Bulletin of the
Assoc. Comp. Mach. 9, 35 (1975), 11.

McCALLUM, S. An improved projection operator for cylindrical algebraic
decomposition. In Quantifier Elimination and Cylindrical Algebraic Decom-
position (1998), B. Caviness and J. Johnson, Eds., Texts and Monographs
in Symbolic Computation, Springer-Verlag, Vienna.

WEISPFENNING, V. Quantifier elimination for real algebra — the quadratic
case and beyond. AAECC 8 (1997), 85-101.

14

