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Abstract

We present a system that enables a robot to learn to plan through demonstration and imitation.
An imitator acquires planning operators by observing a demonstrator, segmenting the demonstrators
actions into planning steps, and learning the preconditions and effects of the operators. When the
imitator tries to execute its own plans, it learns to perform the operations through reinforcement
learning, and corrects errors in the previously learned operator effects.

1 Introduction

Imitation learning promises to be a powerful method of training robots
to behave in sophisticated ways. It enables fielded robots to develop

new skills on their own without intervention. Imitation may take  Input ¢ ¢
place in any area to which general machine learning can be applied.

Currently, most robotic imitation learning systems concentrate on Reactive Conditions
the mimicry of low level motor movements such as gestures[9, 8]. Im- Plans
itation learning in the field of planning takes place at the planning Modules Operators

level (e.g., sequences of operators) ignoring low level issues. Imita-
tion learning at a high level that nonetheless takes in to account low Output ,—‘ T—‘
level issues is an under-explored area, and the focus of this paper.
We present a framework in which the robot learns through imitation
both how to compose planning operators from low level robotic move-
ments and how to apply those operators. Our system addresses some
shortcomings of current operator learning systems, and uses a robust mechanism for learning low level
behavior that does not require mimicry of individual movements.

In section 2 we present the basic control architecture that drives the robot. Section 3 presents the
learning algorithms and discusses how they fit in the framework. Section 4 describes experiments testing
the abilities of the learning algorithms, and finally we conclude with future work.

Figure 1: The control architec-
ture.

2 Control Architecture

The control architecture of the imitator has two layers (figure 1). The lower layer consists of a col-
lection of reactive modules responsible for low level behavior. Individual modules are neural networks
or parameterized linear or bilinear functions. The upper layer is the planning system. This layer first
determines which planing conditions (predicates) are currently true. When the robot is executing a plan,
the planning layer uses the conditions to determine where it is in the plan and what operator should be
applied. Each planning operator is associated with a reactive module in the reactive layer. Once the
operator is selected, its corresponding reactive module is activated, which then uses input to directly
generate output for the robot.



3 Learning Method

Learning in the system takes place at both the reactive and planning layer. The system begins with a set
of conditions it can recognize' and attempts to learn the appropriate planning operators for the domain.
Learning the planning operators means learning the preconditions and effects of the operator, as well as
learning the parameters in the reactive module so that it gets the desired effects. The basic process of
learning in the system involves six steps:

1. The imitator observes the the demonstrator’s (low level) actions and divides the action stream into
segments that correspond to steps in a plan. Each step will eventually be mapped to a planning
operator.

2. For each segment, a reactive module is created in the reactive layer. This module will learn to
perform the operation corresponding to that segment. The module is “primed” in order to facilitate
learning (see §3.2).

3. For each segment, an operator is created in the planning layer, and initial guesses are made at the
preconditions and effects of the operator.

4. The imitator stops observing the demonstrator, and is given a goal to complete. The imitator
generates a plan based on its current set of operators.

5. For each reactive system selected by an operator in the plan, the robot learns to perform the
operator via reinforcement learning.

6. If the plan fails, the operators are refined by adjusting the preconditions and effects of the operators,
and a new plan is generated. Then the imitator continues with step 5, learning the parameters of
the reactive modules for the new operators in the plan. Steps 5 and 6 are repeated until the plan
succeeds.

3.1 Segmentation

In a robotic system, a plan operator (the basic unit of a plan) may consist of many low level actions.
Therefore, in an imitation learning scenario, the first step is to segment the stream of input data de-
scribing the demonstrator’s actions into chunks corresponding to the basic planning units. Most of such
segmentation is currently done by hand [4] or using heuristics based on properties of the motors, such
as when joint velocities cross zero[7]. However, a single planning unit may take place over the course of
several minutes and include thousands of zero velocity crossings (e.g., ‘fetching the Illudium Q-36
Space Modulator’). We want to segment the data only after the achievement of the goal. We are devel-
oping two automatic segmentation methods for our problem. The first relies on the demonstrator having
the plan steps in mind and indicating the end of steps with an explicit signal. The second method relies
on statistical properties of continuous and repetitive actions to induce the points of discontinuity in the
stream.

3.1.1 Demonstrator Signal Segmenting

In this case, the demonstrator signals positively when a step is completed, or negatively during a step if
the demonstrator is in a situation to be avoided. Demonstrator signal segmenting has the advantage that
it can be 100% reliable. As long as the demonstrator has a correct model of the plan, it can correctly
convey it to the imitator. It also has the advantage that negative signals emitted by the demonstrator
can improve the performance of the imitator. If the demonstrator finds itself in a state that is dangerous
or potentially damaging to the step, it can emit a negative signal to indicate this. Demonstrator signal
segmenting has the disadvantage that it requires the cooperation of the demonstrator, which may not
always be available.

1Directly learning the descriptives from raw sensor data is an interesting and challenging problem that we want to
address in the future.



3.1.2 Induced Segmentation

Without the cooperation or expertise of the demonstrator, segments may still be automatically induced
from the demonstrator’s action stream, if it contains multiple executions of the planning operators that
the imitator is trying to learn. Repetitions often occur naturally in plans. For example, in a construction
plan, the demonstrator may execute ‘pick up building block’ and ‘place building block on top
of another block’ multiple times. In this light, these primitives repeat in a manner similar to common
linguistic entities in natural language. We are currently investigating several techniques from natural
language processing for this purpose. As a baseline, we have implemented a Japanese word segmentation
algorithm [1].2 Based on the observation that certain words frequently co-occur as a sequence, Ando and
Lee determined whether to add a segment break between words based on a metric called cohesion factor.
A group of words is considered highly cohesive if they often occur together and rarely occur with other
words. Thus, for each possible segmentation point, they compare the cohesion factor of a n-word window
before and after the point with the cohesion factors of all the n-word windows that cross that point. If the
sequence windows on either side of the point are significantly more cohesive than the sequences crossing
the point, then the algorithm determines that a segment ends at that point. In our experiments, the
cohesion measure was the average distance of the vectors of the window from the centroid of the window.
We used a window of four samples.

3.2 Vicarious Learning and Priming

Once the input is segmented, a Q-learning [11] module is created in the reactive layer for each segment.
The module is primed using a technique from Vicarious Learning (or VL — described in [5]). VL is defined
as learning by an agent from another agent by observing both the actions of and rewards to the other
agent. The agents signal their pleasure and displeasure with their status in the environment when events
occur, and the learners perceive these signals. If the system is using demonstrator signaled segmenting,
the signal from the demonstrator (positive or negative) is used as a vicarious signal. If the system is
using another segmenting system, the end of a segment is considered a positive signal. When the imitator
detects a vicarious signal, the eligibility trace of the active vicarious Q-learning subsystem is set with
the input state of the model agent, and a reinforcement signal matching the vicarious signal is fed to the
system, modifying the weight vector. The advantages to using vicarious learning for the operators are: by
concentrating on the final goal of the step, the imitator can learn well from an inefficient demonstrator;
by ignoring the low-level motions, imitators can learn from demonstrators with different morphologies,
and negative information can be conveyed to the imitator.

3.3 Planning Operators

Once a segment is identified and the reinforcement learning system primed, the imitator guesses at the
demonstrator’s goal in performing each segment. This corresponds to identifying the preconditions and
effects of each segment. To do so, the imitator must start with a reasonable set of logical descriptives
for the domain and the ability to identify when they apply. Whenever a segment begins, the planning
system records the current state of the demonstrator. When the end of the segment is identified, the state
of the demonstrator is examined again. We use a system similar to Wang[10]. The world is described
with STRIPS style operators[6]; preconditions are hypothesized based on the world state at the start of
the segment; and effects are hypothesized based the world state at the at the end. There are several
significant differences between Wang’s idealized planning world and that of the robots we considered.
Wang assumes: a) that the learner has full access to the world state and b) that the operator can always
be identified. Our robots do not have this information, therefore they generally will not create operators
with the appropriate level of generality. For example, in Wang’s system, if the demonstrator uses the
operator hold-with-vise multiple times, each time in a slightly different world state, the imitator can
recognize the operator by name and deduce the preconditions and effects of the operator (i.e., the common
predicates between the instances). In our case, the imitator does not have a prescribed set of operators
a priori, therefore it cannot identify two instances of the same operator if the observed preconditions
and effects are slightly different. This makes the refinement process less reliable. Moreover, since many
robots do not have a global view of the world, it is hard to distinguish the effects of an operator from
conditions that become observable. Thus, the effects of an operator are not always directly inferable

2Word segmentation is often necessary for Asian languages because the text does not contain word delimiters. An English
equivalent of the word segmentation problem is to determine word boundaries from an English text in which all the white
spaces have been removed.



from the end state. Without full knowledge of the world state, the robot has difficulties with recognizing
common operators and with correctly determining the effects of operators. We partially address this by
using a relatively small radius in which the imitator recognizes conditions to be true. After the operator
is created, we do not attempt to refine the operator further at this stage; instead, a new operator is
generated for each segment with a different set of preconditions and effects. Some operator refinement
is possible in the Plan Refinement stage (see §3.6). Furthermore, Wang uses the difference between
the world state before and after the operator was applied to deduce effects. Because our robots do
not always correctly identify the preconditions and effects of an operator, the difference approach is not
applicable. For example, if a mobile robot observed a demonstrator pick up a green object and then move
to a blue object, the imitator might infer a Go-Blue operator with preconditions Holding-Green and
effects Holding-Green, Nextto-Blue. The imitator cannot leave Holding-Green off the preconditions
list because it does not know that it is unnecessary for the operation. In Wang’s system, this precondition
would be refined away through resolving multiple instances of Go-Blue. In our system, the operator will
always have the precondition, and therefore, Holding-Green will also always be true after the operator’s
application. The result of these differences with Wang is that the imitator ends up with many similar
operators that vary only slightly in preconditions and effects.

3.4 Plan Generation

Once the imitator has a set of operators, it can begin to formulate plans to solve problems in the
environment. The system is designed so that the initial plan can be generated by any standard STRIPS
planner. We generate plans using a state-space regression planner with a depth first iterative deepening
search.

3.5 Operator Learning

Once a plan has been formulated, the imitator can begin executing the plan, but does not know how to
execute the steps. When it attempts to perform a step, the imitator action the output of the reactive
system associated with that operator. Recall that the weight vector for the system was primed in the
Priming step. If the imitator uses a generalization function (such as a neural network or weighted linear
function) and the space is smooth, then this can draw the observer toward the model’s state, as shown
in [2, 5]. Once the imitator’s input is similar to the demonstrator’s when it emitted the positive signal,
the similarity in states generates another positive reinforcement to the imitator, solidifying the skill in
the system.

3.6 Plan Refinement

Since the unrefined preconditions and effects associated with each operator are likely to contain some
errors, the plans as executed by the imitator may fail. For example, if a plan depends upon what the
imitator erroneously believes to be an effect of an operator, the plan may fail when the imitator tries
to apply the operator. It is important to detect the failure, repair the operator and refine the plan.
Currently, we detect the failure with a timeout, similar to [3], except that the timeout value is decreased
whenever an expected effect of the operator becomes true. Steps in a plan typically end once the desired
effects become true. If the imitator is performing a step and most but not all the effects become true,
this is a clue that the effects that did not become true should not be part of the operator.

Once a failure is detected, the system refines the plan, and then possibly repairs the current operator.
The plan is repaired by backtracking to the deepest choice point in the search tree. We do not assume
that the effects of the operator are wrong, because the failure may be due to a precondition for the
operator that the imitator was unable to see when observing the demonstrator. Instead, the planner tries
a new plan before the current operator to find the precondition that was necessary for the operator.

If there are no backtrack points below the current operator, the effects of the operator are assumed
to be in error. The operator is repaired by removing the effect that failed to become true. A copy of the
original operator is placed in a deprecated set as a last resort when no other plan can be found.

4 Experiments

We tested the system in a Khepera robot simulator with construction tasks. In order to smooth noise
and account for occluded objects, input to the system was from a virtual sensor that read from a map



built by the robots. In this section we will present experiments which test in isolation the segmentation
and the learning of individual operators based on the priming. We will also test the ability of the entire
system to learn to imitate a plan and to generate new correct plans based on the learned operators.

4.1 Segmentation

Because the demonstrator signal segmenting system

is always accurate, we test only the induced seg- [Data Precision | Recall
menter. We used our version of Ando and Lee (see exact 96.8 33.6
§3.1.2) on three data sets. The first was gathered Arm +/-2 100 86.3
from the Khepera simulator of a robot performing oxact 1.0 95.2
a construction task. The input was a four dimen- Khepera (+/-2) 1.0 100
sional vector sampled every tenth of a second. The ) oxact 2.0 533
first two values were the left and right wheel speeds. | Sailboat (+/- 2) 13.8 80.0

The third and fourth values were the arm and fin-
ger speeds. The second data set was gathered from Figure 2: Results of the segmentation experi-
a collection of Robix Arm programs written to perfopmemgvariety of simple manipulation tasks. The
input was a twelve dimensional vector sampled every tenth of a second. The values were the rotational
velocities of the individual servomotors. The third set was gathered from a 38 foot sailing vessel on a
twenty mile race. The sailboat was human controlled, and the actions of the crew were sampled every
thirty seconds. The individual values indicated course changes and adjustment to the sails. These data
were hand labeled to indicate the end of segments. Figure 2 shows the results of running each algorithm
on each dataset. We report both the precision and recall of the predicted segments for each algorithm,
for both an exact match to the labeled segments, as well as a match within two samples either side. We
see that with the Robix arm, both precision and recall were very high. This was because the velocities
of the motors tended to be constant within a particular step. For the other two datasets, recall was still
high but precision was very low. The segmenter was too sensitive to small similarities in the data and
was overly aggressive in proposing segments.

4.2 Operator Learning

Once the data is segmented, the imitator can use
the state at the end of the segment to prime the

Q-learning mechanism. Because the vicarious seg- 2500 o
menting system is currently more reliable than the positive & ragative vicarious -
induced segmenter, we used it in our experiments 2000 |- i

testing the learning of the individual operators. We
measured how viewing a vicarious event can directly
affect the speed of learning to perform a task. We
also measured how effective a negative signal from
the demonstrator is in keeping the imitator out of a
state. In the experiments, Watkins Q-learning with

1500 -

1000 -

Time to episode completion

replacing traces was used[11]. The Q-learning con- 500 - 1
stants were set at: a = 0.15, A = 0.2, and v = 0.8.

The input was a six dimensional vector where the ol : . : : : :
values of each dimension indicated the presence of Number of episods

a particular colored object in a particular direction.
The individual dimensions were: green object to the Figure 3: Learning curves of Vicarious Learning.
left; green object front; green object right; red object
left; red front; and red right.
Figure 3 shows the learning

curve of robots learning to perform No negative signal | with negative signal
the task of moving to a green ob- Avg. distance 33.83 S4.30
ject in a four foot by four foot en- Nymber touches 39 16

vironment with five differently col-
ored objects. Touching a green Figure 4: Results of vicarious learning with negative signals. Dis-
object generates positive reinforce- tance is measured in cm.

ment, and touching a red object gen-

erates negative. All data points are the average of ten runs. The baseline learns the task purely through



reinforcement learning. In the other two curves, the robots have been primed with vicarious learning.
The bottom curve shows that an agent primed with just a positive vicarious signal is excellent at the task
on the first episode, and has converged by the second. The middle curve shows results for robots primed
with both a positive vicarious signal (touching green objects) and negative vicarious signal (touching red
objects). The curve shows that in this situation, the robot acquires the skill more slowly that one primed
with just a positive signal, but still much faster than the baseline agent.

Figure 4 describes how well the negative vicarious signal keeps the imitator away from the red objects.
In comparing robots that have just a positive vicarious signal with those that have had both positive
and negative, it shows over the course of seven episodes, the average distance the two kinds of agents
keep from the negative (red) object, and the number of times each type came into contact with the red
object. Although the negative signal slows the learning speed, it does enable the agent to better avoid
the negative state.

4.3 Multi-step Sequence

The next experiment tests the ability of the system to put multiple planning steps together in a sequence.
In the experiment the demonstrator performed a multi-step plan, and the imitator learned to perform
the same steps in that order. Because the steps need only be memorized by the imitator, rather than
generated by the planner, it is unnecessary to refine the plans or improve the operators. The construction
task in this experiment is wall building: the agents must go to a piece of building material, pick it up,
bring it to the wall, move to the correct place at the end of the wall, and drop the material.

The demonstrator and imitator were placed in
the environment with the two marker objects and a
collection of randomly placed building objects. The <
imitator follows and observes the demonstrator per-
forming the wall building through one cycle, from L)
finding a building object to placing it on the wall.
After one cycle, the demonstrator was removed and
the imitator left to learn on its own. As it explored
the environment, it learned to perform the steps of
the plan sequence, and then repeated the sequence
to build the wall.

Figure 5 shows the walls built by the demonstra-
tor and imitator. The left wall was built by the 1015.25 seconds  1596.96 seconds
demonstrator using a hand coded plan and reactive
modules. The right wall was built entirely by the
learner. Each case was run 10 times and the length
of time taken to build the wall was recorded. The av-
erage time for the demonstrator was 1015.2 seconds,
and the average time for the imitator was 1596.9 sec-
onds.
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Figure 5: Completed walls built by the teacher
alone, and the learner alone.

4.4 Full Planning System

We create a plan-
ning test scenario

to verify that the Condition Description

imitator can gen- Near-X Robot within fifteen cm of an object colored X.
erate plans with Nextto-X Robot close enough to an X-colored object to pick it up.
acquired operators, Facing-X Robot facing an X-colored object.

and simultaneously  "year—Yy-Collection | Robot near a group of adjacent objects colored X & Y.
learn  to  perform Clear-X X-colored object free to be picked up.

the operators, de-
tect plan failures,
and repair the plan. Figure 6: The conditions detectable by the imitator.

In the scenario, the

imitator has a goal to find a green object and move it next to a blue object. There are two demon-
strators. The first demonstrates the basic process of moving the green object to the blue. The second
demonstrator shows that when the green object is blocked by a red object, moving the red object will



Demonstrator’s Imitator’s Preconditions Effects
Operator name | Operator name

Demonstrator One

Go-Green OpO <none> Nextto-Green Facing-Green
Clear-Green

Pickup-Green Op1 Nextto-Green Facing-Green Holding-Green
Clear-Green
Go-Blue Op2 Holding-Green Holding-Green Near-Blue
Clear-Blue
Drop-Green Op3 Holding-Green Near-Blue Nextto-Green Facing-Green
Clear-Blue Clear-Green Clear-Blue

Near-GreenBlue-Collection

Demonstrator Two

Go-Red Op4 <none> Near-Green Nextto-Red
Facing-Red Clear-Red

Near-GreenRed-Collection

Pickup-Red Op5 Near-Green Nextto-Red Near-Green Holding-Red
Facing-Red Clear-Red Clear-Green
Near-GreenRed-Collection
Pull-Away Op6 Near-Green Holding-Red Holding-Red
Clear-Green
Drop-Red Op7 Holding-Red Nextto-Red Facing-Red
Clear-Red
Go-Green 0p8 Nextto-Red Facing-Red Nextto-Green Facing-Green

Clear—-Green

Figure 7: The two demonstrators’ plans. The first column is the name of the operator as used by the
demonstrator. The second column is the name the imitator gives to the operator. The last two columns
are the preconditions and effects of the operators.

unblock the green. When the imitator is given the goal to move the green object next to the blue, the
green object is blocked by the red. The imitator needs to create a plan built from operators learned from
both demonstrators to solve the task.

The initial set of conditions are described in figure 6. The imitator was given the ability to recognize
all of the conditions at the start of the experiment. The plans that the demonstrators followed are shown
in figure 7, with the preconditions and effects inferred by the imitator. When the imitator is tested,
it initially generates the plan shown in figure 8, left. This plan is identical to the plan performed by
the first demonstrator. The imitator learns in the reactive module to approach the green object, and
eventually arrives, but of the four expected effects, only three are true, Near-Green, Nextto-Green, and
Facing-Green. The imitator generates a new plan (figure 8, middle) and deletes Clear-Green from the
operator op0. In the new plan, the imitator tries to apply op8 which requires that the imitator start next
to a red object, so the first step is op4. Once the imitator successfully applies op4, it tries to reapply
op8. This again fails because the object is not clear. The imitator finally generates the plan shown in
figure 8, right. This plan is sufficient to complete the task. In 10 runs of the imitator in the planning
phase, the plan was successfully completed in 3496.3 seconds.

5 Conclusion and Future Work

We have described a system that learns high level information about a robotic planning domain using both
high and low level information. It addresses several issues not accounted for in other operator learning
systems. The use of vicarious learning to learn motor skills enables the robots to gain low level skills by
imitation without direct mimicry of motion. There are many areas that we are interested in pursuing in
the future. We will: complete the design and testing of the induced segmenter; create mechanisms for
detecting conditions from the raw sensor data and automatically discovering new conditions for use in the
planning operators; develop mechanisms for merging multiple operators into one; develop a specialized
planner to take advantage the special properties of the operators; explore the planning step failure
detection; and develop a large test suite of planning problems across multiple robot platforms.
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Figure 8: The imitator’s three plans. Boxes are the operators and arrows point to the effects of operators
that satisfy the preconditions of the next operator. Colors are abbreviated to their first letter.
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