U.S. NAVAL ACADEMY
COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

&

Establishing Correspondence among Shared Information and Tasks

Childers, Candace M.

USNA-CS-TR-2005-06

June 7, 2005

USNA Computer Science Dept. o 572M Holloway Rd Stop 9F o Annapolis, MD 21403

Establishing Correspondence

Among Shared Information and Tasks

Candace Childers
29APRO5
S1496 Spring 2005

Research Advisor: CAPT Young

MIDN Childers

CAPT Young

Professor Schultz

ABSTRACT

Creating interoperability among heterogeneous systems enhances our military's war-
fighting capabilities. Differences in hardware, languages, and data models make
interoperability hard to achieve. The Object-Oriented Method for Interoperability
(OOMI) resolves modeling differences among systems through construction of a
Federation Interoperability Object Model (FIOM) used to capture information and tasks
shared among systems. The FIOM is constructed in either a bottom-up or top-down
fashion using the OOMI Integrated Development Environment (OOMI IDE) and includes
both component system and standard representations of the shared tasks and information.

When constructing a federation of interoperable systems, a correspondence must
first be established among shared tasks and information before data modeling differences
can be resolved. The OOMI IDE uses both semantic and syntactic correlation
methodologies for establishing such correspondences. Syntactic correlation is performed
using neural networks. Syntactic data concerning the structure and signature of shared
information and tasks is used to create discriminator vectors for objects being compared.
Neural Networks are used to compare these discriminator vectors to determine the degree
of similarity among objects. A ranking of the scores returned from the neural network
comparison is used to assist an interoperability engineer in identifying corresponding

objects for which modeling differences can be resolved.

I. INTRODUCTION

A.NEED FOR SYSTEM INTEROPERABILITY

Computer technology is rapidly changing. New hardware and software are constantly
being created in the fast paced computer world. The Department of Defense (DoD) is
continually buying new computer equipment and systems in order to extend its
capabilities. As technology has grown so has the awareness of how powerful computers
that share functionality can be. Communications technology has driven this new
recognition of power. Today’s computers have the capability to send and receive data
through networks. This new awareness is driving the need to find a way to create
interoperability among systems with different hardware and software components that
were not created with interoperability in mind. Interoperability is the ability for two

systems to communicate, share information, and perform tasks concurrently.

B. TYPES OF INTEROPERABILITY

Achieving interoperability among independently developed systems is complicated
due to the heterogeneities that exist among the systems. These heterogeneities can be
classified into two main categories: differences in what is modeled, termed differences in
view, and differences in how the information is modeled, termed differences in
representation. [Young02].

Differences in what is modeled include heterogeneity of scope, level of abstraction,
and temporal validity [Wied 93]. Heterogeneity of scope refers to the differences in the
number and type of attributes and behaviors used to model an object. For example,
System A, a traffic simulation system, may require a car’s velocity, rate of
acceleration/deceleration, and turn radius when modeling traffic flow. On the other hand,
System B, a crash simulation system, may require a car’s rate of acceleration, structure,
and vehicle weight for modeling a vehicle’s crash performance. If we want to share
information and behaviors between the systems such as a traffic simulation where crash

damage is accepted, then these differences must be resolved.

Level of abstraction refers to the degree or level to which a system aggregates
component attributes in describing an object. For example, one model may refer to gross
sales as the amount of sales in a year while another model may refer to gross sales as the
amount of sales in a month. Level of Abstraction differences are difficult to recognize by
just looking at the name or type of an attribute.

Heterogeneity of temporal validity refers to differences in the time frame used by
two different models or differences of when data remains valid in different systems.
Differences in temporal validity are common in military systems. In System A the
deceleration may be measured in miles per hour; whereas, System B may require a more
precise measure of deceleration in ft per minute. [Young02]

Heterogeneity of hardware and operating systems, structure, presentation and
meaning are all differences in the way data is represented. Heterogeneity of hardware and
operating Systems are a result of systems being developed at different times and with
different technologies. Different hardware and operating systems can result in differences
in the way data is stored, managed, and shared. Structure refers to the way the data of a
model is arranged. Presentation refers to the units or domain of values used to represent
data. Heterogeneity of presentation refers to differences in the units of measurement used
in two attributes that measure the same condition. For example, System A may measure
the speed of the car in miles per hour and System B may measure the speed in kilometers
per hour. Meaning refers to the semantic definition of certain attributes or objects.
Differences can arise when synonyms or homonyms are used for defining an object’s
attributes or behaviors. System A and B may have an attribute size but in System A size
may refer to length of the car and in System B it may refer to the classification of the car
(ie. Sedan, compact, etc.). [Young02]

These differences between systems create many obstacles that must be resolved
before systems can interoperate. Differences in scope, level of abstraction, and temporal
validity are the most difficult to reconcile. Information required by one system may not
be available from another system that it wishes to interoperate with. A means must be
found to provide such required information, or the desired interoperation cannot occur.
Such means can include the use of default or derived information, or in worst case may

require a modification of the source system to provide such information. Differences in

hardware and operating systems, structure, presentation, and meaning make it difficult to
decide which objects in one system correspond to objects in another system. Once
correspondences have been found, differences in hardware and operating systems,
structure, presentation, and meaning must be resolved before data can be shared
effectively. Two completely separate systems must be able to understand each other in
order to communicate and to perform tasks cooperatively. System interoperability is the

desired outcome; however, achieving true interoperability is not easy.

3. OBJECT ORIENTED METHOD FOR INTEROPERABILTY
Young’s Object Oriented Method for Interoperability (OOMI) uses a combined
model formulae, and ontology based approach to resolve many of the differences among
systems so that they may interoperate with each other. The objective of the OOMI is to
enable heterogeneous systems to exchange information and to utilize the tools and
services of each other. The OOMI resolves differences among heterogeneous systems. By
providing a common model of the information shared among systems in order to identify
correspondences and resolve differences among shared information. This common
model, the Federation Interoperability Object Model (FIOM), captures information to be
shared among systems for each federation component. The FIOM provides a basis for
resolving differences among components by providing a standard model for the shared
information. A Federation Entity (FE) represents a real world entity whose information is
shared among systems. The FE is an abstract view of the real world entity that hides
details of how the data is modeled. Each FE is composed of several Federation Entity
View’s (FEV’s) which are used to capture differences in view, ie. scope, level of
abstraction, and temporal validity within the different systems. A Federation Class
Representation (FCR) is then created to provide a standard representation of each FEV.
The presence of a standard representation reduces the amount of translation that must be
done in order for systems to interoperate. The FCR becomes the intermediate step in
translation. Corresponding objects on each side of the translation are resolved to match
the FCR and then resolved to match the object of the system that it is trying to

interoperate with.

The FIOM is created prior to runtime through the use of the OOMI Integrated
Development Environment (OOMI IDE). At runtime the OOMI translator resolves
differences among heterogeneous systems using the FIOM created before runtime.
Information to be shared by a system is first converted from its component system
representation to the corresponding FCR by translations defined in the FIOM. The
destination system uses translations in the FIOM to convert the FCR into an object that it
can accept. [Young02] The OOMI IDE provides a GUI that allows the user to create an
FIOM, correlate information to be shared among component systems, and create

translations between the heterogeneous data representation.

4. CORRELATOR

The OOMI contains a component module correlator that is used to identify
corresponding objects in two heterogeneous systems whose information and operations
are desired to be shared. This is the first step in building an FIOM of information and
operations to be shared by a federation component. Correlation is done by comparing
Component Class Representations (CCR) with a number of previously created FCRs to
find an FCR with corresponding view. A correlation between a CCR and a FCR must be
found before translators for resolving differences in representation can be formed. The
goal of the OOMI is to provide aid to the correlation process. Two types of correlation
are used by the OOMI. First a semantic key word comparison is run and then a syntactic
correlation is done through the use of neural networks. XML schemas are used to capture

syntactic and semantic information for each FCR and CCR to aid the correlation process.

II. TYPES OF CORRELATION

Before heterogeneities between two systems can be resolved, correspondences must
be made between the two systems. Finding two matching entities is the first step to
resolving differences between two systems. There are two types of correlation techniques
that can be used to find entities that represent the same object. The effectiveness of a
correlator can be measured by its precision and its recall. [Young 02] Precision is a ratio
of correct matches over the total number of matches returned. A high precision indicates
that the correlator is able to reduce the work of the engineer by returning relevant
matches without returning a lot of irrelevant matches. High Precision indicates that the
search has been narrowed down but it does not guarantee that all of the relevant matches
have been returned. Recall is the ratio of correct matches returned over the total number
of correct matches that exist. A high recall indicates that the correlator is able to find the
relevant matches, but it does not guarantee that the matches returned will be much less
than the original bank of entities being compared. A high recall and precision are needed
to ensure that the correct correspondences are being made and that the original problem
of finding correspondences is being reduced.

A. Semantic Correlation

Semantic correlation is the process of using the behavior described by an attribute to
find a corresponding behavior of the same type in a different entity. [LiCI 94] Semantic
correlation is very difficult to implement because it is difficult to pull meaning out of
data. However, semantic correlation provides the best correlation technique in terms of
precision and recall. It provides the best result because ultimately what we are trying to
find are entities in one system that behave similarly to an entity in another system. There
are several techniques for implementing semantic correlation including keyword
matching, specification matching, and the Semantic Web Approach.

Keyword matching is the easiest and most commonly implemented technique. When
entities are created their attributes and behaviors are assigned keywords. In our example
system of the car, the behavior of how fast the car is moving down the road is described
by the keyword speed. The keywords of a component would be compared to a database
list of keywords for matches. Once matches were found, an interoperability engineer

would compare the results to ensure the two components corresponded. The keyword

approach is not very effective for several reasons. The first is that component attributes
and behaviors are not always given names that reflect the actual behavior or characteristic
being described. If the librarian choosing the keywords for the attributes and behaviors
does not have a good understanding of the behavior the component is modeling, then
keywords will most likely be chosen poorly. For example, if a person is tasked with
coding a vehicle entity and they are given a data set that includes a number value of 14
feet they may choose a keyword of length when the data may actually be referring to
width. When this component is run through the keyword correlator, then another attribute
of speed will come up as a match when in fact the two attributes represent different
behaviors. In a keyword matching correlator, problems arise when the database of
keywords to compare to is too large or too small. If the keyword database is large then
the number of returns will be higher; therefore, the precision ratio will be lower. If the
database of keywords is small then the number of corresponding matches found will be
smaller; therefore, decreasing the recall ratio of the search. Facet classification helps to
increase the effectiveness of keyword searches. [Prieto-Diaz 90] Facet classification
helps to increase the searching aspect of keyword matching by creating a classification
scheme to choose keywords from. When a librarian chooses a keyword for an attribute
they use the categories created by the facet classification system to better choose
appropriate keywords. Even with the faceted approach keywords still fall short of
achieving high levels of precision and recall. The keyword approach is best used in
conjunction with other correlation techniques. The Data Element Tool Based Analysis
(DELTA) correlator takes that approach. [BFHW 95] It uses a keyword search to reduce
the size of the database being searched and then uses other methods to find
correspondences.

Specification matching is another approach to semantic correlation. [ZW 95]
Specification matching is an extension to signature matching, a syntactical approach
proposed by Zaremski and Wing. Specification matching is an improvement on signature
matching because it is based on a components behavior and types, and signature
matching relies only on the data types of the parameters. Specification matching is useful
in determining whether two components lack a semantic match to one another.

Specification matching refers to two types of matching: function matching and module

matching. A post-condition and pre-condition specification is set for each function. The
specifications for different functions are compared to determine if a semantic
correspondence is present. A module is a set of related functions. In module matching the
number of function specifications and each function specification in a module are
compared to the number of function specifications and each function specification in
another module to determine if a match exists. In a Specification Matching correlator the
user has the ability to set the thresholds for a match. The user could choose to list all of
the functions that have a partial match to a particular function or the user could choose to
only allow exact matches to be displayed. Specification matching is a theory that has not
been implemented into a working correlator. It is difficult to implement a correlator that
can evaluate the pre and post conditions of a component to gather semantic information.

The newest semantic correlation approach is the use of the Semantic Web. [DeMe
00] The Semantic web uses Extensible Markup Language (XML) schemas and Resource
Description Framework (RDF) schemes combined with an ontology based approach to
extract semantic data about components. Components can be modeled by an XML or
RDF document and the structure of the document can lead to clues about the meaning
and behavior of the attributes and functions. Extracting semantic information is difficult
when looking at XML schemas because the XML does not provide a common translation
for the data in the document. In order for XML to be useful for correlation, both systems
must know the details of the Document Type Definition (DTD) file. XML must be
translated using XSL Transformations before information can be exchanged and this is
based on both systems knowing the details of the DTD. XML is more useful for syntactic
correlation because it lays out the types and domains of attributes in an easy to parse
document. RDF is a much more useful tool for the Semantic Web approach to
correlation. RDF provides built in terms to describe the hierarchy of classes which allows
ontology represented languages to be described by RDF files. RDF provides a object-
attribute structure which displays each object as an independent entity and provides a
semantic layout of the data and relationships. RDF schemas have been enriched to allow
them to describe more complicated models of data which have made them a more

attractive data representation for the Semantic Web. XML and RDF files have semantic

meaning that is portrayed through their structure and the Semantic Web is a computer
process that extracts this semantic meaning.

Semantic correlation requires the extraction of meaning from text and data which can
be difficult. Although keyword search is the easiest type of semantic correlation to
implement, the Semantic Web offers more opportunity for extracting valuable semantic

information from a textual description of a component.

B. Syntactic Correlation

Syntactic correlation relies on the matching of components based on the structure of
an object. For example, it compares an object’s structure, data types, and an attribute’s
domain. If System A has an attribute speed that is an integer type and System B has an
attribute weight that is an integer then they share the same type; therefore, the share a
syntactic correlation. Syntactic correlation does not provide the high recall and precision
provided by semantic correlation. Syntactic correlation fails to discover the true meaning
of components and attributes; therefore, it has disadvantages in finding a true match.
However, Syntactic correlation is much easier to implement, so it makes up most of the
current correlators.

One approach to syntactic correlation, signature matching is a correlation technique
based on comparing the signatures for a component’s functions or comparing the
component’s interfaces. [ZW 93] Function matching and module matching are the two
types of signature matching. In function matching the signature includes the input and
output parameters of a particular function. A query is performed to find function
signatures with the same types in order to find a correspondence. The user can set
parameters on what constitutes a match. In some instances the user may want to see all
the components that partially match an input instead of just seeing the exact matches.
This allows the user to control the precision and recall of the correlation. Asking for exact
matches will raise the precision of the query but lowering the threshold for a match will
increase the recall for a query.

Another approach to signature matching is comparing the types and domains of
different attributes of a component. A component can be modeled by an XML file and

then the information needed can be parsed from that file. XML documents contain

10

information about type, attribute name, and the range and domain of the values allowed
for that attribute. This information can be compared to the same information contained in
another component’s XML document representation. There are many ways to make the
comparisons between the data, Semint is one approach that uses Neural Networks to
identify the corresponding elements [WiCl 00]. Semint was developed to find
corresponding components in heterogeneous databases. Corresponding components often
have similar designs, constraints, and values for attributes. In the Semint process this
information is extracted and put into a common form and then normalized. The
normalized information is then used to train a Neural Network on what to look for in
corresponding components. Once trained the Neural Network can compare any
normalized information to the information it has already received and determine whether
the information corresponds.

Syntactic correlation does not always produce corresponding elements, but when used
in conjunction with semantic correlation it can greatly reduce the work of the

interoperability engineer.

III. OOMI CORRELATOR

The OOMI correlator uses a two phase system for finding correspondences which
seeks to increase precision and recall in each phase. [Young 02] The OOMI combines the
keyword search method and the Neural Network syntactic approach to find
correspondences among information shared by federation components. The OOMI IDE
allows the user to control threshold values for the matches returned. If the user increases
the threshold level then only closely matching or exact matches will be returned. The
overall number of returns will be reduced which increases the precision of the correlation.
If the user decreases the threshold then more matches will be returned but they will not
all be close matches. This will increase the recall of the correlation.

A. Semantic Key Word Correlation

The first phase of the OOMI Correlator is a semantic keyword search. [Young 02] In
the OOMI, information to be shared by a component is represented by XML schemas.
The XML schema is parsed to retrieve keywords contained in the name and description

of the corresponding object’s attributes and operations. The first step of the keyword

11

correlator is to extract this keyword information from the (CCR) XML schema. The
keyword information extracted from the (CCR) XML schema is compared to a database
of keywords stored for each previously registered Federation Class Representation (FCR)
schema. Once the comparison is made a list of matches within the threshold set by the
interoperability engineer is returned. The interoperability engineer then selects the
matches that he wants to put through the next phase of the correlator which is a syntactic

correlator.

B. Syntactic Correlation By Neural Networks

Syntactic information can be extracted from XML schema documents in addition to
the keyword semantic information. The syntactic information collected from the FCR
schemas is used to train a Neural Network. Then the syntactic information obtained from
the CCR schema is run through the Neural Network to check for a correspondence.
[Young 02]

The first step in the Neural Network approach to correlation is collecting syntactic
information from the XML documents. The OOMI IDE looks for data element structure,
data element type, frequency of occurrence, data size specifications, and data value
constraints. All of this information is contained within the XML schema created to define
the information shared among systems. Data element structure labels an attribute as
isComplex if the attribute contains subtypes. Type refers to whether the attribute is a
string, int, Boolean, etc. The frequency of occurrence determines how often an attribute
can be found in a real world entity. Data size constraints place a range on the possible
domain of a number or a limit on the length of a string. [Young 02] All of this
information is used for comparing two components to find a correspondence.

When a new FCR is created the Java Document Object Model (JDOM) is used to
parse the schema and extract the information that can be used to find a correlation with a
CCR. [Shedd 02] The information gathered from the JDOM is used to create a
discriminator vector for each attribute and operation for the FCR. The discriminator
vectors will then be used to train a backpropagation neural network. The OOMI
Correlator uses 28 different discriminator values to make up a discriminator vector for

the backpropagation neural network. Table I lists the different discriminator values and

12

the input value to be placed in the vector for the information found from the XML

document about each attribute or operation.

Table I. Discriminator Values [Shedd 02]

Number Discriminator
1 property Type
2 isComplex
3 numSubtypes
4 numReqdSubtypes
5 numOptSubtypes
6 numOperations
7 numParameters
8 string type
9 boolean type
10 float type
11 double type
12 bigDecimal type
13 int type
14 long type
15 short type
16 other type
17 minOccurs
18 maxOccurs
19 minLength
20 maxLength

Value to Vector
Structural Information
Operation or Attribute

Describes whether an attribute is complex or atomic

If attribute is complex, number of subtypes
If attribute is complex, number of required subtypes

If attribute is complex, number or optional subtypes

For complex attribute — total no. of operations defined for type

For operation-number of parameters
For complex attribute- sum of parameters for all operations

Type Specifications
If atomic attribute — < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 >
Note |

If complex attribute or operation — Value normalized to [0.0, 1.0]
If atomic attribute — < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 >
Note 1

If complex attribute or operation — Value normalized to [0.0, 1.0]
If atomic attribute — < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 >
Note 1

If complex attribute or operation — Value normalized to [0.0, 1.0]
If atomic attribute — < 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 >
Note |

If complex attribute or operation — Value normalized to [0.0, 1.0]
If atomic attribute — < 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 >
Note 1

If complex attribute or operation — Value normalized to [0.0, 1.0]
If atomic attribute — < 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 >
Note 1

If complex attribute or operation — Value normalized to [0.0, 1.0]
If atomic attribute — < 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 >
Note |

If complex attribute or operation — Value normalized to [0.0, 1.0]
If atomic attribute — < 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 >
Note 1

If complex attribute or operation — Value normalized to [0.0, 1.0]
If atomic attribute — < 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 >

Note 1
If complex attribute or operation — Value normalized to [0.0, 1.0]

Frequency of Occurrence

Minimum number of times attribute must occur in class modeling real world identity
Maximum number of times attribute may occur in class modeling real world identity

Data Size Specification
1

For String Type — minimum length of string
For string Type — maximum length of string

13

21 totalDigits Total number of digits in an attribute
22 fractionDigits Number of digits in fraction part of attribute

Data Value Constraints
23 pattern Restriction to values allowed for string and numeric types
1

24 numEnumerations Number of enumeration values for attribute

25 minExclusive Lower open bound of interval defined for numeric attribute types
26 maxExclusive Upper open bound of interval defined for numeric attribute types
27 minInclusive Lower closed bound of interval defined for numeric attribute types
28 maxInclusive Upper closed bound of interval defined for numeric attribute types

For attributes all of the discriminators are used except for the numParameters
discriminator. For complex attributes the numSubTypes discriminator indicates how many
elements the attribute is composed of. If an attribute was composed of 2 subtypes then the
value of the numSubType discriminator would be 2 until normalized. Table 1 describes
what the different discriminators represent. All input to the neural network must be
between the value of 0.0 and 1.0. Each attribute’s data type requires a vector of binary
values instead of a single value in the range [0.0, 1.0]. If a data type is just given a single
value then the neural network would consider some types to be closer to each other when
considering a correspondence. [Shedd 02] For example, if a string was assigned the value
0.4, an integer was a value of 0.5, and a Boolean was assigned the value 0.6 then the
neural network would consider an integer and a string a closer match than a string and a
Boolean. To avoid an incorrect perception of closeness between data types each data type
is given a unique sub vector. These sub vectors are listed in Table 1 under the Type
Specifications section. After discriminator vectors are formed, they are stored with their
respective CCR or FCR components.

Each FCR has its own trained neural network as one of its syntactic components.
[Shedd 02] The first step in training the neural networks is to determine what output
vectors should be displayed for each attribute in the FCR if a match is found. The length

of the vector is equal to the number of attributes in the FCR.

14

If there are three attributes in a particular FCR then the vectors would look like this:
Attribute 1 <1.0, 0.0, 0.0>
Attribute 2 <0.0, 1.0, 0.0>
Attribute 3 <0.0, 0.0, 1.0>
The 1.0 is in a different place for each attribute so that each vector is unique which allows
the interoperability engineer to see which attributes of a CCR match up to which
attributes of a FCR when vector results are displayed.

Next a three-layer backpropagation neural network is created. The three layers are
input layers, hidden layer, and an output layer of nodes. [Shedd 02] The number of input
nodes is equal to 28 because 28 discriminators will be entered into the neural network in
vector form. The output layer nodes ensures that there is a node for each attribute of the
FCR so the number of output layer nodes is equal to the length of the particular vectors
for the FCR attributes (shown above). The number of hidden nodes is the floor of the
average number of input and output nodes. For example, if an FCR has 4 attributes and
the discriminators of the CCR vectors are of length 28 then there will be:

Input Layer: Nodes =Number of Discriminators=28
Output Layer: Nodes=Length of FCR Attribute vectors=4
Hidden Layer: Nodes= Floor[(Input + Output)/2] = 16

Once the network has been created it must be trained to find correspondences
between the FCR it represents and CCRs that are put into the trained neural network as
input. Training is accomplished through a learning algorithm. To train the network each
FCR attribute vector is forward propagated through the network individually. For each
vector an error is calculated. The error represents the difference between the actual output
vector and the desired output vector that was determined above. The error is used to
adjust the weight matrices of the network and then the process is repeated until the error
is within the tolerance value that has been set by the interoperability engineer. This
process is done for each FCR attribute vector. Once the network is trained it is saved with

the FCR as a syntactical component.

15

Once the interoperability engineer has run the CCR through the semantic keyword
correlator and come up with a list of possible matches he can use the syntactic correlator
to try and find a one-to-one correspondence with an existing FCR. The interoperability
engineer must first set the threshold setting on the syntactic correlator. The threshold
setting determines at what point a match will be accepted or rejected. If the threshold is
high then only close matches will be displayed; however, if the threshold is lowered then
matches that are not quite as close will be displayed. Next the interoperability engineer
must select which FCR component neural networks the CCR discriminator vector will be
run through for correspondence. The semantic correlator gives the engineer an idea of
which FCR’s may be a match; therefore, helping him with his decision of which FCR’s to

run through the correlator for comparison.

The next step is to take the discriminator vectors stored with the CCR and
perform a syntactic evaluation against each FCR neural network component. Once all of
the evaluations have been run then a list of scores is displayed in the OOMI IDE for the
interoperability engineer. All of the scores that fall above the set threshold setting are
displayed with the higher scores displayed first. The output of the syntactical correlator is
an output vector with the same number of elements as the FCR attribute output vector.
The closer the numbers in the actual output vector are to one the closer they are to a
match for the attribute corresponding to that spot in the output vector. For example, if the
trained FCR attribute output vectors are considered and a neural network for an FCR
produces an output of <0.00560, 0.8999, 0.2309> for a given CCR, then the input CCR
discriminator vector most closely corresponds to the second FCR attribute because
0.8999 is the highest returned value.

The interoperability engineer can adjust the threshold settings if he does not
immediately find a correlation or if too many matches are returned. This allows the
interoperability engineer to adjust the precision and recall of the correlator. The OOMI
correlator is not fully computer automated. It requires an interoperability engineer to

review the results and adjust the settings.

16

III. INTEGRATING THE CORRELATOR

A. Semantic Correlator Integration

LT Shedd created a stand alone correlator and LT Lawler began the integration of
that correlator into the OOMI. However, the integration into the OOMI was never
completed. The goal of this project was to finish the integration of the semantic and
syntactic correlators and to analyze their effectiveness. A step by step debugging and
fixing methodology was used to complete this goal.

The first problem we encountered was a simple math error. After each semantic or
syntactic score is calculated it must be compared to the threshold value that is set by the
user in the Graphical User Interface (GUI). The threshold value is expressed as a integer
multiple of ten ranging from zero to 100. The calculated scores of the correlation are
expressed as values from 0.00 to 1.00. The calculated score was being directly compared
to the threshold value without being converted to the higher range which resulted in the
semantic score never being larger than the threshold; therefore, no results were returned
in the filtered array and displayed. The solution to this problem was to multiply the
semantic score by 100 in the comparison loop.

The next problem was a much larger problem that stemmed from the reasoning
behind the correlation algorithm. LT Shedd stored the semantic, syntactic, and combined
scores in different arrays and then passed all three arrays to the correlator panel for
display. This posed three difficulties that needed to be overcome. The first difficulty
arose when trying to correlate the semantic and syntactic results. The results for each
FCR are displayed in a row in the table. The semantic and syntactic scores for a particular
FCR are displayed next to each other. Since the two scores where stored in different
arrays that were sorted in a different order, a way was needed to display the correct
scores with each FCR Name. The next problem was a null pointer exception. The
semantic results are calculated and displayed in the table before the syntactic scores. This
means that when the semantic scores are passed to the correlator panel the syntactic score
array is null. The table does not know what to print as the syntactic scores. The third
problem was an efficiency problem. The correlator is set up so that the user can run the

correlation several times with different threshold values. Every time the user chooses a

17

new threshold value the scores are recomputed for each CCR. This poses a problem of
redundancy and increases the runtime of the correlator especially in the case of the
syntactic correlator where neural networks are created for each comparison. This problem
arose from the lack of a global storage structure. Figure 3.1 describes LT Shedd’s
correlation algorithm.

The best solution to the problem was to create a global vector to store the results
the in as they were computed and to create new methods filtering, display, and sorting
methods. The approach to computing the scores did not change at all. The new method
diagram for the updated algorithm is shown in figure 3.2. The first step was to create a
data structure that could hold all the scores for a particular FCR in one instance. This
class was called TableData. A TableData element has the following data members:
FCR_Name, semanticScore, syntacticScore, combinedScore; and methods to set and get
each of the data members. A TableData element can hold all of the needed information
for a FCR in one place. This solves the problem of having the scores stored separately
and needing to correlate the results before displaying them. The next step was to create a
global vector to hold all of the TableData elements as they were created. This removes
the need to recompute scores each time the correlation is performed. By making the
vector global we allow the semantic and syntactic processes to access and add scores to
the vector. Several methods were removed and added to the
ComponentModelCorrelator.java and CorrelatorPanel.java sorce files in order to
implement this new algorithm. The methods are described in section C and highlighted in

the source code found in appendix A.

18

runSemanticSearch(\l

»
>

Semantic Search Engine Impl

doSemanticCorrelation()

\ 4

filterResultsByThreshold
(Array, int)

Figure 3.1- Original
Correlator Code Diagram

A 4

ComponentModelCorrelator

SendResultsToCorrelatorPanel
(Array, Array, Array)

setContent(Array, Array,

Arrav)

v

CorrelatorPanel

19

doSemanticCorrelation()
»
»
filterResultsBy
Threshold (Array,
int)
addSemanticScroeToTable()
Semantic Search Engine Impl ComponentModelCorrelator ~ ComponentModelCorrelator

Collections.Sort (Vector,
Comparator)

ComponentModelCorrelator

Figure 3.2 — Modified

Correlator Code Diagram

A\ 4

ComponentModelCorrelator

sendDataToDisplay(Vector)

A\ 4

displayTable(Vector)

»
»

CorrelatorPanel

20

B. Syntactic Correlator Integration

The changes made to the syntactic correlator were similar to the changes made to the
semantic correlator. When the syntactic scores are calculated they are added to the global
vector TableDataVector. This is very important in the syntactic correlation. The overhead
for computing syntactic scores is much higher than calculating semantic scores because
of the overhead associated with creating a neural network. The neural network must be
recreated every time a correlation is done unless the score is already stored somewhere.
In the new algorithm each time the compute score method is called, the program first
checks to see if the score is already stored in TableDataVector and if it is then the score is
not recomputed. This decreases the runtime of the program.

Before syntactic scores are computed the syntacticScore data member of the
TableData element is set to zero as a default. Once syntactic scores are computed they
must be stored in the correct TableData element inside the TableDataVector vector. The
semantic and syntactic scores associated which each TableData element should
correspond to the same FCR_Name. This is accomplished through a method that
compares the FCR Name associated with the syntactic score to the FCR Names of the
TableData elements already stored. The index number of the corresponding element is
returned and the syntactic score is stored in that element. Since all of the results are
stored in a global vector, only that vector needs to be passed to the correlatorPanel for
display.

The syntactic correlator integration is not complete. Work is being continued to

resolve conflicts in already completed code.

21

C. New Classes and Methods

The following section explains the function of the new methods that were added to
enhance the performance of the Semantic and Syntactic Correlaotor. Refer to Appendix

A for source code.

Class TableData — The class TableData is a data structure that allows the program to
store all of the scores for correlation in one element. The class contains data members
FCR_Name, SemanticScore, SyntacticScore, and CombinedScore. The method also

contains methods for setting and retrieving the data members.

Vector TableDataVector — This vector is a global vector of TableData elements that is
used to store all the TableData elements as they are created. The global attribute of this
vector allows it to be accessed during the semantic correlation as well as the syntactic

correlation.

Class SemanticComparator/Syntactic Comparator — The comparator classes are used for
sorting the TableData elements before they are displayed. The results must be displayed

descending order by either semantic or syntactic score.

addSemanticScoreToTable / addSyntacticScoreToTable — This method takes the
unfilteredResults Array and puts the scores into the global TableDataVector. For each
FCR_Name that is not already in the vector a new TableData element is created with the

corresponding score and put into the vector.

22

addScoreToTable

for lenghth of
unfiltered Table

is FCR in >
Vector?

AN
yes

Create new
TableData
element

Increment
Counter

Add
TableData
element to
Vector

filterSemanticResultsByThreshold / filterSyntacticResults By Threshold — This method
takes the vector of unfilterResults and adds the elements with scores above the threshold
to the vector filteredResults. This is the vector of results that will be displayed. The
function filterSyntacticResults By Threshold also calls a function to ensure the syntactic

scores are added to the correct element of the global vector.

Collection.sort — This function uses the comparators to sort the results in descending

order by score.

23

sendDataToDisplay — This method takes the filteredResults vector and sends it to the

correlator panel for display in the results table.

setContent — This method receives the filteredVector and displays the results in a JTable.

V. POSSIBLE IMPROVEMENTS FOR OOMI CORRELATOR

The two step OOMI correlator can be improved by implementing semantic
information into the Neural Network portion of the correlator. The semantic web idea
presented earlier suggests a way that semantic information can be extracted from a file
representation of a component, if the components for the correlator were represented
using an RDF file instead of an XML file. The structure of RDF files represents the data
of a component in a way that allows a parser to extract semantic information in addition
to syntactic information. Once this information is extracted it can be used to increase the
size and accuracy of the discriminator vector. More fields can be added to the
discriminator vector which will allow the neural network to take semantic information

into consideration when performing a correlation evaluation.

IV. FUTURE RESEARCH

As future research, I will look into increasing the effectiveness of the semantic
correlator through the use of a newer concept known as the semantic web. The semantic
web uses Resource Descriptive Framework (RDF) files instead of XML files to parse
semantic information from a component’s structure. RDF files will allow more semantic

information beyond just keywords to be used in the correlation process.

24

APPENDIX A. CORRELATOR SOURCE CODE

A. ComponentModelCorrelator.java

[s s Rk s R R R R R R R R R R R R R R R s R ko ks sk ok

// Filename:. ComponentModelCorrelator.java

// Parent Project:.......SEMANTIC AND SYNTACTIC OBJECT CORRELATION IN THE OOMI IDE,
/! Master of Computer Science Thesis Project

// Original Compiler:....Sun JDK 1.3.1 04

// Author:............... LT Steve Shedd, USN and LT George Lawler, USN

// Company:.............. Naval Postgraduate School, Monterey, California

// Date:. September 2002

// Notes:... ...This class was originally created by LT George Lawler

// ' who is currently the master developer for the overall OOMI IDE user interface.
//*********>k***=I<****************>k**

package mil.navy.nps.cs.babel.Correlator;

import javax.swing.JComponent;
import javax.swing.JTable;
import javax.swing.table.DefaultTableModel,;

import java.util.List;
import java.util.Iterator;
import java.util. ArrayList;
import java.util. Hashtable;
import java.util. Vector;
import java.util.*;

import mil.navy.nps.cs.babel.Correlator.CMCorrelatorAdaptor;
import org.jdom.Document;

import mil.navy.nps.cs.babel.event.CorrelatorPanelEvent;

import mil.navy.nps.cs.babel.event.CorrelatorPanelEventListener;
import javax.swing.event. EventListenerList;

import mil.navy.nps.cs.babel.event.CurrentSelectionChangeListener;
import mil.navy.nps.cs.babel.event.CurrentSelectionChangeEvent;
import mil.navy.nps.cs.babel.connectors. OOMIDisplayInterface;

import mil.navy.nps.cs.babel.constructionManager. FIOMConstructionManager;
import mil.navy.nps.cs.babel.connectors. FIOMDBDirectInterface;

import mil.navy.nps.cs.babel.data. FIOMDatabase;

import mil.navy.nps.cs.babel.oomi.fiom.FCR;

import mil.navy.nps.cs.babel.Correlator.semanticComponentGenerator. *;
import mil.navy.nps.cs.babel.Correlator.semanticSearchEngine.*;
import mil.navy.nps.cs.babel.Correlator.syntacticComponentGenerator.*;
import mil.navy.nps.cs.babel.Correlator.syntacticSearchEngine.*;

import mwa.ai.neural.*;

/** sk 3k sk sk sk sk sk sk ke sk sk sk stk sk sk skl sk skl sk skl sk stk sk sk sk sk sk sk sk sk skl sk sk sk sk sk sk sk sk kol sk kol sk stk sk kool skokok skokok skokok skokok skokokokokoRoskokkoRk
* <pr>

* The <i>ComponentModelCorrelator</i> is the overall executive of the Component
* Model Correlator module of the OOMI IDE. This class coordinates the following:
*

*

* <]i> Generation of semantic correlation components

* Generation of syntactic correlation components

* <]i> Semantic correlation

* <]i> Syntactic correlation

*

*

£

25

*

* @author LT Steve Shedd, LT George Lawler

* @version 1.0
*

public class ComponentModelCorrelator extends CMCorrelatorAdaptor implements
CorrelatorPanelEventListener, CurrentSelectionChangeListener

{

private CorrelatorPanel cmCorrelatorPanel = null;
protected static FIOMDBDirectInterface handleForFIOMDB = null;
private EventListenerList listenerList = new EventListenerList();

private OOMIDisplayInterface handleForGUI = null;

// Results data structures
private ArrayList semanticResultsFCRList = new ArrayList();

private Object[] [] filteredSemanticResults = null;
private Object[] [] filteredSyntacticResults = null;
private Object[] [] filteredCombinedResults = null;
private String newFCR=null,

//new definitions March 05 by MIDN 1/C Childers
Vector tableDataVector= new Vector();
Vector filteredTableDataVector=new Vector();

*

* The TableData Class is the data structure that holds all of the score information
*

* <yl>

* Holds Semantic Scores
* Holds Syntactic Scores
* Holds Combined Scores
* <ful>

*

£

£

* @author MIDN 1/C Candace Childers, CAPT Young

* @version 1.0
S

public class TableData{
private String fcrName;
private Float semanticScore;
private Float syntacticScore;
private Float combinedScore;

private TableData()

{
ferName=null;
semanticScore= new Float(0);
syntacticScore=new Float(0);
combinedScore=new Float(0);

}

public void setFCR_Name(String name)
{

fcrName=name;

}

public String getFCR_Name()
{

return ferName;

}

public void setSemanticScore(Float semScore)

{

semanticScore=semScore;

}

public Float getSemanticScore()
{

return semanticScore;

public void setSyntacticScore(Float synScore)
{
syntacticScore=synScore;

}

public Float getSyntacticScore()
{

return syntacticScore;

}

public void setCombinedScore(Float combScore)
{

combinedScore=combScore;

}

public Float getCombinedScore()
{
return combinedScore;
}
}

*

* The TableData Comparator Class is used to sort the vector of TableData elements
*

*

*

£

£

* @author MIDN 1/C Candace Childers, CAPT Young

* (@version 1.0
S

private class SemanticComparator implements Comparator

{
int semanticCompare;
TableData semanticScorel, semanticScore2;

public int compare(Object objectl, Object object2)
{

semanticScorel=(TableData) objectl;
semanticScore2=(TableData) object2;

semanticCompare=(semanticScore2.getSemanticScore()).compareTo(semanticScorel.getSemanticScore());
return semanticCompare;
}
}

private class SyntacticComparator implements Comparator

{
int syntacticCompare;
TableData syntacticScorel, syntacticScore2;

public int compare(Object objectl, Object object2)

{
syntacticScorel=(TableData) object1;

27

syntacticScore2=(TableData) object2;

syntacticCompare=(syntacticScore2.getSyntacticScore()).compareTo(syntacticScorel.getSyntacticScore());

return syntacticCompare;

}
}

// Correlator Properties and Preferences
private static int semanticThreshold = 70;

private int syntacticThreshold = 70;
private int combinedThreshold = 70;
private float nueralLearningRate = 0.25f;
private int neuralMaxEpochs = 100000;

private double neuralOutputErrorTolerance = 0.1;

public ComponentModelCorrelator(OOMIDisplayInterface paramGUT)
{

// Reference to the OOMI IDE display interface which can be used to send
// status messages to the GUI.
handleForGUT = paramGUT;

//Singleton on the data base, only one FIOMDatabase
handleForFIOMDB = FIOMDatabase.getDatabase();
handleForFIOMDB.addCurrentSelectionChangeListener(this);

cmCorrelatorPanel = new CorrelatorPanel(this);

} //end constructor

//these functions allow you to get and set the value of semanticThreshold

public static int getSemanticThreshold()
{

return semanticThreshold;

}

public static void setSemanticThreshold(int newValue)
{

semanticThreshold=newValue;

}

*
*

* @author LT George Lawler, USN
*

public void panelEventOccured(CorrelatorPanelEvent event)

{
switch (event.getEventID())

{

case CorrelatorPanelEvent. PREFERENCES BUTTON PRESSED :
break;

case CorrelatorPanelEvent. KEYWORD BUTTON_PRESSED :
doSemanticCorrelation();
break;

case CorrelatorPanelEvent. NEURAL_NET BUTTON_PRESSED :
doSyntacticCorrelation();
break;

case CorrelatorPanelEvent. COMBINED BUTTON_PRESSED :
break;

28

case CorrelatorPanelEvent. SHOW_FEV_BUTTON_PRESSED :
// Show selected FEV to the Register Tab Panel.
break;

case CorrelatorPanelEvent. CCR_SELECTED :
this.handleForFIOMDB.setCurrentCCR(
(String)((CorrelatorPanel)event.getSource()).ccrSelected.getSelectedItem());
break;

default :
System.out.println("Default envoked");
break;

} //end panelEventOccured

/** sk st 3k sk sk sk sk ok sk sk sk sk sk sk sk skl sk skosk sk skosk sk stk sk sk skl sk stk sk stk sk stk sk stk sk sk sk skok kol sk sk sk sk skosk sk skok sk skok sk skok sk skokok skokok skokokskokok

* This method forces the correlator panel to get the latest
* Unregisterd CCR list.
sk 3k 3fe s 3fe s sk sk sk sk sk sk sk sfe skokokoskokokoskokokoskok */
public void updateCCRList()
{
this.cmCorrelatorPanel.setCCRList(this.handleForFIOMDB.getCCRList());

}

/** Just returns the correlator panel that is held in this class */
public JComponent getCorrelatorPanel()

{

return ((JComponent)this.cmCorrelatorPanel);
} //end getCorrelatorPanel

s s e e e e e e e e e e e e e e e e e e el el e o
*

* Creates the semantic components for a CCR needed for the semantic correlation.
*

* (@param ccrJdomDoc - a JDOM Document representation of the CCRs
* XML Schema file.

* @return None
*

* @author LT Steve Shedd
* @version 1.0, September 2002
*

s SRR SRR R R R R R R R R R R R R R SRR R SRR R R %

public void generateCCRSemanticComponents(Document ccrJdomDoc)

{

// Create a temporary data structure
String[] keywords = null;

// Get an instance of a keyword generator
KeywordGenerator semanticGen = new KeywordGeneratorImpl();

try

// Get the keywords for the CCR
keywords = semanticGen.generateKeywords(ccrJdomDoc);

}

catch (Exception e)

{
e.printStackTrace();

}

/I Associate the keywords to the CCRSemantics component
this.handleForFIOMDB. getCurrentCCR().getCCRSemantics().setKeywordList(keywords);

29

// Send a status message back to the OOMI IDE
this.handleForGUILsetStatusBarText("CCR Semantic Components Generated");

} //end generateCCRSemanticComponents

* <pr>
* Creates the syntactic components for a CCR needed for the

* syntactic correlation.
*

* @param ccrJdomDoc - a JDOM Document representation of the CCRs
* XML Schema file.

* (@return None
3

* @author LT Steve Shedd
* @version 1.0, September 2002
3

ek stk otk sk ok sk skeksk stk stk ok etk skl sk sk stk stekok stk ok skl ksl skttt kst kol sk sk sk ksl sksksk ok ko ok ok ok k)

public void generateCCRSyntacticComponents(Document ccrJdomDoc)

{

// Create an instance of the Discriminator Generator
DiscriminatorGenerator gen = new DiscriminatorGeneratorImpl();

// Create a list for the discriminator vectors
List discr = null;

try
{

// run the generator
discr = gen.generateDiscriminatorVectors(ccrJdomDoc);

catch (Exception e)

{

e.printStackTrace();

}

/I Associate the discriminator vectors with the CCRSyntax component
handleForFIOMDB. getCurrentCCR().getCCRSyntax().setDiscriminatorVectors(discr);

// Send a status message back to the GUI
this.handleForGUI.setStatusBarText("CCR Syntactic Components Generated");

} //end generateCCRSyntacticComponents

ok stk kst sttt e sk ok otk sk ok ok el ok ok st etk ok e sk ot e sk ok ok el ok o e el ok
*

* Creates the semantic components for an FCR needed for the

* semantic correlation.
*

* @param ferJdomDoc - a JDOM Document representation of the FCRs
* XML Schema file.

* (@return None
*

* @author LT Steve Shedd
* @version 1.0, September 2002
*

ek stk otk sk ok sk skeksk stk stk ok etk skl sk sk stk stekok stk ok skl ksl skttt kst kol sk sk sk ksl sksksk ok ko ok ok ok k)

public void generateFCRSemanticComponents(Document fcrJdomDoc)

{

// Create a temporary data structure
String[] keywords = null;

// Get an instance of a keyword generator
KeywordGenerator semanticGen = new KeywordGeneratorImpl();

30

try

// Get the keywords for the FCR
keywords = semanticGen.generateKeywords(fcrJdomDoc);

catch (Exception e)

e.printStackTrace();

}

/I Associate the keywords to the FCRSemantics component
this.handleForFIOMDB.getCurrentFCR().getFCRSemantics().setKeywordList(keywords);

// Send a status message back to the OOMI IDE
this.handleForGUI.setStatusBarText("FCR Semantic Components Generated");

} //end generateF CR SemanticComponents

*

* Creates the syntactic components for an FCR needed for the

* syntactic correlation.
*

* (@param fcrJdomDoc - a JDOM Document representation of the FCRs
* XML Schema file.

* @return None
*

* @author LT Steve Shedd
* @version 1.0, September 2002
*

public void generateFCRSyntacticComponents(Document fcrJdomDoc)

{

// Create an instance of the Discriminator Generator
DiscriminatorGenerator gen = new DiscriminatorGeneratorImpl();

// Create a list for the discriminator vectors
List discr = null;

try

// run the discriminator generator
discr = gen.generateDiscriminatorVectors(fcrJdomDoc);

catch (Exception e)

{
e.printStackTrace();

}

/I Associate the discriminator vectors with the CCRSyntax component
handleForFIOMDB.getCurrentCCR().getCCRSyntax().setDiscriminatorVectors(discr);

// Create an instance of the neural net generator
NeuralNetGenerator nnGen = new NeuralNetGeneratorImpl();

// Create and train a neural network for the FCR
Neural nn = nnGen.generateNeuralNet(discr);

// Set the path for the neural network file
String path = "X:00MI_IDE\\root\\etc\\babel\\generated\\neural\\";
path = path + handleForFIOMDB.getCurrentFCR().getJavaClassName();

// Create and save a formated neural network file
nnGen.makeFile(nn, path);

/I Associate the syntactic components with the FCRSyntax component
handleForFIOMDB.getCurrentFCR().getFCRSyntax().setDiscriminatorVectors(discr);
handleForFIOMDB.getCurrentFCR().getF CRSyntax().setNeuralNetwork(nn);
handleForFIOMDB.getCurrentFCR().getFCRSyntax().setNNfilePath(path);

// Send a status message to the OOMI IDE
this.handleForGUI.setStatusBarText("FCR Syntactic Components Generated");

} //end generateFCRSyntacticComponents

*

* Implementation of the semantic correlation phase of the Component Model
* Correlator. This

* method performs the semantic correlation between a CCR and the

* list of FEV FCRs in

* the FIOM. It then sends the results of the correlation to the

* results component of

* the Correlator Panel in the OOMI IDE.

*

* (@param None

* @return None
*

* @author LT Steve Shedd
* @version 1.0, September 2002
*

public void doSemanticCorrelation()

{
this.filteredSyntacticResults = null;

// Create an instance of the semantic search engine
SemanticSearchEngine semanticSearch = new SemanticSearchEnginelmpl();

// Create a reference for the unfiltered search results
Object[] [] unfilteredResults = null;

// Get a list of all FCRs in the FIOM
List localFIOMFCRList = this.handleForFIOMDB.getFCRList();

// Check to see if there are FCRs in the FIOM
if (localFIOMFCRList !=null)

// Perform the semantic correlation. This will produce a sorted object
// array of FCR names and Scores for every FCR in the FIOM

unfilteredResults = semanticSearch.runSemanticSearch(localFIOMFCRList,
handleForFIOMDB.getCurrentCCR());

}

else

this.handleForGUIL.setStatusBarText("No FEVs in FIOM");
}

/ICall function to add all scores to the vector unflteredResults
addSemanticScoreToTable(unfilteredResults);
filteredTableDataVector.removeAllElements();

/ladd all FEV's above threshold to filteredTableDataVector
filteredTableDataVector=filterSemanticResultsByThreshold(tableDataVector, this.semanticThreshold);

/IThe following code saves the FCR’s in the filteredTableDataVector to a list of FCR’s that can be passed to the syntactic
/[correlator

Iterator ferIter = locaFIOMF CRList.iterator();

32

while (ferIter.hasNext())

FCR testerFCR = (FCR)fcrIter.next();
for (int i = 0; i < filteredTableDataVector.size(); i++)

if((testerFCR.getFCRName()).equals(((TableData)filteredTableDataVector.elementAt(i)).getFCR_Name()))

{
this.semanticResultsFCRList.add(testerFCR);

}
}
}

/Isort the FEV's in filteredTableDataVector
Collections.sort(filteredTableDataVector, new SemanticComparator());

/Isend the sorted and filtered Vector to the display table
sendDataToDisplay(filteredTableDataVector);

} // End doSemanticCorrelation

//The following function adds the SemanticScore to the global vector tableDataVector if the score is above the threshold set

//by the user in the GUI
private void addSemanticScoreToTable(Object [][] unfilteredSemanticResults)
for(int i=0; i<unfilteredSemanticResults.length;i++)

//if FCR name not in table

if(findFCRName(tableDataVector, (String)unfilteredSemanticResults[i][0])==false)

{
//add new FCR to Table
TableData newFCR=new TableData();
newFCR.setFCR_Name((String)unfilteredSemanticResults[i][0]);
newFCR.setSemanticScore(((Float)unfilteredSemanticResults[i][1]));
tableDataVector.addElement(newFCR);

}

}
}

/IThe following function checks to see if an FCR has already been added to TableDataVector so no duplicates are added
private boolean findFCRName(Vector table, String FCR)

/lfor each object in table
for(int i=0; i<table.size();i++)

/Isee if FCR already added to table
if((((TableData)table.elementAt(i)).getFCR_Name()).equals(FCR))
{

return true;

}

return false;

}

*

* Implementation of the syntactic correlation phase of the Component Model
* Correlator. This

* method performs the syntactic correlation between a CCR and the

33

* list of FEV FCRs in
* the FIOM. Tt then sends the results of the correlation to the
* results component of

* the Correlator Panel in the OOMI IDE.
*

* (@param None

* (@return None
*

* @author LT Steve Shedd
* @version 1.0, September 2002
*

st ke sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk stk skeoskok sk sk sk sk sk skt sk skt sk stk sk stk sk sk sk sk kol sk kol sk skokosk sk kol sk kol sk kol skokok skoskok skokok siokokokok */

public void doSyntacticCorrelation()

{

// Create an instance of the syntactic search engine
SyntacticSearchEngine syntacticSearch = new SyntacticSearchEngineImpl();

// Create a reference for the unfiltered search results
Object[] [] unfilteredResults = null;

// Check to see if the semantic correlation returned some results
if (semanticResultsFCRList !=null)

// Perform the semantic correlation. This will produce a sorted object

// array of FCR names and Scores for every FCR in list populated from

// the semantic correlation results

unfilteredResults = syntacticSearch.runSyntacticSearch(semanticResultsFCRList,
handleForFIOMDB.getCurrentCCR());

}

else

{

// Tf there are no results from the semantic correlator, do the syntactic
// correlation with the FCR list from the entire FIOM.

List localFIOMFCRList = this.handleForFIOMDB.getFCRList();
if (localFIOMFCRList !=null)

unfilteredResults = syntacticSearch.runSyntacticSearch(localFIOMFCRList,
handleForFIOMDB. getCurrentCCR());

}

else

this.handleForGULsetStatusBarText("No FEVs in FIOM");
}

// The combined results equals the average of the semantic and syntactic scores.
for (int i = 0; i < this.filteredSemanticResults.length; i++)

float sem = ((Float)this.filteredSemanticResults[i] [1]).floatValue();
float syn = ((Float)this.filteredSyntacticResults[i] [1]).floatValue();
float avg = (sem + syn)/ 2;

this.filteredCombinedResults[i] [1] = new Float(avg) ;
}

addSyntacticScoreToTable(unfilteredResults);
filteredTableDataVector.removeAllElements();

/ladd all FEV's above threshold to filteredTableDataVector
filteredTableDataVector=filterSyntacticResultsBy Threshold(tableDataVector, this.syntacticThreshold);

34

//sort the FEV's in filteredTableDataVector
Collections.sort(filteredTableDataVector, new SyntacticComparator());

//send the sorted and filtered Vector to the display table
sendDataToDisplay(filtered TableDataVector);

} // End doSyntacticCorrelation

//This function adds the syntactic score to the global vector TableDataVector if the score is above the threshold. The function
/lensures that the score is stored in the correct corresponding TableData Element of the vector.

private void addSyntacticScoreToTable(Object [][] unfilteredSyntacticResults)
for(int i=0; i<unfilteredSyntacticResults.length;i++)

//if already in table
int element=findFCRName_Syntactic(tableDataVector, (String)unfilteredSyntacticResults[i][0]);
if(element!=(tableDataVector.size()+1))

//add syntactic score to existing element in vector
((TableData)tableDataVector.elementAt(element)).setSyntacticScore(((Float)unfilteredSyntacticResults[i][1]));

else

//add new FCR to Table
TableData newFCR=new TableData();
newFCR.setFCR_Name((String)unfilteredSyntacticResults[i][0]);
newFCR.setSyntacticScore(((Float)unfilteredSyntacticResults[i][1]));
tableDataVector.addElement(newFCR);

}

}
} //end addSyntacticScoreToTable

//This function returns the index value of the corresponding TableData Element in the vector that has the same name as the
name passed in as //a parameter.
private int findFCRName_Syntactic(Vector table, String FCR)

//for each object in table
for(int i=0; i<table.size();i++)

//see if FCR already added to table
if((((TableData)table.elementAt(i)).getFCR_Name()).equals(FCR))

return i;

}

return (table.size()+1);
} //end findFCRName_Syntactic

* Utility function to filter a list of FEV/Score pairs by

* threshold value setting.

* This function returns a new double dimension array. The array must

* have an FEV name

* in index 0 and an FEV correlation score as index 1

®

* (@param input - double dimension array containing FEV/Score pairs.

* @param threshold - The threshold setting for the particular correlation
* @return A new double dimension array containing the FEV/Score pairs

* above the threshold
*

* @author LT Steve Shedd
*

//new SemanticfilterResults method...puts results above threshold into vector

private Vector filterSemanticResultsByThreshold(Vector unfilteredTable, int threshold)
{

35

/lcreate a new structure for filtered output

Vector filteredTable = new Vector();

/leycle through the unfilteredTable and copy elements above threshold
for(int i=0;i<unfilteredTable.size();i++)

{

if(((((TableData)unfilteredTable.elementAt(i)).getSemanticScore().floatValue())*100)>=threshold)

filteredTable.add(unfilteredTable.elementAt(i));

}
else
break;
}
return filteredTable;

}

private Vector filterSyntacticResultsByThreshold(Vector unfilteredTable, int threshold)
{

/lcreate a new structure for filtered output

Vector filteredTable = new Vector();

/leycle through the unfilteredTable and copy elements above threshold
for(int i=0;i<unfiltered Table.size();i++)

{
if(((((TableData)unfilteredTable.elementAt(i)).getSyntacticScore().floatValue()) *100)>=threshold)

filteredTable.add(unfilteredTable.eclementAt(i));
}
else
break;

return filteredTable;
} //end filterSyntacticResultsByThreshold

*

* Formats the FEV/Score pairs produced by the semantic and syntactic

* correlators for the

* Correlator Panel. The Correlator Panel uses a JTable to display the

* correlation results.

* The defaultTableModel for a JTable can be used to convert a double

* dimension array into

* a JTable. This method merges the three input double dimension arrays

* into a single double

* dimension array. The JTable in the correlator panel is then populated

* with the results.

* (@param semanticResults - the filtered results of the semantic correlation
* (@param syntacticResults - the filtered results of the syntactic correlation.
* @param combinedResults - the filtered combined correlation results.

*

* @author LT Steve Shedd
*

private void sendDataToDisplay(Vector display)
{
this.cmCorrelatorPanel.setContent(display);

}

/I The correlator panel works with the CCR list, and so it must

// know when the current CCR is changed, this listener method

// will be called when ever the CurrentCCR is changed in the

// FIOMDatabase class.

public void selectionChanged(CurrentSelectionChangeEvent event)

{

36

if (event.getSelectionThatChanged() ==
CurrentSelectionChangeEvent. CCR_SELECTION_CHANGED)

//Update the CCR list in the correlator panel
this.updateCCRList();
}

else

// no action for Current FCR change event

}
} //end selectionChanged

} //end ComponentModelCorrelator

B. CorrelatorPanel.java

Y

// Filename:............. CorrelatorPanel.java

// Parent Project:....... OOMI IDE

// Original Compiler:....Sun JDK 1.3.1 04

// Author:.. .LT George Lawler, USN

// Compan,Naval Postgraduate School, Monterey, California

// Date:.. ..September 2002

// Notes:. This class was originally created by LT George Lawler

// during the development of the OOMI IDE prior to the completion of the features

// of the Component Model Correlator.
//******************>k**************>k**>k**

package mil.navy.nps.cs.babel.Correlator;

import java.awt.*;

import java.awt.event. ActionListener;
import java.awt.event. ActionEvent;
import javax.swing.*;

import java.util. Vector;

import mil.navy.nps.cs.babel.event.CorrelatorPanelEvent;
import mil.navy.nps.cs.babel.event.CorrelatorPanelEventListener;
import javax.swing.event.EventListenerList;

import javax.swing.JTable;

import javax.swing.table. TableModel;

import javax.swing.table. AbstractTableModel;
import javax.swing.table.DefaultTableModel,;
//limport javax.swing.table.TableColumn;

* Title: Babel Correlator Panel
* Description: Front end for Register Tab Panel connection to the Correlator.

* Also provides area for display of correlator results.

ES

* Pass in the MainFrame parametere during construction so that
* this panel can access the controlChannel to pass events to the
ES

back end.

*

* @author LT George Lawler

s 3k sk sk sk sk skk ok sk sk sk ok sk stk sk stk sk skok skl sk skt sk kol skoskok skl skokok sk sk sk sk sk sk sk sk skosk sk skl sk stk sk kol skoskok skoskok skoskok skoskok skoekok kR ROk R */

public class CorrelatorPanel extends JPanel

{

private JPanel contentPane = null;

* The table used to display the results of the component model

* correlation phases.
SRR R R RS R R ROR SR R R R R R R SRR SRR R S RS R R R R SRR SR SR RSO SR R R SRR SRS k)

37

JTable table = null;

A ek skt st stk ok sk sk s skt sttt sttt sl ol sk kst sttt st stk ol ko sk ikl st sttt ool ksl olRR kR ok ok

* The title for the first column in the table displayed on this panel.
* This title is built into a TableModel that is used to construct the

* table.

public static String COLUMN_ZERO_ TITLE = new String("FEV");

* The title for the second column in the table displayed on this panel.
* This title is built into a TableModel that is used to construct the

* table

public static String COLUMN_ONE_TITLE = new String("Keyword Score");

* The title for the third column in the table displayed on this panel.
* This title is built into a TableModel that is used to construct the

* table.
e 3 3 3 sfe s 3k sheoske 3k skl 3k sfe sk sk skl sk skl sk skl sk skt sk sfe sk sk skl sk stk sk skt sk skt s sfe s sk sfe sk sk sfe sk sk sfe sk s sfe ke sk sfe sk sk sfe sk sk sfe sk sk sk sk sk sk sk sk sk */

public static String COLUMN_TWO TITLE = new String("Syntactic Score");

/** s sk i sk sk ok sk sk sk sk stk sk sk skl sk stk sk stk sk stk sk stk sk skok sk skosk sk ok sk sk sk sk skosk sk skok sk skok sk sk skosk skl skokok sk kol sk skok sk kol skoskok skokokskokk Rk

* The title for the fourth column in the table displayed on this panel.
* This title is built into a TableModel that is used to construct the

* table.

public static String COLUMN _THREE TITLE = new String("Combined Score");

// ** This next section is indented to show which parts are 'contained'
// in which of the overal panel's sub containers.

//This control area panel holds all the widgets
JPanel controlArea = new JPanel();

JPanel ccrSelectionSubPanel = new JPanel();

JLabel ccrSelectionLabel = new JLabel();

JComboBox ccrSelected = new JComboBox();

JButton preferencesButton = new JButton();

JPanel thresholdSubPanel = new JPanel();

JLabel buttonLabel = new JLabel();

JButton filterOnKeyword = new JButton();

JButton filterOnNeuralNet = new JButton();

JButton filterOnCombined = new JButton();

JLabel comboBoxLabel = new JLabel();

JComboBox keywordThreshold = null; //new JComboBox(();
JComboBox neuralNetThreshold = null; //new JComboBox();
JComboBox combinedScoreThreshold = null; //mew JComboBox();
JPanel actionSubPanel = new JPanel();

JButton showSelectedFE = new JButton();

38

private Insets buttonInsets = new Insets(2, //top

2, /left
2, //bottom
2); /hight

//This data area panel holds the table that shows the resluts
JScrollPane dataArea = null;

//This is how many choices to put in the Threshold drop down arrays
private static int NUMBER OF VALUES = 10;

//This is the distance between thresholds. Increment is

// multiplied by the index plus one (plus one so the first

// value isn't zero). NUMBER_OF VALUES times the INCREMENT
// is the maximum value in the table.

private static int INCREMENT = 10;

// so that the value shown is 70
private static int DEFAULT THRESHOLD INDEX = 6;

//this Object array holds strings that represent the
/I integer value for the search threshold
private Object[] thresholdValues = null;

private EventListenerList listenerList = new EventListenerList();

* Constructor calls the private init method to set up the

* panel, and catches any exceptions encountered during panel

* setup.

* (@param MainFrame reference used to gain access to the OOMIControlInterface
*

* Pass in to this object a CCR List and an FCR list so that the panel

* will come up with a few things in it for the demo.
*

* Hold off on constructing this panel until the FIOM is created, so that

* there will be values available to pass as parameters.
S R R R R R R SR SRR R SR R SR R R R R K R R SRR SR RSO S R RS R R KRR R SR R R SR SR R R SRR oK

public CorrelatorPanel(CorrelatorPanelEventListener paramEventListener)

{
try
{
init();

this.contentPane = this;
this.addCorrelatorPanelEventListener(paramEventListener);

catch (Exception e)

{

e.printStackTrace();

} /lend CorrelatorPanel constructor

public void addCorrelatorPanelEventListener(CorrelatorPanelEventListener
listener)

{

this.listenerList.add(CorrelatorPanelEventListener.class, listener);

}

public void removeCorrelatorPanelEventListener(CorrelatorPanelEventListener
listener)

39

{

this.listenerList.remove(CorrelatorPanelEventListener.class, listener);

}

public void fireCorrelatorPanelEvent(int eventID, int threshold,
String selectedName)

{

//Guaranteed to return a non-null array

Object[] listeners = this.listenerList.getListenerList();
// Process the listeners last to first, notifying

// those that are interested in this event

for (int i = listeners.length - 2;i1>=0;i-=2)

CorrelatorPanelEvent event = null;
if (listeners[i] == CorrelatorPanelEventListener.class)

// Lazily create the event:
if (event==null)
{
event = new CorrelatorPanelEvent(this,
eventlD,
threshold,
selectedName);

}

((CorrelatorPanelEventListener)listeners[i+1]).panelEventOccured(event);

} // end of for loop to notify listeners
} //end fireCorrelatorPanelEvent()

private void init()

{
this.setLayout(new BorderLayout());
this.controlArea.setLayout(new FlowLayout());

this.initCCRSelector();

this.preferencesButton.setText("Preferences");
this.preferencesButton.setMargin(buttonInsets);
this.preferencesButton.setEnabled(true);
this.preferencesButton.addActionListener(

new ActionListener()

public void actionPerformed(ActionEvent e)
{
preferencesButton_actionPerformed(e);
}
P

this.filterOnCombined.setText("Combined Score");
this.filterOnCombined.setMargin(buttonInsets);
this.filterOnCombined.setEnabled(true);
this.filterOnCombined.addActionListener(

new ActionListener()

public void actionPerformed(ActionEvent e)
{
filterUsingCombined_actionPerformed(e);
}
P

this.filterOnKeyword.setText("Keywords");
this.filterOnKeyword.setMargin(buttonInsets);
this.filterOnKeyword.setEnabled(true);
this.filterOnKeyword.addActionListener(

new ActionListener()
public void actionPerformed(ActionEvent e)

filterUsingKeywords_actionPerformed(e);

}
IBR

this.filterOnNeuralNet.setText("Neural Net");
this.filterOnNeuralNet.setMargin(buttonInsets);
this.filterOnNeuralNet.setEnabled(true);
this.filterOnNeuralNet.addActionListener(

new ActionListener()

public void actionPerformed(ActionEvent e)

filterUsingNeuralNet actionPerformed(e);

}
IBR

//get an array of proper length for Threahold values
this.thresholdValues = new Objectf NUMBER_OF_VALUES];

//fill the array with values based on INCREMENT
for (inti=0; i< NUMBER_OF_VALUES; i++)

//T add one to i, so that the first element is not zero.
this.thresholdValues[i] = String.valueOf((i+ 1) * INCREMENT);

}

//then just build the combo boxes out of the array from above
this.keywordThreshold = new JComboBox(this.thresholdValues);
this.keywordThreshold.setSelectedIndex(DEFAULT THRESHOLD_ INDEX);

this.combinedScoreThreshold = new JComboBox(this.thresholdValues);
this.combinedScoreThreshold.setSelectedIndex(DEFAULT THRESHOLD INDEX);

this.neuralNetThreshold = new JComboBox(this.thresholdValues);
this.neuralNetThreshold.setSelectedIndex(DEFAULT THRESHOLD INDEX);

this.buttonLabel.setText(new String("Filter On:"));
this.buttonLabel.setHorizontalAlignment(JLabel. RIGHT);
this.comboBoxLabel.setText(new String("Threshold Values:"));
this.comboBoxLabel.setHorizontal Alignment(JLabel. RIGHT);

//combo box action listener for keyword
this.keywordThreshold.addActionListener(
new ActionListener()
{public void actionPerformed (ActionEvent e)
{
System.out.println("action listener works");
setKeywordThreshold();//some parameter from combo box);

1

//combo box action listenter for combinedScore
this.combinedScoreThreshold.addActionListener(
new ActionListener()
{public void actionPerformed (ActionEvent e)
{
System.out.println("action listener works");
//setCombinedScoreThreshold();//some parameter from combo box);
3
);
this.neuralNetThreshold.addActionListener(

new ActionListener()
{public void actionPerformed (ActionEvent e)

{
System.out.println("action listener works");
//setNueralNetThreshold();//some parameter from combo box);
1
);

// set up the threshold buttons and combo boxes
this.thresholdSubPanel.setLayout(new GridLayout(2,4));
this.thresholdSubPanel.add(this.buttonLabel);
this.thresholdSubPanel.add(this.filterOnKeyword);
this.thresholdSubPanel.add(this.filterOnNeuralNet);
this.thresholdSubPanel.add(this.filterOnCombined);
this.thresholdSubPanel.add(this.comboBoxLabel);
this.thresholdSubPanel.add(this.keywordThreshold);
this.thresholdSubPanel.add(this.neuralNetThreshold);
this.thresholdSubPanel.add(this.combinedScoreThreshold);

this.showSelectedFE.setText(new String("Show FE"));
this.showSelectedFE.setMargin(buttonlnsets);
this.showSelectedFE.setEnabled(true);
this.showSelectedFE.addActionListener(

new ActionListener()

public void actionPerformed(ActionEvent ¢)

showSelectedFE actionPerformed(¢);
}
P

this.actionSubPanel.add(this.showSelectedFE);

//put all the sub comonents into the control Area
this.controlArea.add(ccrSelectionSubPanel);
this.controlArea.add(this.preferencesButton);
this.controlArea.add(this.thresholdSubPanel);
this.controlArea.add(this.actionSubPanel);

//This sets up a table with 5 rows with the column headers found at

/I the start of this class.
TableModel dataModel = new AbstractTableModel()

public int getColumnCount() { return 4; }

//This method is used to construct the table, and so
/I by returning the desired heading label, the table is
/I constructed each time to look as we desire.
public String getColumnName(int columnIndex)
{

String columnName = null;

switch (columnIndex)

{
case(0):

columnName = CorrelatorPane. COLUMN ZERO TITLE;

break;
case(1):

columnName = CorrelatorPane. COLUMN_ONE TITLE;

break;
case(2):

columnName = CorrelatorPane. COLUMN TWO TITLE;

break;
case(3):

columnName = CorrelatorPane. COLUMN THREE TITLE;

break;

//The following code was commented out because we decided we only needed four columns for the table

/I case(4):

/I columnName = CorrelatorPanel. COLUMN_FOUR_TITLE;

/I break;
/] case(5):

42

/I columnName = CorrelatorPane. COLUMN_FIVE_TITLE;

/I break;
default:
columnName = new String("error");
}
return (columnName);

}

public Class getColumnClass(int column)

Class classValue = null;
switch (column)

{
default:
classValue = (Class) java.lang.Object.class;
}
return (classValue);

}

public int getRowCount() { return 5; }

//eventually this will need to be writen to link the table that we

/I view, which is being defined here, to arrays of information that
/I are passed into the CorrelatorPanel from the correlator.

// So that as the table is constructed, this statement can

// return that which is to be displayed.

/I right now I'm trying to display a blank table with

/I checkboxes in the third and fifth columns.

public Object getValueAt(int row, int col)

Object cellValue = null;
switch (col)

{
//case(2) : case(5) : cellValue = new JCheckBox();

/I break;
default:
cellValue = new String("");

return (cellValue);

}
b

this.table = new JTable(dataModel);

this.add(table, BorderLayout. CENTER);
dataArea = new JScrollPane(table);

//put the control area and the data area in the main panel
//this.add(this.controlArea, BorderLayout. NORTH);
//this.add(this.dataArea, BorderLayout. CENTER);
this.refreshCorrelatorPanel();

} //end init

public void initCCRSelector()
{

this.ccrSelected.addActionListener(
new ActionListener()

public void actionPerformed(ActionEvent e)

{
changeToSelectedCCR(e);

}
IBR

this.ccrSelectionSubPanel = new JPanel();

43

this.ccrSelectionSubPanel.setLayout(new GridLayout(2, 1));
this.ccrSelectionLabel.setText("Compoenent Class Selected:");
this.ccrSelectionSubPanel.add(this.ccrSelectionLabel);
this.ccrSelectionSubPanel.add(this.ccrSelected);

/xw LR % % % % g % % % % g % % % % g % % % % g % *%

* This function accepts a Vecotor of TableData elements which are going to be displayed.

*

*
*

* Modified on 05March2005 by MIDN 1/C Candace Childers

%

B R R R R S R S R RS R S R R SR R R e R S S R S R R R R R R R R S SR S R SR SR SR S S S SR R R e R 'k/
public void setContent(Vector tableContent)

String[] columnNames = { CorrelatorPanel. COLUMN_ZERO_TITLE,
CorrelatorPane. COLUMN_ONE_TITLE,
CorrelatorPane. COLUMN_TWO_TITLE,
CorrelatorPanel. COLUMN_THREE_TITLE,};

TableModel newModel=new DefaultTableModel(columnNames,tableContent.size());
int row = 0;
for (int i = 0; i < tableContent.size(); it++) {

newModel.setValueAt(((ComponentModelCorrelator.TableData)
tableContent.get(i)).getFCR_Name(), row, 0);
newModel.setValueAt(((ComponentModelCorrelator.TableData)
tableContent.elementAt(i)).getSemanticScore(),
row, 1);
newModel.setValueAt(((ComponentModelCorrelator.TableData)
tableContent.elementAt(i)).getSyntacticScore(),
row, 2);
newModel.setValueAt(((ComponentModelCorrelator.TableData)
tableContent.elementAt(i)).getCombinedScore(),
row, 3);

row++;

}

this.table = null;
this.table = new JTable(newModel);
this.dataArea = new JScrollPane(table);

System.out.println("table row count: " + this.table.getRowCount());
this.refreshCorrelatorPanel();

} //end setContent

public void setCCRList(Object[] paramList)
{

this.ccrSelected.removeAllltems(); // = new JComboBox();
for (int i = 0; i < paramList.length; i++)
f

1
this.ccrSelected.addItem(paramList[i]);

}

44

//this.initCCR Selector();
//System.out.println(this.ccrSelected.getItemCount());

refreshCorrelatorPanel();
} //end setCCRList

public void refreshCorrelatorPanel()

{

this.removeAll();

this.add(this.controlArea, BorderLayout. NORTH);
this.add(this.dataArea, BorderLayout. CENTER);
}

/] sk sk Bytton Handlers %% %% sk ook otk sk s ot s sk sk o ot kool ok ok ok

private void preferencesButton_actionPerformed(ActionEvent e)

{
fireCorrelatorPanelEvent(CorrelatorPanelEvent. PREFERENCES_BUTTON_PRESSED,
CorrelatorPanelEvent. NULL _INT,
CorrelatorPanelEvent. NULL _STRING);

} //end preferencesButton_actionPerformed

private void filterUsingKeywords_actionPerformed(ActionEvent ¢)
{
int threshold = Integer.parselnt(
(this.keywordThreshold.getSelectedItem()).toString());
fireCorrelatorPanelEvent(CorrelatorPanelEvent. KEYWORD BUTTON_PRESSED,
threshold,
CorrelatorPanelEvent. NULL _STRING);
} //end filterUsingKeywords actionPerformed

private void filterUsingNeuralNet_actionPerformed(ActionEvent e)

int threshold = Integer.parselnt((this.neuralNetThreshold.getSelectedItem()
).toString());
fireCorrelatorPanelEvent(CorrelatorPanelEvent. NEURAL NET BUTTON PRESSED,
threshold,
CorrelatorPanelEvent. NULL_STRING);
} //end filterUsingNeuralNet actionPerformed

private void filterUsingCombined_actionPerformed(ActionEvent e)
{
int threshold = Integer.parseInt((this.combinedScoreThreshold.getSelectedItem()
).toString());
fireCorrelatorPanelEvent(CorrelatorPanelEvent. COMBINED_BUTTON_PRESSED,
threshold,
CorrelatorPanelEvent. NULL _STRING);
} //end filterUsingCombined_actionPerformed

private void showSelectedFE actionPerformed(ActionEvent e)
{

try

{

//this.parentFrame.controlChannel.correlatorShowSelectedFE();

catch (java.lang.UnsupportedOperationException uoe)

45

{

//this.parentFrame.notImplementedDialog(uoe);

} //lend showSelectedFE actionPerformed

private void changeToSelected CCR(ActionEvent e)

{
fireCorrelatorPanelEvent(CorrelatorPanelEvent. CCR_SELECTED,
CorrelatorPanelEvent. NULL _INT,
((String)this.ccrSelected.getSelectedItem()));

//the following methods set the threshold integers to the value stored in the combo box
private void setKeywordThreshold()

{

ComponentModelCorrelator.setSemanticThreshold(Integer.parselnt(
(this.keywordThreshold.getSelectedItem()).toString()));

System.out.println("semantic threshold: " + ComponentModelCorrelator.getSemanticThreshold());

}
private void setCombinedScoreThreshold()
{
//combinedThreshold=combinedScoreThreshold.getSelectedItem();
System.out.println(combinedScoreThreshold.getSelectedItem());
}

private void setNeuralNetThreshold()

//syntacticThreshold=keywordThreshold.getSelectedItem();
System.out.println(neuralNetThreshold.getSelectedItem());

public JPanel getCorrelatorPanel()

{

return (this.contentPane);

}

} //end CorrelatorPanel

//EOF CorrelatorPanel.java

46

[BFHW 95]

[DeMe 00]

[LiCl 94]

[Prieto-Diaz 90]

[Shedd 02]

[WiCl 00]

[Wied 93]

[Young 02]

[ZW 95]

[ZW 93]

REFERENCES

Benkley, S., and others, Data Element Tool-Based Analysis
(DELTA), MITRE Corporation report MTR95B0000147,
December 1995.

Decker, S., and others, The Semantic Web: The Roles of XML and
RDF, IEEE Internet Computing, Sept-Oct 2000.

Wen-Syan, L., Clifton, C. Semantic Integration in Heterogeneous
Databases Using Neural Networks, Proceedings of the 20" VLDB
Conference, 1994.

Prieto-Diaz, R., “Implementing Faceted Classification for Software
Reuse”, Communications of the ACM, Volume 34, No. 5, May
1990.

Shedd, S., Semantic and Syntactic Object Correlation in the
Object-Oriented Method for Interoperability, Master’s thesis,
Naval Postgraduate School, Sep 2002.

Wen-Syan, L., Clifton, C. SEMINT: A tool for identifying attribute
correspondences in heterogeneous databases using neural
networks, C&C Research Laboratories, 2000.

Wiederhold, G., “Intelligent Integration of Information”, ACM-
SIGMOD 93, Washington, DC, May 1993, pp. 434-437.

Young,P. Heterogeneous Software System Interoperability
Through Computer-Aided Resolution of Modeling Differences,
PhD dissertation, Naval Postgraduate School, Jun 2002.

Zaremski, A.M., Wing, J.W., “Specification Matching of Software
Components”, SIGSOFT ’95, ACM 0-89791-716-2/95/0010, pp.6-
17.

Zaremski, A.M., Wing, J.W., “Signature Matching: A Key to
Reuse”, SIGSOFT ’93, ACM 0-8971-625-5/93/0012, pp. 182-190

47

48

49

50

