
U.S. NAVAL ACADEMY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

Algorithm MinWtBasis for simplifying conjunctions of monomial
inequalities

Brown, Christopher W.

USNA-CS-TR-2010-01

January 28, 2010

USNA Computer Science Dept. ◦ 572M Holloway Rd Stop 9F ◦ Annapolis, MD 21403

Algorithm MinWtBasis for simplifying

conjunctions of monomial inequalities

Christopher W. Brown
Computer Science Department, Stop 9F

United States Naval Academy
572M Holloway Road
Annapolis, MD 21402
wcbrown@usna.edu

January 22, 2010

Abstract

This paper defines a new algorithm “MinWtBasis” which simplifies
conjunctions of monomial inequalities. The simplified equivalent formula
produced by MinWtBasis minimizes the sum over all inequalities in the
conjunction of the number of non-strict variables appearing, and it runs
in polynomial time. For strictly non-strict conjunctions of inequalities,
this shows that the problem of finding a simplest equivalent formula is in
P. This contrasts with the general case and the strict inequality case, in
which finding the simplest equivalent formula is NP-Hard.

1 Introduction

This report builds on the results presented in [1]. That paper gave algorithms
for several problems related to computing with conjunctions of monomial in-
equalities, and proved that the general simplification problem for monomial
inequalities is NP-Hard. We will assume the same notation, and will refer to
results from that paper frequently, especially Theorem 5.

1

2 MinWtBasis

Suppose F = A1 ∧ · · · ∧ Am is a conjunction of monomial inequalities. Let
B = {M(A1), . . . ,M(Am)}. Let “the support of vector w”, S(w), be the set
of indices from the non-strict part at which w is non-zero. Let “the weight of
vector w”, wt(w), be the number of non-zero entries in the non-strict part of w,
i.e. |S(w)|.

Algorithm 1 MinWtBasis
Input: B, the set of vectors that are images of the inequalities in formula F
Output: Bf , a minimum-weight set of vectors subject to the constraint that∧

b∈Bf
M−1(N(b)) is equivalent to F

1: Bf := { }
2: w := a maximum weight element of B, if B = { } or wt(w) = 0 return

Bf ∪B
3: B := B − {w}
4: B≤ = {b ∈ B | S(b) ⊆ S(w)}
5: B< = {b ∈ B | S(b) ⊂ S(w)}
6: check whether there is a subset T ⊆ B< such that∑

t∈T

t ≡ [0, . . . , 0, 1]⊕ [0, . . . , 0] mod 2

if yes, then goto step 2
7: form matrix M over GF (2) whose rows are the elements of B≤ modulo 2
8: do Gaussian elimination on M to put in reduced row echelon form
9: w′ := the result of reducing w mod 2 by the rows of M

10: if w′ or some row of M equals [0, . . . , 0, 1]⊕ [0, . . . , 0] then
11: add N(2w+[0, . . . , 0, 1]⊕[0, . . . , 0]) to Bf (we’re adding an equation here!)
12: remove from B any element with support the same as w
13: else if w′ 6= [0, . . . , 0]⊕ [0, . . . , 0] then
14: Bf := Bf ∪ {w}
15: end if
16: goto step 2

3 Proof of correctness for MinWtBasis

In this section we prove that the Algorithm MinWtBasis meets its specification,
i.e. that it produces a minimum weight set of vectors representing a formula
that is equivalent to its input. This requires several lemmas.

Theorem 5 of [1] gives three rules phrased in terms of combining monomial
inequalities to produce new monomial inequalities. We note that the rules

2

trivial translate to equivalent statements about combining vectors (representing
inequalities) to produce new vectors (representing inequalities). When we refer
to “the rules from Theorem 5”, context will make it clear whether the rules as
stated or their vector equivalents are intended. It will also be convenient to
make the following definition:

Definition 1 If B is a set of vectors, then close(B) is the set of vectors deriv-
able from B using the rules from Theorem 5.

A few obvious facts about the normalization functions N , ν and ν′:

1. If w1 = u1⊕v1 and w2 = u2⊕v2, then N(w1+w2) = ν(u1+u2)⊕ν′(v1+v2).

2. N(w) = N(N(w))

3. N(w1 + w2) = N(N(w1) + N(w2))

4. For any vector u⊕ v, u⊕ v + u⊕ v ≡ 0⊕ 0 (mod 2)

Lemma 1 If vector w is derivable from B using rules 1 and 3 from Theorem 5,
then for some S ⊆ B and vector v′,

N(w) = N(
∑

w′∈S

w′ + 2v′).

Proof. We proceed inductively on the number of steps in the derivation.
Clearly the lemma holds for 0 steps, with w′ = w and v′ = 0. Consider a
derivation of k + 1 steps.

Case 1: the last step is an application of rule 3, i.e. w = u⊕ v + 2v′′, for some
v′′, where u ⊕ v is derivable from B in k steps. Thus, by induction, for some
S′ ⊆ B and vector v′

N(u⊕ v) = N(
∑

w′∈S

w′ + 2v′).

Thus,

N(w) = N(u⊕ v + 2v′′) = N(
∑

w′∈S

w′ + 2v′ + 2v′′) = N(
∑

w′∈S

w′ + 2(v′ + v′′))

and we are done.

Case 2: the last step is an application of rule 1, i.e. w = w1 + w2 where
w1 and w2 are each derivable in k or fewer steps. Thus, by induction, w1 =

3

N(
∑

w′∈S1
w′ + 2v′1) and w2 = N(

∑
w′∈S2

w′ + 2v′2). So

N(w) = N(w1 + w2) = N(
∑

w′∈S1
w′ + 2v′1 +

∑
w′∈S2

w′ + 2v′2)
= N(

∑
w′∈(S1∪S2)−(S1∩S2)

w′ + 2
∑

w′∈(S1∩S2)
w′ + 2v′1 + 2v′′2)

= N(
∑

w′∈(S1∪S2)−(S1∩S2)
w′ + 2(

∑
w′∈(S1∩S2)

w′ + v′1 + v′′2))

Lemma 2 If S(q) = S(w) and, for some p, N(p+q) = N(w), then N(p+w) =
N(q).

Proof. Obvious.

Theorem 1 Let F be as in Theorem 5 — satisfiable, F = A1 ∧ · · · ∧ Am.
Let A be an atomic formula

∏n
j=1 x

dj

j σ 0. Let M(A) = u⊕v, then F ⇒ A if and
only if there is a subset U = {u1⊕v1, . . . , ur⊕vr} ⊆ {M(A1),M(A2), . . . ,M(Am)},
such that S(ui ⊕ vi) ⊆ S(M(A)) for each each ui ⊕ vi ∈ U , and either the ele-
ments of U sum to [0, . . . , 0, 1]⊕ [0, . . . , 0] modulo 2 or

r∑
i=1

ui ⊕ vi ≡ u⊕ v (mod 2).

Proof. The backwards direction of this theorem is obvious. It follows directly
from Theorem 5. So we consider the forward direction. Note that F ⇒ A if and
only if there is a derivation of M(A) from {M(A1),M(A2), . . . ,M(Am)} using
the rules of Theorem 5. Each rule of Theorem 5 takes two vectors and combines
them, producing a new vector whose support is the union of the supports of
the original two vectors. Thus, no vector whose support includes an element
not in the support of M(A) can be involved in the derivation. This justifies the
requirement that S(ui ⊕ vi) ⊆ S(M(A)) for each each ui ⊕ vi ∈ U . Next we
note that if there is a derivation that uses only rules 1 and 3, then Lemma 1
clearly implies this theorem — in fact it implies the second case of this the-
orem’s conclusion. Therefore, suppose that M(A) is such that any derivation
requires an application of rule 2. Consider the first application of rule 2 in
such a derivation. The rule requires a vector [0, . . . , 0, 1] ⊕ v that is implied
by {M(A1),M(A2), . . . ,M(Am)}, where v 6= 0 but v ≡ 0 (mod 2). By our
assumption, v must be derivable using only rules 1 and 3. By Lemma 1, there
is a subset of U whose sum is equivalent to [0, . . . , 0, 1]⊕ v modulo 2, and thus
is equivalent to [0, . . . , 0, 1]⊕ [0, . . . , 0] modulo 2.

4

Lemma 3 If for some subset U = {u1⊕v1, . . . , ur⊕vr} ⊆ {M(A1),M(A2), . . . ,M(Am)}
r∑

i=1

ui ⊕ vi ≡ (u⊕ v) + [0, . . . , 0, 1]⊕ [0, . . . , 0] (mod 2)

then
F ∧A ⇔ F ∧

∏
xi∈S(U)

xi = 0,

where S(U) = ∪b∈US(b).

Proof. Obvious given Theorem 5.

Theorem 2 Algorithm MinWtBasis terminates with output Bf meeting its spec-
ifications: i.e. Bf is a minimum-weight set of vectors subject to the constraint
that

∧
b∈Bf

M−1(N(b)) is equivalent to F .

Proof. To prove the correctness of a greedy algorithm, i.e. that it produces an
optimum solution, it suffices to prove (1) that its greedy choice is always part of
some optimum solution, and (2) that the problem has the optimum subproblem
property (see Chapter 16 of [2] for a discussion of correctness proofs for greedy
algorithms).

This algorithm is essentially a big loop from Step 2 to Step 16. Each time
through the loop we choose an element maximum weight element w from B,
remove it, and then make one of a number of choices. We distinguish each
choice as a separate case, and prove (1) and (2) for each case separately.

Case 1: The condition at Step 6 is met. In this case we do not add w to Bf , we
simply jump to the top of the loop with B now diminished by having removed
w. Suppose B′

f is an optimum solution to the original problem.

1. B′
f does not contain w. Suppose it did. For each t ∈ T some subset of B′

f

sums to t. Moreover, none of these subsets contain w since the support
of each t is a strict subset of the support of w. The sum of the sums of
these subsets of B′

f is an equation with support contained in S(w), so w
is derivable from B′

f −{w}, contradicting the optimality of B′
f . Thus, B′

f

does not contain w.

2. Clearly, B′
f is an optimum solution to the the subproblem B−{w} as well

as an optimum solution to the original problem B.

Case 2: The “then” clause of the “if” at Step 10. In this case, we add equation
N(2w + [0, . . . , 0, 1] ⊕ [0, . . . , 0]) to Bf and remove from B any element with
support the same as w.

5

1. Suppose B′
f is an optimum solution that does not contain N(2w+[0, . . . , 0, 1]⊕

[0, . . . , 0]). Claim: B′
f must contain an element z such that S(z) = S(w).

Let T ′ ⊆ B′
f be such that N(2w+[0, . . . , 0, 1]⊕ [0, . . . , 0]) ∈ close(B<). T ′

contains an element not in close(B<), since otherwise we would be in Case
1. Thus, such an element is generated from B using some vector from B
with support equal to S(w), which means that the element has support
that contains S(w) and, since the element is used to derive a vector with
support equal to S(w), we conclude that the element’s support is exactly
S(w). This proves the claim.

Let z then be an element of B′
f such that S(z) = S(w). Since N(2w +

[0, . . . , 0, 1]⊕ [0, . . . , 0]) generates all vectors with support equal to S(w),

B′′
f = B′

f − {z} ∪ {N(2w + [0, . . . , 0, 1]⊕ [0, . . . , 0])}

is an optimum solution and, moreover, is an optimum solution that con-
tains the “greedy choice” from this case.

2. Clearly, an optimum solution to

B − (B≤ −B<) ∪ {N(2w + [0, . . . , 0, 1]⊕ [0, . . . , 0])}

is an optimum solution to B, and for any optimum solution B′′
f containing

N(2w+[0, . . . , 0, 1]⊕ [0, . . . , 0]), B′′
f −{N(2w+[0, . . . , 0, 1]⊕ [0, . . . , 0])} is

an optimum solution to B − (B≤ −B<), which is what we continue with
after our greedy choice.

Case 3: The “then” clause of the “else if” on line 13. Since we are not in Case
1 or Case 2, no equation with support contained in S(w) can be derived from
the elements of B (including w). Furthermore, since we are in this case, no
subset of B − {w} sums to w modulo 2, which by Theorem 1 means B − {w}
does not generate w.

In this case, w is added to Bf .

1. First we must prove that some optimum solution contains w. Suppose B′
f

is an optimum solution that does not contain w. Since B′
f generates w but

B−{w} does not, there must be some p ∈ B′
f such that p /∈ close(B−{w}).

However, p ∈ close(B), so since B implies no equations with support
contained in S(w), p must be derivable from B using only rules 1 and 3 of
Theorem 5. Thus, by Lemma 1 for some T ⊆ B−{w} and some vector v′

N(p) = N(w +
∑

w′∈T

w′ + 2v′).

Thus S(w) ⊆ S(p). If S(w) ⊂ S(p), each element of T is generated by
B′

f − {p} — since w is a maximum weight element of B — and so B′
f −

6

{p} ∪ {w} is an optimum solution. Otherwise S(w) = S(p), which means
each element of T has support contained in S(w). Since each element of
T is expressible as a sum of elements of B′

f (possibly plus some vector of
the form 2v′), we can write N(p) as

N(p) = N(w +
∑

w′∈T ′′

w′ + 2v′′).

for some T ′ ⊆ B′
f and some vector v′′. We distinguish two cases: a) if

p /∈ T ′′, in which case B′
f − {p} ∪ {w} is clearly an optimum solution. b)

if p ∈ T ′′ then

N(p) = N(w + p +
∑

w′∈T ′′−{p}

w′ + 2v′′)

and by Lemma 2

N(w) = N(p + p +
∑

w′∈T ′′−{p}

w′ + 2v′′) = N(
∑

w′∈T ′′−{p}

w′ + 2v′′′)

Thus, for some q ∈ T ′′ − {p} we have S(q) = S(w), since otherwise each
element of T ′′ − {p} would be generated by B − {w}, implying that w is
generated by B − {w}, which is as a contradiction. By Lemma 2,

N(q) = N(w +
∑

w′∈T ′′−{p,q}

w′ + 2v′′′)

and so clearly B′
f − {q} ∪ {w} is an optimum solution.

2. Next we must prove the optimum subproblem property.

Claim 1: There is an optimum solution B′
f such that w ∈ B′

f and B′
f −

{w} ⊆ close(B − {w}). Let p ∈ B′
f − {w}. By optimality, if p is an

equation, it must be a minimal equation. Clearly, p ∈ close(B). Suppose
p /∈ close(B − {w}). By minimality, p must be derivable using only rules
1 and 3 of Theorem 5. Thus, by Lemma 1, for some T ⊆ B − {w}

N(p) = N(w +
∑
t∈T

t + 2v′)

So S(w) ⊆ S(p). In fact S(w) ⊂ S(p) is not possible, because w has
maximum weight in B, so B′

f−{p} generates all of B, making p extraneous,
and contradicting the optimality of B′

f . Thus S(p) = S(w), so N(N(p +
w) + w) = N(p). Thus, we may replace p in B′

f with N(p + w) and the
closure remains the same and so does the weight, but now p ∈ close(B −
{w}). If all such p are replaced by p + w, we get an optimum solution
meeting the requirement.

7

Claim 2: Assuming B′
f is an optimal solution satisfying Claim 1, B−{w} ⊆

close(B′
f − {w}). Suppose not. Then for some p ∈ B − {w}

N(p) = N(
∑

t∈T⊆B′
f−{w}

t + 2v′ + w).

Therefore, S(w) ⊆ S(p). But w has maximum weight in B, so S(p) =
S(w). By Lemma 2

N(w) = N(
∑

t∈T⊆B′
f−{w}

t + 2v′ + p).

and by Claim 1, each t is generated by B−{w}, so w is actually generated
by B−{w} which contradicts the assumption that we are in Case 3 of the
algorithm.

Thus there is an optimum solution B′
f such that close(B−{w}) = close(B′

f−
{w}), so B′

f − {w} is an optimum solution to problem B − {w}.

Case 4: None of the “if”s apply. In this case, the greedy choice is simply to
remove w from B because w′, the result of reducing w by the rows of M is
zero modulo 2. By Theorem 1, w is derivable from B − {w}. Suppose B′

f is an
optimum solution that contains w. No subset of B−{w} generates an equation
since, otherwise, we would be in case 1 or case 2. Thus, w is generated from
B − {w} using only rules 1 and 3 of Theorem 5, so

N(w) = N(
∑
w∈S

w′ 2v′), where S ⊆ B − {w}.

If no element of S has support equal to S(w), then each element of S is generated
by B′

f − {w}, so B′
f − {w} generates w, contradicting the optimality of B′

f .
Otherwise, let Z = {z ∈ S|S(z) = S(w)}, so

N(w) = N(x + (
∑

w′∈S−Z

w′ + 2v′)), where x =
∑
z∈Z

z.

Each element of S−Z is generated by B′
f −{w}, so w ∈ close(B′

f −{w}∪{x}).
Since x ∈ close(B′

f), we have close(B′
f) = close(B′

f − {w} ∪ {x}), and because
w and x have the same weight, an optimum solution for B−{w} is an optimum
solution for B.

4 Conclusion

This report has introduced the new algorithm, MinWtBasis, which simplifies
monomial inequalities so that the non-strict part is minimal. The algorithm

8

clearly runs in polynomial time, which shows that strictly non-strict conjunc-
tions of monomial inequalities can be found in polynomial time, in contrast to
the general problem of simplification of conjunctions of monomial inequalities,
which is NP-Hard.

References

[1] Brown, C. W. Fast simplifications for tarski formulas. In ISSAC ’09:
Proceedings of the 2009 international symposium on Symbolic and algebraic
computation (New York, NY, USA, 2009), ACM, pp. 63–70.

[2] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. In-
troduction to Algorithms, 2nd edition. MIT Press, McGraw-Hill Book Com-
pany, 2000.

9

