
U.S. NAVAL ACADEMY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

Clustering Systems with Kolmogorov Complexity and MapReduce

Troisi, Louis R

USNA-CS-TR-2011-01

June 2, 2011

USNA Computer Science Dept. ◦ 572M Holloway Rd Stop 9F ◦ Annapolis, MD 21403

Clustering Systems with Kolmogorov Complexity and
MapReduce

Louis R Troisi
Dept. Computer Science, U.S. Naval Academy

572M Holloway Rd, Annapolis, MD 21402
louistroisi7@gmail.com

Abstract

In the field of value management, an important problem is quantifying the processes
and capabilities of an organization’s network and the machines within. When the orga-
nization is large, ever-changing, and responding to new demands, it is difficult to know
at any given time what exactly is being run on the machines. Accordingly, one could lose
track of approved or, worse, not approved or even malicious software, as the machines
become employed for various tasks. Moreover, the level of utilization of the machines may
affect the maintenance and upkeep of the network. Our goal is to develop a tool that
can cluster the machines on a network, in a meaningful way, using different attributes
or features, and it does so autonomously, in an efficient and scalable system. The so-
lution developed implements, at its core, a streaming algorithm that in real-time takes
meaningful operating data from a network, compresses it, and sends it to a MapReduce
clustering algorithm. The clustering algorithm uses a normalized compression distance
to measure the similarity of two machines. The goal for this project was to implement
the solution and measure the overall effectiveness of the clusters. The implementation
was successful in creating a software tool that can compress, determine the normalized
compression distance and cluster the machines. More work however, needs to be done in
using our system to extract more quantitative meaning from the clusters generated.

1 Introduction

Within the value management field, there is a need to know what resources, hardware and
software, are available to match the needs of the organization. The difference between needed
resources and existing resources should be minimized. All organizations desire to minimize

1

error when estimating current needs, or predicting the needs for future growth. This is
increasingly difficult when the organization expands. For hardware, it is relatively easy to
quantify what exists, as it rarely changes, ignoring degradation. Software, however, can
change rapidly and determination of software capabilities tends to be rather ethereal. More-
over, the value isn’t just measured in capability, it’s also about assessing what components
are installed and what kind of effect does that create on the system from a myriad of per-
formance and cost perspectives. For instance: CPU clock rate, power consumption, percent
of processor utilized, are just a few things that should be tracked in order to understand if
some machines on the network are under a heavy load and could be better load balanced to
prevent misuse and provide better long-term results.

The objective of this work is to develop an autonomous system that can determine the
capabilities of a network without having to label the components within it beforehand (un-
supervised learning). The system allows the user to quickly gather some facts (attributes)
about the machines in operation, cluster the machines based on the attributes, and use that
model to classify the machines using the gathered data. This goal shouldn’t be affected by
scale, as networks can be for a company like Yahoo, with tens of thousands of machines each
of those with multiple nodes, so the system should be able to work at the “enterprise” level.

This paper focuses on the clustering aspect of the system. The first challenge in developing
the system was comparing machines with very different software configuration and load.
We chose as similarity metric between machines the Normalized Compression Distance or
NCD [2]. NCD offers the ability to quantify the similarity between any two objects, based on
a description of the objects. The object description can include any set of attributes, making
NCD a flexible choice for similarity metric. In our experiments, we used as description the
software run-tables of the machines.

The second challenge was choosing a clustering algorithm that works for objects in a non-
Euclidean space, and does not need much prior knowledge. Most partitioning clustering
algorithms, like K-means, require the number of clusters in advance. We implemented an
agglomerative hierarchical clustering algorithm that clusters similar objects together and the
final result is a dendogram.

Finally, we aim to build a scalable system, so we implemented our clustering algorithm in
the MapReduce framework [4].

Our system is able to autonomously cluster the machines in a network. However, more
work needs to be done in creating a more efficient and scalable clustering algorithm as well
as classifying new machines.

The rest of the paper is organized as follows: we introduce some background information
in Section 2. We detail the goals of this work in Section 3 and describe the implementation
in Section 4. We present the experimental results in Section 5 and discuss related work in
Section 7. We conclude in Section 8.

2

2 Background

This section introduces some of the building blocks for our system.

2.1 Cluster analysis

Cluster analysis or data segmentation is concerned with the segmentation of various objects
into subsets or clusters such that the objects within a cluster are much more closely related
to all the objects within the cluster versus the other objects that do not fall within the
same cluster. An important step in cluster analysis is choosing a definition for similarity to
quantify the similarity or distance between objects [5]. The clusters are then defined based
on this similarity metric. There are two major types of clustering algorithms: partition-
based and hierarchical. The algorithms most commonly used for each type are K-means and
agglomerative, respectively. Briefly, partitioning involves picking cluster centers in a distance
matrix and objects are assigned to the cluster with the closest center. Cluster centers are
then re-computed and the process is iterated until some stopping criteria is reached. In
hierarchical clustering, a binary tree is constructed, where the nodes of the tree are clusters,
with the leaves being the objects to be clustered (clusters of size 1) and the root being a
cluster containing all the objects. In agglomerative clustering, construction starts at the
leaves. In each step, the 2 most similar clusters are grouped together to form the cluster at
the higher level, until there is only one cluster containing all objects. Section 4 discusses the
agglomerative hierarchical clustering algorithm implemented in our system.

2.2 Normalized Compression Distance

As discussed in the previous section, an important part of cluster analysis is choosing a
similarity metric that captures the similarity between two objects. Normalized compression
distance or NCD offers us the ability to quantify the relationship between objects (includ-
ing machines on a network) such that one can determine that while objects a, b and c are
similar, b is best described as the same type of object as c by maximizing the total number
of attributes described. This means that NCD attempts to use a full description of each
object, compressed, giving it the maximum number of possible descriptors to distinguish
between objects without the burden of an enormous table of attributes. NCD is a practical
application of Kolmogorov Complexity named after Andrei Kolmogorov, due to his study
in computing randomness[8]. Kolmogorov Complexity itself is an offspring in the study of
randomness. Kolmogorov postulated that an object (whether a string or a picture)’s ran-
domness is determined by the minimum amount of instructions or code required to compute
or generate that object. For example, the object ‘1010101010’ could be simplified as ‘10’

3

repeated 5 times. Declaring an object s to be totally random requires C(s) ≥ s, where
C(s) is the complexity required to describe object s[8]. Knowing this, the distance metric
for Kolmogorov Complexity between two objects is the amount of supplemental information
needed to describe x given y. Using the example above, if given ‘1010101010’ as x and ‘10’
as y the inference x = y ∗ 5 can be made. This knowledge leads to the formula for NCD,
which attempts to formalize the description previously given, as

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)}
(1)

Most accurately, NCD is an approximation of an optimality measure of C(s) discovered by
Vitányi which is described in Algorithmic Clustering of Music Based on String Compression:

Roughly speaking, two objects are deemed close if we can significantly “compress”
one given the information in the other, the idea being that if two pieces are more
similar, then we can more succinctly describe one given the other[3].

2.3 Hadoop

There are two major benefits to using Hadoop suite in terms of maximizing scalability:
MapReduce and HDFS (Hadoop File System). Both are based on a series of papers at
Google to explain how accomplishes the task as the largest search engine by improving
scalability. This allows them to maintain and process terabytes of data in a redundant and
fail-safe package. The MapReduce framework was developed at Google and was introduced
in 2004 by Dean et al. [4]. The paradigm accomplished many goals that frustrated previous
attempts at large-scale distributed computing. It could be accomplished on commodity
machines and was very scalable. Secondly, utilizing the map function from programming
languages like Scheme or Haskell allows users to run a function on a key-value pair and output
an intermediate key-value pair. The reduce function combines all pairs with the same key to
do some combining or other function associated with reduce in functional programming[4].
Formulaically MapReduce can be described as :

Map : (k1, v1)→ list(k2, v2) (2)

Reduce : (k2, list(v2))→ list(v3) (3)

The independence of the map as a functional method allows no side effects (meaning
that each key-value pair is independent of the other pairs in the list so you don’t have to
worry about a logical processing order) so multiple key-value pairs could be “mapped” at
the same time allowing a distributed system that was intuitive to any user who has used a

4

functional programming language. Many problems have been solved at Google once they
attempted to make it fit into the MapReduce format[4]. After the MapReduce paper in 2004,
a software project named Hadoop started by Cloudera, with Yahoo, developed an open-
source software alternative to the proprietary version developed at Google. This allowed
the Google system to become openly and freely available as the design was an attempt to
replicate the system[12].

HDFS or Hadoop File System is also based on a Google paper, The Google file system.
HDFS aims to replicate the functionality of GFS in an open source environment based on
the article[10, 12]. Without delving to heavily into the architecture, it allows for extremely
large files stored across commodity hardware. The files are append or read-only mostly with
a write once and never expect for overwrites[10]. This may sound limited, but webcrawlers,
log files on a server, the system this report is describing, all use the write once append many
style of document creation[10].

3 Goals

The goal of this project is to develop a system that allows us to flexibly cluster various
forms of text data without regard for structure or a requirement in terms of attributes. To
summarize:

Flexible as the attributes or input changes, the system should not require drastic reconfig-
uration to work effectively

Scalable the system must be able to scale or otherwise adapt to the need of both large and
small networks

Effective the observed network must be accurately described and in such a way that use-
ful comparisons in the future can be made, otherwise clustering will be difficult and
generally inaccurate

3.1 Flexible

The way this project achieves flexibility is through the use of NCD as the metric to determine
the similarity between objects. The fact that NCD relies on compression creates a benefit
because, as a rule, a compressed file could have originally been anything so it now becomes
context-free; when compressed file a is compared in a predicate fashion such as a in terms
of b you can make determinations about the relationship between a and b .

5

3.2 Scalable

Creating an efficient implementation of our algorithm through streaming software, MapRe-
duce and utilizing the Hadoop File System improves the scalability of the system. The
distributed nature of the HDFS and MapReduce should allow Tera and PetaByte level stor-
age possible[10]. Additional confidence in using Hadoop comes from the many organizations
that rely on or use a similar framework to Hadoop to provide a personalized and quickly
retrievable user experience like Twitter, Facebook, Stumbleupon[12].

3.3 Effective

Effective, is a summarization of two ideas, efficient and accurate; if the system lacks one of
these two it becomes either useless or limited in scale. All consideration is taken towards
determining where the most accurate hierarchical chaining of clusters will be found which is
discussed further in the results and conclusion about the work done in this course.

4 Methods

4.1 System Model

In this paper, we describe and implement a model system fitting the requirements described
in Section 3. Our goal is to cluster machines in a network. We use as description of a
machine the software run-table extracted off each machine in the network, converted into a
format very similar to the ps aux command available in Unix, by a Java Messaging Service.
This description is then compressed using LZW [8], a common compression algorithm, in
the IBM’s Infosphere Streams system. The now compressed run-tables are then compared
in to determine the pair-wise NCD values. These values are then stored into a symmetrical
similarity matrix containing each machine in the network. Our MapReduce clustering algo-
rithm uses the similarity matrix as its input to produce clusters. Figure 4.1 shows the data
flow in our system.

4.2 Design Considerations

We implemented in the MapReduce framework a hierarchical algorithm based off the tradi-
tional algorithm described in Section 2.1. The dendrogram created by the clustering algo-
rithm becomes the model for a classifier, so that further machines can be “learned” based
off the seed model.

6

Figure 1: A visual description of the system starting from the machines through the pro-
cessing engine

For this project, a hierarchical agglomerative algorithm was determined to be the preferred
choice. The main problem with a partition based clustering scheme like K-means or K-
medoids is that K, the final number of clusters, must be defined. The project specifications
were such that if we were to develop a system that used a partition based scheme we would
be relying on some beforehand knowledge of the system when choosing K.

In hierarchical clustering, a complete dendogram, or binary tree is produced. In agglom-
erative clustering, at each step, the two closest clusters are merged. There are many ways of
defining the ”closest” clusters. Linkage is based on the notion of intercluster dissimilarity,
meaning that the differences between points in a cluster have to be considered in choosing a
definition for ”closest” clusters. In single linkage, the two closest points of different clusters
are used as distance between clusters. Complete linkage uses the two objects farthest apart
within two different clusters in an attempt to prevent “chains” or elliptical clusters versus
the intuitive spherical clusters. Average linkage uses the average distance between any two
points in different clusters. We define the distance between two clusters as being the distance
(NCD value) between their medoids [7], where the medoid of each cluster is the machine
with the lowest average NCD to all the other machines in the cluster. The linkage used
aims to maximize the benefits of each type of linkage, with a possible small increase in time

7

cost, by measuring the distance between the Euclidean average of each cluster in comparison
with other clusters, and merging the clusters with the lowest distance.

4.3 Implementation

We implemented an iterative MapReduce hierarchical clustering algorithm. Figure 2 shows
the pseudo-code for our algorithm. The input for the algorithm is a comma-separated-
values CSV file containing the matrix with the pair-wise NCD values between machines.
The algorithm, as we implemented it, contains two maps and a single reduce. Our algorithm
begins with the one time use map1 function for pulling data from the CSV file and emitting
(null, c) key-value pairs with a singleton cluster c for each machine. This is designed to
initialize the data structures used by the algorithm. Once the initial data structures are
created, the algorithm iterates until a desired completion criteria is met, for example when
total dendrogram is completed (until all objects are merged into one cluster). Each iteration
executes a map and a reduce. In this second Map function, each cluster determines the
cluster which is most similar to. In the reduce phase, the overall two closest clusters are
determined and merged. The reduce then outputs the new clusters and a tuple describing
the clusters that were merged. The output of the reduce function is used as the input of the
map function in the next iteration.

4.3.1 Data Structures

The data structures used by our algorithms are briefly described next.
A machine as showed in Figure 3 represents the objects that are clustered.
A cluster as shown in Figure 4 represents the cluster of ”similar” objects.
A triple as shown in Figure 5 describes the 2 clusters that merged in a particular iteration

of the agglomerative clustering algorithm.

4.3.2 Map1

As seen in Figure 2, the first map is used only once in implementation. The main goal for
each map1 instance spawned by Hadoop is to take a single line from the input CSV file and
convert the data into clusters containing one machine. The pseudo-code for map1 is given
in Figure 6.

8

// read in tokens from the comma separa ted l i s t
// use t h e s e tokens to genera te s i n g l e t o n c l u s t e r s
map1:<machineID , l i s t o f NCD to a l l other machines> −−>

<null , s i n g l e t o n c l u s t e r c>;

while { ! done}
{

// for−each c l u s t e r , determine the c l u s t e r ” c l o s e s t ” to i t
// i f t h i s i s not the f i r s t i t e r a t i o n , d i s t a n c e s to
// o ther c l u s t e r s might need to be updated

// output a n u l l key and the updated c l u s t e r
map2 : <(o ldCluster1 , o ldCluster2 , newMergedCluster) , c> −−>

<null , (c , c−c l o s e s t)>;

// f i n d the 2 c l o s e s t c l u s t e r s
//merge the two c l u s t e r s

// output a d e s c r i p t i o n o f the c l u s t e r s t h a t merged as a key and
// the p o s s i b l y new c l u s t e r s as the v a l u e
reduce : <null , l i s t o f (c , c−c l o s e s t)> −−>

l i s t o f <(o ldCluster1 , o ldCluster2 , newMergedCluster) , updated c>;

}

Figure 2: MapReduce agglomerative hierarchical clustering algorithm

machine{
machineID ; // unique id f o r each machine
ncds ; // l i s t o f NCD v a l u e s from t h i s machine to a l l o ther machines }

Figure 3: Machine data structure

9

c l u s t e r {
c l u s t e r ID ; // unique id f o r the c l u s t e r
machines ; // l i s t o f machines in c l u s t e r
medoidID ; //machineID of the machine in the c l u s t e r t h a t has

// the s m a l l e s t average NCD to a l l the o ther machines in the c l u s t e r
medoids ; // l i s t o f medoidIDs f o r a l l the o ther c l u s t e r s
c losestMedoidID ; //medoidID of the c l o s e s t c l u s t e r }

Figure 4: Cluster data structure

t r i p l e {
mID1 ; // o l d medoidID of one o f the merged c l u s t e r s ,
mID2 ; // o l d medoidID of the o ther merged c l u s t e r ,
newmID ; //medoidID of the new combined c l u s t e r e d }

.

Figure 5: Triple data structure

10

Input : < l i n e number , row in the s i m i l a r i t y matrix>
Output : < t r i p l e (−1 ,−1 ,−1) , a c l u s t e r o f one machine>
Pseudo−code Map1 :

// each l i n e o f the f i l e corresponds to an i n d i v i d u a l machine
parse the comma−separated va lue s in the l i n e

use those va lue s to f i l l in the data about the i n d i v i d u a l machine ;
//machineID f o r t h i s machine i s the input l i n e number

// each c l u s t e r has one i n d i v i d u a l machine in the
// i n i t i a l s t e p o f a g g l o m e r a t i v e c l u s t e r i n g
// c l u s t e r I D i s the machineID
//medoidID i s the machineID
// medoids conta ins the l i s t o f a l l o ther machine IDs
// c loses tMedoidID i s computed
output a key−value pa i r with a dummy t r i p l e key (−1,−1,−1) and
the c l u s t e r conta in ing one machine as va lue

Figure 6: Map1: read from input file and initialize data structures

4.3.3 Map2

The second map function described in Figure 7 is executed in each iteration of the clustering
algorithm. In this map, each cluster updates its list of current clusters based on the previous
merge, and re-computes (if needed) the new “closest” cluster, meaning what cluster is it most
similar with currently. The code executed for each cluster depends on what occurred in the
previous merge (reduction). The map outputs a null key ensuring that all 〈Key,Value〉 pairs
are properly sent to the same reducer for determining the clusters to merge. The value output
by the map is the input cluster, with the internal values (medoids and closestMedoidID)
updated.

4.3.4 Reduce

The reduce function has as input the list of all the clusters. The reduce determines the two
closest clusters and merges them (the cluster with the smaller id is enlarged to encompass
all the objects in the two clusters, and the cluster with the larger id is eliminated). The
reduce outputs a list of key (a triple describing the merged clusters)-value (cluster) pairs.

11

Input : < t r i p l e (oldMedoid1 , oldMedoid2 , newMedoid) , c l u s t e r c>
Output : <null , c l u s t e r c with updated values>
Pseudo−code Map 2 :

// i f t h i s i s f i r s t i t e r a t i o n o f c l u s t e r i n g a lgor i thm ,
// j u s t output the c l u s t e r , s i n c e i t a l r e a d y has the c o r r e c t c loses tMedoidID
i f (oldMedoidID == −1){
output <null , c>;
return ;
}

// i f t h i s i s not the f i r s t i t e r a t i o n
// update the current l i s t o f medoids
//and re−compute c loses tMedoidID i f needed
switch {
case 1 : i f this c l u s t e r i n c r ea s e d in s i z e during the l a s t i t e r a t i o n

// oldMedoid2 r e p r e s e n t s the c l u s t e r removed due to merge
remove oldMedoid2 from c . medoids
compute the new c l o s e s t c l u s t e r medoidID c . c losestMedoidID

case 2 : i f this c l u s t e r was not invo lved in the merge during l a s t i t e r a t i o n
and oldMedoid1 = newMedoid

remove oldMedoid2 from c . medoids
compute the new c l o s e s t c l u s t e r medoidID c . c losestMedoidID

case 3 : i f this c l u s t e r was not invo lved in the merge during l a s t i t e r a t i o n
and oldMedoid2 = newMedoid

remove oldMedoid1 from c . medoids
compute the new c l o s e s t c l u s t e r medoidID c . c losestMedoidID

case 4 : i f this c l u s t e r was not invo lved in the merge during l a s t i t e r a t i o n
and oldMedoid1 != newMedoid and oldMedoid2 != newMedoid

remove oldMedoid1 from c . medoids
remove oldMedoid2 from c . medoids
add newMedoid to c . medoids
compute the new c l o s e s t c l u s t e r medoidID c . c losestMedoidID

}
output the modi f i ed c l u s t e r c : <null , c>;

Figure 7: Map2: For each cluster, update the cluster list based on previous merge and find
the current cluster closest to it

12

The pseudo-code for the Reduce function is given in Figure 8.

5 Results

In reference to the goals outlined in the paper, the project was successful. It was possible
to cluster the machines using the methodology describe above. However, some of the goals
of the larger project which involved utilizing the model created to classify new machines,
were for reached. A large part of this is due to the difficulties in properly implementing
the agglomerative clusters in MapReduce, which limited the amount of testing possible.
This suggests that perhaps the idea of agglomerative clustering, while an important type of
clustering, might be of limited use in a MapReduce paradigm.

5.1 Discussion

The project achieved its theoretical goals: to cluster data using Kolmogorov Complexity
and do it without emphasis on features and utilizing an efficient method. In reference to the
three goals discussed: flexibility, scalability and effectiveness, the project achieved results
in all three areas. That does not mean there were not some shortcomings, but overall the
project had shown success and just as importantly, potential for more success if continued
further.

One important thing to note is that the algorithm ran in O(n) time as shown in Figure 5.
This shows good promise that this implementation would scale well for larger data sets.
This was a pleasant surprise, as we expected that the use of relatively small datasets would
make the overhead cost of Hadoop a large factor. Due to the time it took to implement
the clustering algorithm in the MapReduce framework, limited time was available to tune
the system, and tuning the system is noted as an important part to most efficiently use
Hadoop [12].

6 Future Work

More work needs to be done to increase the runtime efficiency of the MapReduce implemen-
tation as well as to determine a good heuristic for the stopping point of the agglomerative
clustering algorithm. One way of improving the MapReduce clustering algorithm would be
to implement a self organizing algorithm such as a Quality Threshold algorithm [6] as it
has several advantages: the clusters must be of a minimum size defined by the data or, if
necessary, by the user, the number of clusters is not specified a priori, and individual ele-

13

Input : <null , l i s t o f a l l c l u s t e r s : c l u s t e r L i s t >
Output : < t r i p l e (oldMedoid1 , oldMedoid2 , newMedoid) , c l u s t e r c>
Pseudo−code Reduce :

// f i n d the two c l o s e s t c l u s t e r s
minNCD = 1 ;
f o r each (c l u s t e r c in c l u s t e r L i s t) {

// i f d i s t a n c e between c l u s t e r and i t s n e a r e s t ne ighbor < minimum change the minNCD
i f (c . medoidID . ncds (c losestMedoidID) < minNCD){
minNCD = c . medoidID . ncds (c losestMedoidID) ;
//remember c l u s t e r s to be merged
oldMedoid1 = c . medoidID ;
oldMedoid2 = c . c losestMedoidID ;
}
}

//merge the two c l o s e s t c l u s t e r s
c1 = c l u s t e r with medoid oldMedoid1 ;
c2 = c l u s t e r with medoid oldMedoid2 ;
c1 . machines = c1 . machines + c2 . machines ;

//remove c2 from the l i s t o f c l u s t e r s
c l u s t e r L i s t = c l u s t e r L i s t − c2 ;

// determine the medoid f o r the e n l a r g e d c l u s t e r
cur r ent average = 1 ;
f o r each (machine m in c1 . machines){

determine i t s average ncd aga in s t a l l o ther machines in the c l u s t e r
i f (the average i s sma l l e r than the cur rent average){
//make t h a t machine the new medoid
c1 . medoidID = m. machineID ;
s e t the cur rent average to the average c a l c u l a t e d for the cur r ent c en te r
}
}

// output
f o r each (c l u s t e r c in c l u s t e r L i s t){

output < t r i p l e (oldMedoid1 , oldMedoid2 , c1 . medoidID) , c>
}

Figure 8: Reduce: Find the two closest clusters and merge them

14

Figure 9: A display of runtimes for various size sets of data. Note the linear runtime

ments that don’t cluster are removed, thereby removing some of the noise that could make
clustering difficult.

Another algorithm worth implementing in the MapReduce environment would be the
OPTICS algorithm [1] as it provides many of the benefits of the Quality Threshold algorithm
while producing a dendrogram like in hierarchical clustering. A dendogram could be an
effective model to use for classification and reveal more about the structure of similarities
between machines in the network.

Another direction for future work would be to label the machines when placed on the
network and then as they evolve over time use that to determine how different in behavior
(or NCD) two machines of the same type could become. This is an idea in response to the
fact that when a machine is purchased and set-up, it is often quite obvious what its intended
purpose or use is. Measuring the evolution of the machines would allow better analysis of
the evolving needs of an enterprise.

Last, a desired future goal would be to develop a method to approximate an ideal number
of clusters K and use a partition clustering algorithm. In the MapReduce framework, a
partitioning based scheme holds a natural edge when implemented due to the intuitiveness
and the ease of programming versus a hierarchical method due to the need to iterate n times

15

with n objects. However, a caution towards using that method is the need for the user to
declare K. Until an effective way to estimate the optimal K exists, using K-means and NCD
in areas where the desired K is uncertain can be prohibitively expensive.

7 Related Work

The biggest contributor to the shape of this research and whose work inspired its use is Paul
Vitànyi, as he developed the NCD metric and then used it for clustering applications in a
variety of fields [2, 3]. There are a few differences between the focus of his work and this
application. This project is developed to be part of a working environment and scalability is
an important concern. The method developed in Clustering by Compression [2] describes a
technique for clustering described as Quartet Clustering. Quartet Clustering is a hierarchical
method designed to explicitly show the attributes of NCD. It is a multi-pass algorithm that,
after several random passes for initial clustering determines the “most accurate” dendrogram
which becomes the result. It is a important distinction to be made as in [3] sets of data as
large as 60 objects are used while this project operated on datasets several times larger.

Another important development to this software system is the work of Pike et al.[9]. They
have implemented a MapReduce oriented language designed to deal with large-scale data sets
by automating analysis for things like filtering, aggregation. However, they don’t implement
a cluster analysis in their query language.

Finally, the work of Stephanie Wehner [11] is closely related with ours in terms of environ-
ment and usage. She incorporates techniques in Kolmogorov Complexity across a network
with Snort to determine by behavior if a worm has occurred previously or if it is a new version
of a pre-existing worm that would have gone undetected by a signature-based system. She
also discusses the use of NCD in determining all forms of traffic anomalies as compression
effectively highlights general modal shifts in traffic patterns. The difference is that she is
attempting supervised learning as she is attempting to classify worms based on previously
seen behaviors and attributes versus unsupervised learning and then classification which is
the focus of this project.

8 Conclusion

The system designed proves that it can successfully cluster machines on a network while gen-
erally adhering to the constraints imposed on the system to maintain the goals of flexibility,
scalability and effectiveness. The results of running the algorithm on networks of differ-
ent sizes suggest that out algorithm can handle much larger networks without any serious

16

degradation in performance.
However, giving meaning to a compressed file, even in respect to another compressed

file, is difficult, and therefore the task of giving some valuable interpretation to the result
produced by clustering may require some knowledge of the inputs. This could constrain the
project to less flexibility than the initial level of flexibility desired.

9 Acknowledgements

I would like to thank Dr. Adina Crainiceanu who guided me through the research process
and implementation, and Dave Rapp for his continuing support of my computing interests.

References

[1] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics:
ordering points to identify the clustering structure. SIGMOD Rec., 28:49–60, June
1999.

[2] R Cilibrasi and P M B Vitanyi. Clustering by compression. IEEE Trans. Inf. Theory,
IEEE Trans. Inf. Theory, 51(4):1523–1545, April 2005.

[3] Rudi Cilibrasi, Paul Vitányi, and Ronald De Wolf. Algorithmic clustering of music
based on string compression. Comput. Music J., 28:49–67, December 2004.

[4] J Dean and S Ghemawat. Mapreduce: Simplified data processing on large clusters. In
In OSDI04: Sixth Symposium on Operating System Design and Implementation, 2004.

[5] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[6] Laurie J. Heyer, Semyon Kruglyak, and Shibu Yooseph. Exploring expression data:
Identification and analysis of coexpressed genes. Genome Res., 1999.

[7] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data An Introduction to Cluster
Analysis. Wiley Interscience, New York, 1990.

[8] W. Kirchherr, M. Li, and P. M. B. Vitànyi. The Miraculous Universal Distribution.
Mathematical Intelligencer, 1997. bibliographical data to be processed – The Mathe-
matical Intelligencer Vol: 19 Nr: 4 Coden: maindc Issn: 0343-6993 pages: 7–15 1997 –
springer – 8.

17

[9] R Pike, S Dorward, R Griesemer, and S Quinlan. Interpreting the data: Parallel analysis
with sawzall. Sci. Program, 13:277–298, 2005.

[10] G Sanjay, G Howard, and L Shun-Tak. The google file system. In Proceedings of the
Symposium on Operating Systems Principles, 2003.

[11] S Wehner. Analyzing worms and network traffic using compression. Journal of Com-
puter Security, 15(3), April 2007.

[12] Tom White. Hadoop: The Definitive Guide. O’Reilly, first edition edition, june 2009.

18

