
Name:___ANSWER KEY______________Alpha ____________ Instructor: ________

This is a SAMPLE exam – not a comprehensive summary of topics! Use
this to gauge the types of questions that may be asked, but review all

your notes and problems!

IC210
Sample Written 12-Week Exam

STOP! Read all the directions below before starting!

You may fill out this cover sheet when you receive your exam copy,
but do not open or otherwise start on the exam until told to begin by your instructor.

This is a multi section exam that will be given to different midshipmen at different times. As per USNAINST
1531.53A, you may NOT communicate about this exam with anyone using any medium until your instructor tells

you that you can.

Unless otherwise specified, all C++ source code given in this exam is syntactically correct.

When writing code, use call-by-reference ONLY when necessary.
This exam is closed book / closed notes and no electronic device can be used.

Helpful info (ASCII and precedence) is on the LAST PAGE. You may remove this page if you wish.

If you need extra space, use the blank page 7. Write “see page 7” for the original question.

Problem
Points
Avail Score

1. 15

2. 15

3. 15

4. 20

5. 15

6. 20

Total 100

1. (15 pts) Indicate exactly what prints at each comment.

#include <iostream>
using namespace std;

int doSomething(int,int&);
int main()
{

int a, b, c;
a = 4;
b = 7;

cout << "a=" << a << " b=" << b << endl;
// What is printed by the above line?

__a=4___b=7_________________________________

c = doSomething(a*3, b);
cout << "a=" << a << " b=" << b << " c=" << c << endl;
// What is printed by the above line?

__a=4___b=21___c=19________________________

return 0;
}

int doSomething(int x, int &y)
{

x = x + y;
y = 3 * y;
cout << " x=" << x << "y=" << y << endl;
// What is printed by the above line?

return x;
}

__x=19___y=21_______________________________

2. (15 points) In answering the following questions, if the function definitions are not explicitly given,
assume that the correct definitions for the given prototypes do appear somewhere later in the code.

a. Given the following prototype and code fragment for main(), why does the compiler
complain about the function call to simpleFunc in main()?

void simpleFunc(int &num, int &denom);

int main()
{

double x;
cin >> x;
int y = x * 12;
simpleFunc(12, y);

return 0;
}

Can’t pass a number (numeric literal) as a reference parameter.

b. Why does this print zero no matter what the user enters?

void readpos(int n);

int main()
{

int k = 0;
readpos(k);
cout << k << endl;
return 0;

}

void readpos(int n)
{

do
{

cout << “Enter a positive integer: “;
cin >>n;

} while (n <=0);
}

k is being passed by value, therefore the function does not change it.

c. When I run the following program it halts with an error…why?

#include <iostream>
using namespace std;

int fact(int n);

int main()
{

int n;
cout << "Enter a number: ";
cin >> n;
cout << n << "!= " << fact(n) << endl;

return 0;
}

int fact (int n)
{

if (n == 0)
return 1;

else
return n*fact(n);

}

The recursive call ‘fact(n)’never decrements n so the program eventually
runs out of memory since the base case is never reached.

3. (15 pts) Provide the prototypes (not the definitions) for the following functions.

Description & Example Code Prototype
ending, which takes an array of strings
and returns an array of chars containing
the last character of each string. Example
of use:

int n= 10;
string *s = new string[n];
for (int i = 0; i < n; i++)

cin >> s[i];
char *f = ending(s, n);
cout << f[2] << “ is the last “

<< “letter of “ << s[2]
<< endl;

char * ending(string*, int);

divBy2_3, which examines an array and
determines the number of elements
divisible by 2 and the number of elements
divisible by 3. Examples of use:

int n = 50, div2, div3;
int *a = new int[n]
for (int i=0; i<n; i++)

cin >> a[i];
divBy2_3(a, n, div2, div3);
cout << “There are “ << div2

<< “ divisible by 2 and “ <<
<< div3 << “ divisible by 3 “
<< “integers in the array.”
<< endl;

void divBy2_3(int*, int, int&,
int&);

read, which reads an array of ints from
either a file or the keyboard. Example of
use:

int n = 10;
int *a = new int[n];
string s;
if (cin >> s && s ==”keyboard”)

read (a, n, cin);
else
{

ifstream fin (s.c_str());
read (a, n, fin);

}

void read(int *, int, istream&);

4. (20 points) A function lessThan accepts four arguments: a pointer to an array of integers, an integer
indicating the size of the array, a double value, and an integer. The function computes the number of
elements in the array that are less than or equal to the double value, then passes this number back to the
calling program via the last integer parameter. The function also explicitly returns the number of
elements in the array that are equal to zero.

(a) (5 pts) Give the prototype for the function lessThan.

int lessThan(int *, int, double, int&);

(b) (5 pts Assume that in main() you already have the following declarations
int n = 10;
int *array = readNumbersFromUserIntoArray(n);

Now, give the code to call the function lessThan() from main() so that it computes the number
of values in the array that are less than or equal to 12.5, then output this number and the number of
values in the array that are equal to zero. If any additional declarations are needed, include them.

int numZero, numLess;
numZero = lessThan(array, n, 12.5, numLess);
cout << "Number less: " << numLess << endl;
cout << "Number zero: " << numZero << endl;

(c) (10 pts) Write the function lessThan. You may assume that main has filled the array with values
before it calls lessThan.

int lessThan(int *values, int size, double test, int& less)
{

int zero = 0;
less = 0;
for (int i = 0; i < size; i++)
{

if (values[i] <= test)
less++;

if (values[i] == 0)
zero++;

}
return zero;

}

5. (15 pts) The following function named log takes two integer arguments (a and b). When called, it
must be true that “a” is an exact power of “b”, and the function then returns the correct exponent value
such that b^exponent equals a. For example, if a = 81 and b = 3, then the function call log (a, b)
returns 4 since 3^4 = 81. An iterative version of the function is shown below. In the space provided,
write a recursive function that accomplishes the same task.

The equivalent recursive function is:

int recursiveLog(int a,int b)
{

if (a == b)
return 1;

else
{

a=a/b;
return 1 + recursiveLog(a, b);

}
}

int log(int a, int b)
{

int power = 0;
while (a >= b)
{

power++;
a = a/b;

}
return power;

}

6. (20 pts) Below is the file scores.txt. The first line tells how many rows and columns of scores are
in the file. In this case, there are 5 rows of scores, each consisting of 10 doubles.
scores.txt

a. (10 pts) Write a code fragment (as it would appear in main()) that opens the file and creates a
2-dimensional array (using a pointer variable) of doubles and initializes it to the values in
scores.txt.

ifstream fin;
fin.open("scores.txt");
int rows, cols;
string junk;
fin >> rows >> junk >>cols;

double **scores = new double*[rows];
for (int i = 0; i < rows; i++)

scores[i] = new double[cols];

for (int j = 0; j < rows; j++)
for (int k = 0; k < cols; k++)

fin >> scores[j][k];
b. (10 pts) Write a function that prints out the average of each column. You must provide the

prototype and definition for the function. The function will need to take three parameters; the
2-dimensional array as one of its parameters and the two dimensions of the 2-D array as the
other two parameters.
void average(double **, int, int);

void average(double **scores, int rows, int cols)
{

double avg;
double sum;
for (int j = 0; j < cols; j++)
{

// For column j, compute sum over all rows
sum = 0;
for (int k = 0; k < rows; k++)

sum += scores[k][j];

// Compute and output the average for column j
avg = sum/rows;
cout << avg << '\t';

}
}

5 by 10
58.4 96.2 65.1 72.7 93.9 67.0 59.4 74.6 95.4 56.0
96.3 67.4 56.5 74.6 94.7 100.5 98.3 68.2 95.1 65.3
48.4 36.2 65.1 22.7 73.9 77.0 79.4 74.6 85.4 26.0
66.3 77.4 86.5 94.6 84.7 90.5 78.3 78.2 85.1 95.3
68.4 76.2 85.1 92.7 73.9 67.0 59.4 64.6 75.4 86.0

