
1

IC220 Set #20:
Laundry, Co-dependency, and other Hazards

of Modern (Architecture) Life

Chapter 6

2

ADMIN

• Reading for Chapter 6: 6.1, 6.9-6.12

3

Midnight Laundry

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task
order

A

B

C

D

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task
order

A

B

C

D

PAT06F01.eps

4

Smarty Laundry

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task
order

A

B

C

D

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task
order

A

B

C

D

PAT06F01.eps

5

Pipelining

• Improve performance by increasing instruction throughput
Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400 1600 1800

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

800 ps

800 ps

800 ps

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

Instruction
fetch

Reg ALU Data
access Reg

Reg ALU Data
access Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

Ideal speedup is number of stages in the pipeline. Do we achieve this?

6

Basic Idea

WB: Write backMEM: Memory accessIF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

1
M
u
x

0

0
M
u
x

1 Address

Write
data

Read
data

Data
Memory

Read
register 1

Read
register 2

Write
register

Write
data

Registers

Read
data 1

Read
data 2

ALU

Zero

ALU
result

ADD

Add

result
Shift
left 2

Address

Instruction

Instruction
memory

Add

4

PC

Sign
extend

0
M
u
x

1

16 32

PAT06F09.eps

7

Pipelined Datapath

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers
Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EXIF/ID EX/MEM MEM/WB

PAT06F11.eps

16 32

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

8

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

Pipeline Diagrams

add $s0, $s1, $s2

sub $a1, $s2, $a3

add $t0, $t1, $t2

Assumptions:
• Reads to memory or register file in 2nd half of clock cycle
• Writes to memory or register file in 1st half of clock cycle

What could go wrong?

Clock cycle: 1 2 3 4 5 6 7

9

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

• Problem with starting next instruction before first is finished

Problem: Dependencies

sub $s0, $s1, $s2

and $a1, $s0, $a3

add $t0, $t1, $s0

or $t2, $s0, $s0

Dependencies that “go backward in time” are ____________________

Will the “or” instruction work properly?

Clock cycle: 1 2 3 4 5 6 7 8

10

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

Use temporary results, don’t wait for them to be written

Solution: Forwarding

sub $s0, $s1, $s2

and $a1, $s0, $a3

add $t0, $t1, $s0

or $t2, $s0, $s0

Clock cycle: 1 2 3 4 5 6 7 8

Where do we need this?

Will this deal with all hazards?

11

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

200 400 600 800 1000Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

Problem?

lw $t0, 0($s1)

sub $a1, $t0, $a3

add $a2, $t0, $t2

Clock cycle: 1 2 3 4 5 6 7

Forwarding not enough…
When an instruction tries to ___________
a register following a ____________
to the same register.

12

Solution: “Stall” later instruction until result is ready

lw $t0, 0($s1)

sub $a1, $t0, $a3

add $a2, $t0, $t2

Clock cycle: 1 2 3 4 5 6 7

Why does the stall start after ID stage?

13

Assumptions

• For exercises/exams/everything assume…
– The MIPS 5-stage pipeline
– That we have forwarding

…unless told otherwise

14

Exercise #1 – Pipeline diagrams

• Draw a pipeline stage diagram for the following sequence of instructions.
Start at cycle #1.
You don’t need fancy pictures – just text for each stage: ID, MEM, etc.
add $s1, $s3, $s4
lw $v0, 0($a0)
sub $t0, $t1, $t2

• What is the total number of cycles needed to complete this sequence?

• What is the ALU doing during cycle #4?

• When does the sub instruction writeback its result?

• When does the lw instruction access memory?

15

Exercise #2 – Data hazards

• Consider this code:

1. add $s1, $s3, $s4

2. add $v0, $s1, $s3

3. sub $t0, $v0, $t2

4. and $a0, $v0, $s1

1. Draw lines showing all the data dependencies in this code

2. Which of these dependencies do not need forwarding to avoid stalling?

16

Exercise #3 – Data hazards

• Draw a pipeline diagram for this code. Show stalls where needed.
1. add $s1, $s3, $s4
2. lw $v0, 0($s1)

3. sub $v0, $v0, $s1

17

Exercise #4 – More Data hazards

• Draw a pipeline diagram for this code. Show stalls where needed.
1. lw $s1, 0($t0)
2. lw $v0, 0($s1)

3. sw $v0, 4($s1)

4. sw $t0, 0($t1)

18

Exercise #5 – Stretch

• What might be a problem with pipelining the following code?
beq $a0, $a1, Else
lw $v0, 0($s1)

sw $v0, 4($s1)

Else: add $a1, $a2, $a3

19

Exercise #6 – Stretch

• This diagram (from before) has a serious bug. What is it?

Add

Address

Instruction
memory

Read
register 1

In
st

ru
ct

io
n

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers
Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EXIF/ID EX/MEM MEM/WB

PAT06F11.eps

16 32

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

20

Clock cycle time
(vs. single cycle)

How many instructions executing at
once?

Each stage has its own set of
hardware?

Split instruction into multiple stages
(1 per cycle)?

Amount of hardware used
(vs. single cycle)

PipelinedMulticycle

Big Picture
• Remember the single-cycle implementation

– Inefficient because low utilization of hardware resources
– Each instruction takes one long cycle

• Two possible ways to improve on this:

21

The Pipeline Paradox

• Pipelining does not ________________ the execution time of

any ______________ instruction

• But by _____________________ instruction execution, it can

greatly improve performance by ________________ the

22

Implementing Pipelining

• What makes it easy?
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– data hazards
– structural hazards
– control hazards

• What make it really hard?
– exception handling
– Improving performance with out-of-order execution, etc.

23

Structural Hazards

• Occur when the hardware can’t support the combination of
instructions that we want to execute in the same clock cycle

• MIPS instruction set designed to reduce this problem

• But could occur if:

24

• What might be a problem with pipelining the following code?
beq $a0, $a1, Else
lw $v0, 0($s1)

sw $v0, 4($s1)

Else: add $a1, $a2, $a3

Control Hazards

• What other kinds of instructions would cause this problem?

25

Control Hazard Strategy #1: Predict not taken

• What if we are wrong?

• Assume branch target and decision known at end of ID cycle. Show a
pipeline diagram for when branch is taken.

beq $a0, $a1, Else
lw $v0, 0($s1)

sw $v0, 4($s1)

Else: add $a1, $a2, $a3

26

Control Hazard Strategies

1. Predict not taken
One cycle penalty when we are wrong – not so bad
Penalty gets bigger with longer pipelines – bigger problem

2.

3.

27

Branch Prediction

Predict taken Predict taken

Predict not taken Predict not taken
Not taken

Not taken

Not taken

Not taken

Taken

Taken

Taken

Taken

With more sophistication can get 90-95% accuracy
Good prediction key to enabling more advanced pipelining techniques!

28

• Generate control signal during the ________ stage

• _________ control signals along just like the __________

Pipeline Control

Execution/Address Calculation
stage control lines

Memory access stage
control lines

Write-back
stage control

lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

29

Code Scheduling to Improve Performance

• Can we avoid stalls by rescheduling?

lw $t0, 0($t1)
add $t2, $t0, $t2
lw $t3, 4($t1)
add $t4, $t3, $t4

• Dynamic Pipeline Scheduling
– Hardware chooses which instructions to execute next
– Will execute instructions out of order (e.g., doesn’t wait for a

dependency to be resolved, but rather keeps going!)
– Speculates on branches and keeps the pipeline full

(may need to rollback if prediction incorrect)

30

Dynamic Pipeline Scheduling

• Let hardware choose which instruction to execute next
(might execute instructions out of program order)

• Why might hardware do better job than programmer/compiler?

lw $t0, 0($t1)
add $t2, $t0, $t2
lw $t3, 4($t1)
add $t4, $t3, $t4

sw $s0, 0($s3)
lw $t0, 0($t1)
add $t2, $t0, $t2

Example #1 Example #2

31

Exercise #1

• Can you rewrite this code to eliminate stalls?
1. lw $s1, 0($t0)
2. lw $v0, 0($s1)

3. sw $v0, 4($s1)

4. add $t0, $t1, $t2

32

Exercise #2

• Show a pipeline diagram for the following code, assuming:
– The branch is predicted not taken
– The branch actually is taken

lw $t1, 0($t0)

beq $s1, $s2, Label2

sub $v0, $v1, $v2

Label2: add $t0, $t1, $t2

33

Exercise #3 – True or False?

1. A pipelined implementation will have a faster clock rate than a
comparable single cycle implementation

2. Pipelining increases performance by splitting up each instruction
into stages, thereby decreasing the time needed to execute each
instruction.

3. A structural hazard could occur if an instruction produce two results
that needed to be written to the register file.

4. “Backwards” branches are likely to not be taken

34

Exercise #4 – Stretch

• What is problematic about the following code?
• Show a pipeline diagram – assume branch is predicted not taken, but is

taken.
lw $s1, 0($t0)

beq $s1, $s2, Label2

sub $v0, $v1, $v2
Label2: add $t0, $t1, $t2

