
1

IC220
SlideSet #3: Control Flow

(more chapter 2)

2

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions (I – type):

bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i == j)
h = i + j;

• Assembly Code:

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Conditional Control

3

Example

• What is the MIPS assembly code for the following:
if (i == j)

go to L1;
f = g + h;

L1: f = f – i;
Variables f to j are assigned to registers $s0 to $s4

f $s0
g $s1
h $s2
i $s3
j $s4

4

• MIPS unconditional branch instructions:

j label

• New type of instruction (J-type)

– op code is 2 (no function field)

• Example:

if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

Unconditional Control

5

Example

• What is the MIPS assembly code for the following:
if (i == j) f = g + h;
else f = g – h;

Variables f to j are assigned to registers $s0 to $s4

f $s0
g $s1
h $s2
i $s3
j $s4

6

So far:

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 != $s5
beq $s4,$s5,L Next instr. is at Label if $s4 == $s5
j Label Next instr. is at Label

• Formats:

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

7

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• slt is a R-type instruction (function code 42)

Control Flow – Branch if less than

8

Example

• What is the MIPS assembly code to test if variable a ($s0) is less
than variable b($s1) and then branch to Less: if the condition holds?

if (a < b)
go to Less;

….
Less: ….

9

Pseudoinstructions

• Example #1: Use slt instruction to build "blt $s1, $s2, Label"
– “Pseudoinstruction” that assembler expands into several real

instructions
– Note that the assembler needs a register to do this
– What register should it use?

– Why not make blt a real instruction?

• Example #2: “Move” instruction
– “move $t0, $t1”
– Implementation?

10

Policy of Use Conventions

Name Register number Usage
$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

$at = Register #1 – reserved for assembler
$k0, $k1 = Register #26, 27 – reserved for OS

11

• Small constants are used quite frequently
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Possible solution
– put 'typical constants' in memory and load them.
– And create hard-wired registers for constants like zero, one.

• Problem?

• MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

Constants

op rs rtI-type
12

• We'd like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 0000000000111111

1010101010101010 0000000000000000

0000000000000000 0000000000111111

1010101010101010 0000000000000000

ori

1010101010101010 0000000000000000

How about larger constants?

13

• Assembly provides convenient symbolic representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality
– e.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'

• When considering performance you should
count

Assembly Language vs. Machine Language

14

Memory – Byte Order & Alignment

• Endian
– Processors don’t care
– Big: 0,1,2,3
– Little: 3,2,1,0
– Network byte order:

• Alignment
– require that objects fall on

address that is multiple of

– Legal word addresses:

– Legal byte addresses:

0 1 2 3

15

Looping

• We know how to make decisions, but:
– Can we set up a flow that allows for multiple iterations?
– What high level repetition structures could we use?
– What MIPS instructions could we use?

• “Basic block”

– Sequence of instructions __________________________

except possibly __________________________-

16

Looping Example

Goal: Provide the comments # to the assembly language
C Code

do {
g = g + A[i]; //vars g to j in $s1 to $s4
i = i + j; // $s5 holds base add of A

} while (i != h)

Assembly Language
Loop: add $t1, $s3, $s3 #

add $t1, $t1, $t1 #
add $t1, $t1, $s5 #
lw $t0, 0($t1) #
add $s1, $s1, $t0 #
add $s3, $s3, $s4 #
bne $s3, $s2, Loop #

g $s1
h $s2
i $s3
j $s4
&A $s5

