ADMIN

1C220

Slide Set #8: Digital Logic Finale

(Appendix B)

Big Picture

Project 1 due Mon Feb 5

— Recall - No collaboration — start early & see instructor for help
READING

— Appendix: Read B.7,B.8,B.9, B.10, and B.12.

(skip the Verilog details).

Course Paper description due by Feb 26 for approval

— Current computer architectural topic/issue

— 3-5 pages

— Suggested topics on course calendar — but a topic alone is not a

description! (see online instructions)

6 week exam, in class, Wed February 14

“Real World” Example

+ Computer Overview (Chapter 1)

» A specific instruction set architecture (Chapter 2)
* Logic Design (Appendix B)

+ Arithmetic and how to build an ALU (Chapter 3)
» Performance issues (Chapter 4)

« Constructing a processor to execute our
instructions (Chapter 5)

» Pipelining to improve performance (Chapter 6)

* Memory: caches and virtual memory (Chapter 7)
* /0 (Chapter 8)

+ A few advanced topics

Buzzer Feature for a Car
Should Buzz when

1. the engine is on, the door is closed, and the seat belt is
unbuckled

2. the engine is on, the door is open
What are our input(s)?

What are our output(s)?

(extra space)

Check Yourself

« Could you have filled in the truth table?

+ Could you have filled in the K-Map?

« Can you use the K-Map to minimize the equation?
« Can you draw the circuit?

Bigger Units of Combinational Logic Multiplexor — Example Usage
+ Gates useful but fairly low level $10
- Easier to constructs circuits with higher-level building blocks
instead: $tl
— Combinational Logic
+ Multiplexors (mux) $2
» Decoders :
— (later) S(.equentlal Logic : Adder
* Registers .
* Arithmetic unit (ALU) .
+ What is this an example of? :
$a2
$a3

Multiplexor — 1-bit version Multiplexor — Wider version
lect

« 32 bit wide, 2-way Mux: Salect S
A — DM —O|EN Y .
u c —Is1 AT\ Aa -K‘L\—‘
x —Is0 - M
B 1 = u e 31
—|p3 CEAW I
— b2 L N
b © o
5 —{po 00—
U —=C3n
R
Think of a mux as a selector _/_
S selects one input to be the output « Pictures don’t always show the width M__/-L\
N-way mux has (especially if 32 bits) M
— #inputs: i
— # selector lines (S): = L
— # outputs:
Implementation?
9 10

Combinational vs. Sequential Logic

+ Combinational Logic — output depends only on

End of Combinational Logic + Sequential Logic — output depends on:

» Previous inputs are stored in “state elements”
- determines when an element is updated

+ State elements will involve use of feedback in circuit
— Not permitted in combinational circuits

11 12

Truth Tables - Next State Tables

* New kind of input:

A B Q Q.
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
13
D-Type Flip Flop
State only changes
o [o = v} (3] = v} a
+ Otherwise... o lach o el o a
remembers previous state
* Abstraction:
—ID Q ¢
—|C
o—1 I
ge o L]
Q-flipflop
15

Clocks and State Elements

Clock Frequency is the

of

When should updates occur to state elements?

— Edge — change state when

— Level — change state when

State Diagrams

14

State = Contents of memory

Diagrams are a tool to
represent ALL transitions
from one state to another
— What causes state
changes?

Falling edge
Clock period \ Rising edge
NEXT STATE TABLE
D Q] Qua
00|0 RESET
0110
101 SET
111

Example for D Flip-Flop:

16

Finite State Machines

+ Can use state diagrams to express more complex sequential logic.
+ Example: Candy Machine

— Inputs: N (nickel received), D (dime received)

— Outputs: C (dispense candy), R (give refund)

— Should dispense candy after 15 cents deposited, + refund if
overpaid. Then await next customer.

+ We’ll use Moore machine — output depends only on

* What states do we need?

17

Implementing Finite State Machines

et
Sl
Mext-stale
e}y
:
Cloak,
Inputs -
- Output .
o~
+ Squares =
+ Circles =

+ We don’t always show the clock for registers/memory diagrams, but

will be implicit
P 19

Example: Candy Machine

EX: B-51 to B-53

FSM Example

Inputs: (N)ickel, (D)ime
Outputs: (C)andy, (R)efund

18

20

Combining Combinational and Sequential Logic

Finite State Machine was our first example of this
Two general patterns:
1. State Machine

State o ™
= Combinatonsl lagic
‘—*‘] b T |

2. Pipeline
State e T Sate
algment Comainational logic elamant
1 S e 2

Clodk cycle —| |—|_

In either case, have important timing concerns
— Output of combinational logic block may oscillate before settling

— Clock cycle time must be long enough so combo-logic settles before
the sequential logic (state) reads the new value

— State elements ensure that combo-logic inputs remain stable

Memory

21

Why so many types?

Basic types:
— RAM “random access memory” (read/write)

Main memory
Volatile
Types:
— SRAM - async, sync, pipeline burst, cache;
— DRAM - M, FPM, EDO, burst EDO, sync, DR, DDR

— ROM (read only)

Small

Stores critical operating instruction (BOOT strap)
Non-volatile

Common in embedded system (toys, cameras, printers, etc)
Types: PROM, EPROM, EEPROM, flash memory

23

Registers and Register Files

Registers store data (bits) (i.e. have memory)

— Each register =

Register files contain:
— Set of registers

— Logic for read/write
MIPS register file has how
many registers? —

How does it store data?

How does it know which
register to access?

Appendix B Summary

Read register
mumber 1

Read register
number 2

Write
reqister

Write
data

Read
data 1

Register file

Read
data 2

22

Truth tables and Gates
— AND, OR, NOT, NOR, NAND, XOR
Boolean Algebra

— Distributive, DeMorgan’s, Inverse, Identity, etc

Combinational Logic

— Circuits — Design, reduction / minimization, K-maps

— Multiplexor
Sequential Logic

— Flip/flops

— Clock & state diagrams
Register files
Memory

— RAM vs ROM, SRAM vs. DRAM

24

