
(10 pts) Exercise 2-8

(See number discussion in Chapter 2. For hex help, see
http://www.danbbs.dk/~erikoest/hex.htm)

• What binary number does this hexadecimal number represent:
7fff fffahex?

• What decimal number does it represent?

(5 pts) Exercise 2-9

• What hexadecimal number does this binary number represent:
1100 1010 1111 1110 1111 1010 1100 1110two

(5 pts) Exercise 2-11

• What is the MIPS assembly code for the following:

if (g != j) h = g - h;

else h = g + h;

Variables f to j are assigned to registers $s0 to $s4

f $s0

g $s1

h $s2

i $s3

j $s4

(5 pts) Exercise 2-12

• What is the MIPS assembly code for the following:

if (j == h) g = i + j;

Variables f to j are assigned to registers $s0 to $s4

f $s0

g $s1

h $s2

i $s3

j $s4

(5 pts) Exercise 2-13

• What is the MIPS assembly code for the following:

if ((j == h) && (f != i)) g = i + j;

Variables f to j are assigned to registers $s0 to $s4

f $s0

g $s1

h $s2

i $s3

j $s4

(10 pts) Exercise 2-14

• What is the MIPS assembly code for the following:

if (((g != h) && (f == i)) ||

(g == i))

g = i + j;

Variables f to j are assigned to registers $s0 to $s4

f $s0

g $s1

h $s2

i $s3

j $s4

(20 pts) Exercise 2-18: Pseudo-instructions

• Below you will see several problems of the form:
li $t1, 0x7 # $t1 = 7

• This is an example pseudo-instruction, with it’s meaning
given as a comment. The instruction should load ‘0x7’ into $t1. The
constant is also called an ‘immediate’ – ‘li’ stands for ‘load immediate’

• Constants beginning with ‘0x’ are in hex. Thus, 0x7 = decimal 7.
0x17 = decimal 23 (16 + 7). Recall that each hex ‘digit’ is 4 bits, and that you
can you can only use up to 16 bits for a simple constant.

• Each problem is separate – they don’t build on each other

• Your job is to write the real MIPS instruction (or sequence of instructions)
that the compiler would produce for each given pseudo-instruction. For
instance, the solution for the above pseudo-instruction is:
addi $t1, $zero, 0x7

• To make your answers simpler, you may make use of the ‘li’ psuedo-
instruction where helpful (except when defining li itself), and may assume
that it can handle constants up to 32 bits in size

• clear $to # $t0 = 0

• beq $t1, 0x9, L # if ($t1 == 0x9) go to L

• beq $t2, 0x12123434, L # if ($t2 == 0x12123434) goto L

• li $t2, 0x12123434 # $t2 = 0x12123434

• bge $t5, $t3, L # if ($t5 >= $t3) go to L

• lw $t5, 0x12123434($t2) # t5 = Memory[$t2+0x12123434]

