ADMIN

+ Chapter 7 Reading

- 71-73
Slide Set #16:
Exploiting Memory Hierarchy
1
Memory, Cost, and Performance Locality
+ Ideal World: we want a memory that is « A principle that makes caching work
— Fast,
- Big, & < If an item is referenced,
— Cheap! 1. it will tend to be referenced again soon
+ Real World: why?
SRAM access times are .5 — 5ns at cost of $4000 to $10,000 per GB.
DRAM access times are 50-70ns at cost of $100 to $200 per GB.
Disk access times are 5 to 20 million ns at cost of $.50 to $2 per GB.
. Solution? 2. nearby items will tend to be referenced soon.
olution? why?

Caching Basics

+ Definitions
1. Minimum unit of data: “block” or “cache line”
For now assume, block is 1 byte
2. Data requested is in the cache:
3. Data requested is not in the cache:
+ Cache has a given number of blocks (N)

+ Challenge: How to locate an item in the cache?
— Simplest way:
Cache index = (Data address) mod N
e.g., N =10, Address = 1024, Index =
e.g., N =16, Address =33, Index =
— Implications

For a given data address, there is possible cache index

But for a given cache index there are ____ _ possible data items that
could go there

Improving our basic cache

* Why did we miss? How can we fix it?

Example — (Simplified) Direct Mapped Cache

Memory Cache (N =5) Processor

20 7 Address Data 1. Read 24

21 3

20| 27 2. Read 25

23| 32 0 3. Read 26

24 101 1 4. Read 24

25| 78

26 59) 5. Read 21

27| 24 6. Read 26

28| 56 3 7. Read 24

2| & 8. Read 26

30| 36 4

a1l 98 | 9. Read 27

Total hits?
Total misses?
Approach #1 — Increase Block Size
Index = ByteAddress mod N
BytesPerBlock

Memory Cache Processor
20 7 Address Data 1. Read 24
21 3
w27 | 2. Read 25
23| 32 0 3. Read 26
24| 101 4. Read 24
25 78

o6 9 1 5. Read 21
27 24 6. Read 18
28| 56 2 7. Read 24
29 87

30 % ; 8. Read 27
31 98 9. Read 26

Approach #2 — Add Associativity

Index =|‘ ByteAddress

BytesPerBlock

J Associativity

Memory Cache Processor
20 7 Address Data 1. Read 24
21 3
29 27 2. Read 25
23 32 3. Read 26
24| 1o 0 4. Read 24
25 78
2% 59 5. Read 21
27 24 6. Read 18
28| 56 7. Read 24
29 87 1
30 ” 8. Read 27
31 98 9. Read 26
9
Performance Impact — Part 2
» Increasing block size...
— May help by exploiting locality
— But, may hurt by increasing
(due to smaller)
— Lesson — want block size > 1, but not too large
» Increasing associativity
— Overall N stays the same, but smaller number of sets
— May help by exploiting locality
(due to fewer)
— May hurt because cache gets slower
— Do we want associativity?
11

Performance Impact — Part 1

* To be fair, want to compare cache organizations with same data size
— E.g., increasing block size must decrease number blocks (N)

+ Overall, increasing block size tends to decrease miss rate:
A%

3%

30%)
25%[

20%)
15%) \

10%

5%

o e S S

Miss rate

10

4 16 &4 26
Block size (bytes) 1KB
* 8KB
16KB
*64KB
25%6KB
How to handle a miss?
* Things we need to do:
1. the CPU until miss completes
2. old data from the cache
Which data?
3. theneeded data from memory
Pay the

How long does this take?

4. the CPU

What about a write miss?

12

