ADMIN

+ Reading - finish Chapter 7
— Sections 7.4 (skip 531-536), 7.5, 7.7, 7.8

1C220 Set #18:
Caching Finale and Virtual Reality
(Chapter 7)
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Cache Performance Performance Example

Simplified model: « Suppose processor has a CPI of 1.5 given a perfect cache. If there are 1.2

memory accesses per instruction, a miss penalty of 20 cycles, and a miss

execution time = (execution cycles + stall cycles) x cycle time rate of 10%, what is the effective CPI with the real cache?

=execTime + stallTime

MemoryAccesses . .
stall cycles = 2ICMOTVACCESSES o 1o Rates MissPenalty
Program

(or) = Instructions. Misses

® MissPenalty
Program  Instruction
+ Two typical ways of improving performance:
— decreasing the miss rate
— decreasing the miss penalty
What happens if we increase block size?

Add associativity?



Split Caches

+ Instructions and data have different properties

— May benefit from different cache organizations (block size, assoc...)
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+  Why else might we want to do this?

Cache Complexities

* Hereis why:

Cache misses / item
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+ Memory system performance is often critical factor

— multilevel caches, pipelined processors, make it harder to predict outcomes

— Compiler optimizations to increase locality sometimes hurt ILP

« Difficult to predict best algorithm: need experimental data

Cache Complexities

Not always easy to understand implications of caches:
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Radix sort vs. Quicksort

Program Design for Caches — Example 1

Option #1

for (j = 0; j < 20; j++)

for (1 = 0; i < 200;

x[i1[3] = x[i]1[3] + 1;

Option #2
for (i = 0; i < 200;

for (j = 0; j < 20;

it+)
J4+)

x[11[3] = x[i][3]1 + 1;

it++)




Program Design for Caches — Example 2

*  Why might this code be problematic?
int A[1024][1024];
int B[1024][1024];
for (1 = 0; i < 1024; i++)
for (j = 0; j < 1024; j++)
A[i][]j] += B[i][3];

* How to fix it?

Virtual memory summary (part 1)
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Virtual memory summary (part 2)
Virtual address
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“all problems in Computer Science can be
solved by another level of indirection” @@
-- Butler Lampson
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Virtual Memory

Main memory can act as a cache for the secondary storage (disk)

Virtual addresses Physical addresses

=

b

Disk addresses

Advantages:
— lllusion of having more physical memory
— Program relocation
— Protection

Note that main point is caching of disk in main memory but will
affect all our memory references!

Pages: virtual memory blocks
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Page faults: the data is not in memory, retrieve it from disk
— huge miss penalty (slow disk), thus

* pages should be fairly

* Replacement strategy:

— can handle the faults in software instead of hardware

Writeback or write-through?
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Address Translation

Terminology:
*Cache block 2>
*Cache miss 2>
*Cache tag >
*Byte offset >

Virtual address
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| Virtual page number

Page offset

Translation
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Physical address

Page Tables
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Example — Address Translation Part 1 Example — Address Translation Part 2

Page Table
+ Our virtual memory system has: Translate the following addresses: valid? Physical Page
— 32 bit virtual addresses 1. C0001560 ) or Disk Block #
— 28 bit physical addresses C0000 1 A204
— 4096 byte page sizes 0001 1 A200
* How to split a virtual address? 2. C0006123 C0002 0 FB0O
’ Virtual page # Page offset ‘ cooo3 ! 8003
C0004 1 7290
C0005 0 5600
+ What will the physical address look like? 3. €0002450 €0006 1 F5C0
’ Physical page # Page offset ‘
* How many entries in the page table?
17 18
Making Address Translation Fast Protection and Address Spaces
» A cache for address translations: translation lookaside buffer « Every program has its own “address space”
— 8 A — Program A’s address 0xc000 0200 not same as program B’s
fumber_NaidDiry Rel — "" — OS maps every virtual address to distinct physical addresses
B Physical memory * How do we make this work?
Z — Page tables —
Page table i
Physical page
Valid DirtyRef or disk address B q — TLB -

Disk storage

+ Can program A access data from program B? Yes, if...
1. OS can map different virtual page #'s to same physical page #'s
*  So A’s 0xc000 0200 = B’s 0xb320 0200

Typical values: 16-512 entries, 2. Program A has read or write access to the page
miss-rate: .01% - 1%
miss-penalty: 10 — 100 cycles 3. OS uses supervisor/kernel protection to prevent user programs

19 from modifying page table/TLB 20



Integrating Virtual Memory, TLBs, and Caches

TLBmiss _ No Yes

exception
Physical address

No ‘ Yes
No

Tryto read data
from cache

Cache miss stall |, NO, Yes

while read block

Deliver data
tothe CPU

Write access.
biton?

Wite protection

Gache miss stall |, NO,
while read block

Modern Systems

Try to write data
to cache

Yes

(Figure 7.25)

Wite data nto cache,
update the dity bit, and
put the data and the
address into the write buffer
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« Things are getting complicated!
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FIGURE 7.36 Desktop, embedded, and server microprocessors in 2004. From a memory hierarchy perspective, the primary difer-
ences between satagorias is the L2 <oshe. There is no L2 <oshe for the lovw-perwer embedded, a large on-chip L2 for the embedded and desktcp,and 16
MB offchip for the server. The precsssor cleck ritss sles vary: 0.4 GHz for lovw-paswer snibeddsd, | GHz or highar for the rest Nots that UltrsSPARC

IV has two procsssors on the chip
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TLBs and Caches

What happens after translation?

Virtual address

3130292827 - - 15141312111098 =====-- 3210

| Virtual page number ‘ Page offset
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| Physical page number ‘ Page offset

Cache

Some Issues
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Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times
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Design challenge: dealing with this growing disparity
— Prefetching? 3'd level caches and more? Memory design?
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