
(5 pts) Exercise 3-1

• Assume we have 4 bits.  Convert the given decimal numbers to the stated binary 

representations. 

Two’s Comp.

One’s Comp.

Sign Magnitude

Unsigned

-75

(5 pts) Exercise 3-2

• Convert the given decimal numbers to the stated binary representations. 

Two’s Comp.

One’s Comp

Sign Magnitude

-3

(using 6 bits)

-3

(using 4 bits)



(5 pts) Exercise 3-3

• Assume the following is in binary two’s complement form.

What do they represent in decimal?

001011

111011

• Now negate these numbers and show the new binary form:

-(001011) = 

-(111011) = 

(10 pts) Exercise 3-6

• Suppose we use 8 bits to represent a two’s complement binary number. What is 
the largest number that can be represented (give answer in binary AND decimal)

• What is the smallest number that can be represented (give binary AND decimal)



(5 pts) Exercise 3-11

• Do the following assuming 6 bit, two’s complement numbers.  

Circle YES if overflow occurs or NO if not

010101

+ 001101

010011

+ 001110

111111

+ 111101

010011

+ 111110

YES

NO

YES

NO

YES

NO

YES

NO

(5 pts) Exercise 3-12

• Do the following assuming 6 bit, two’s complement numbers.  

When does overflow occur? (note subtraction here)

011101

- 100101

010011

- 001110

111111

- 111101

010011

- 111110

111111

+ 111101

010011

+ 111110

YES

NO

YES

NO

YES

NO

YES

NO



(10 pts) Exercise 3-16

(You COULD use a calculator for these.  But recommended not – you should be 

able to do this by hand on an exam, where calculators are not permitted).

Convert 257ten into a 32-bit two’s complement binary number.

• Convert -37ten into a 32-bit two’s complement binary number.



(10 pts) Exercise 3-17

(You COULD use a calculator for these.  But recommended not – you should be 

able to do this by hand on an exam, where calculators are not permitted).

What decimal number does this two’s complement binary number represent?

1111 1111 1111 1111 1111 1111 0000 0110two

What decimal number does this two’s complement binary number represent?

0000 0000 0000 0000 0000 0000 0001 0110two



(5 pts) Exercise 3-21

• Convert the following C code to MIPS:

float pick (float G[], int index) {

return G[index];

}

(5 pts) Exercise 3-22

• Convert the following C code to MIPS:

float max (float A, float B) {

if (A > B) return A / B;

else       return B / A;

} 



(5 pts) Exercise 3-23

• Convert the following C code to MIPS:

float sum (float A[], int N) {

int j;

float sum = 0.0;

for (j=0; j<N; j++) 

sum = sum + A[j]

return sum;

} 



(10 pts) Exercise 3-25

• Convert the following C code into MIPS. 

float function2 (float x, float y) {

if (x > y) 

return x + y; 

else 

return x – y;

}



(20 pts) Exercise 3-26

• Convert the following C code into MIPS.  A C float is stored as a MIPS 
single precision floating point value.

float dotproduct (float A[], float B[]) {

float sum = 0;

int ii;

for (ii = 0; ii < 20; ii++) {

sum = sum + A[ii] * B[ii];

}

return sum;

}



(10 pts) Exercise 3-27

• Convert the following C code into MIPS.  ASSUME that the result of 
multiplying g by h will always fit in just 32 bits.  

NOTE 1: using integers, not floats, here!

NOTE 2: Use the integer “mult” instruction that we learned in class (that 
takes just 2 arguments) NOT a pseudo-instruction that takes 3 
arguments

int function6 (int g, int h) {

int prod = g * h;

if (prod < 0)

prod *= -1;

return prod;

}

(3 pts EXTRA CREDIT) Exercise 3-31

• Convert the following C code to MIPS:

float average (float A[], int N) {

int j;

float sum = 0.0;

for (j=0; j<N; j++) 

sum = sum + A[j]

return sum / N;
} 


