An Arithmetic Logic Unit (ALU)

The ALU is the 'brawn' of the computer

• What does it do?

• How wide does it need to be?

• What outputs do we need for MIPS?
ALU Control and Symbol

<table>
<thead>
<tr>
<th>ALU Control Lines</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>AND</td>
</tr>
<tr>
<td>0001</td>
<td>OR</td>
</tr>
<tr>
<td>0010</td>
<td>Add</td>
</tr>
<tr>
<td>0110</td>
<td>Subtract</td>
</tr>
<tr>
<td>0111</td>
<td>Set on less than</td>
</tr>
<tr>
<td>1100</td>
<td>NOR</td>
</tr>
</tbody>
</table>

Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- Example: grade-school algorithm

 \[
 \begin{array}{c}
 \text{0010 (multiplicand)} \\
 \times \text{1011 (multiplier)} \\
 \end{array}
 \]

- Multiply \(m \times n \) bits, How wide (in bits) should the product be?

Multiplication: Simple Implementation

1. Start
2. Test Multiplicand \(\neq 0 \)
3. Shift the Multiplicand register left 1 bit
4. Shift the Multiplier register right 1 bit
5. Add multiplicand to product and place the result in Product register
6. If \(\text{Result} \neq 0 \), go to step 4
7. Write 64 bits
8. Control test
9. Write 64 bits
10. Stop
Using Multiplication

- Product requires 64 bits
 - Use dedicated registers
 - HI – more significant part of product
 - LO – less significant part of product
- MIPS instructions
 - `mult $s2, $s3`
 - `multu $s2, $s3`
 - `mfhi $t0`
 - `mflo $t1`
- Division
 - Can perform with same hardware! (see book)
 - `div $s2, $s3`
 - Lo = $s2 / $s3
 - Hi = $s2 mod $s3
 - `divu $s2, $s3`

Floating Point

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., 3.15576 x 10^{23}
- Representation:
 - sign, exponent, significand:
 - `(−1)^{sign} \times \text{significand} \times 2^{exponent\text{some power}}`
 - Significand always in normalized form:
 - Yes:
 - No:
 - more bits for significand gives more
 - more bits for exponent increases

IEEE754 Standard

IEEE 754 – Optimizations

- Significand
 - What’s the first bit?
 - So...
- Exponent is “biased” to make sorting easier
 - Smallest exponent represented by:
 - Largest exponent represented by:
 - Bias values
 - 127 for single precision
 - 1023 for double precision
- Summary: `(−1)^{sign} \times (1+\text{significand}) \times 2^{exponent \text{- bias}}`
Example:

- Represent \(-9.75\)\(_{10}\) in binary, single precision form:

Strategy
- Transfer into binary notation (fraction)
- Normalize significand (if necessary)
- Compute exponent
 - \((\text{Real exponent}) = (\text{Stored exponent}) - \text{bias}\)
- Apply results to formula
 \(\text{Formula} = (-1)^{\text{sign}} \times (1 + \text{significand}) \times 2^{\text{exponent}} - \text{bias}\)

Example continued:

Represent \(-9.75\)\(_{10}\) in binary single precision:

- \(-9.75\)\(_{10}\)

- Compute the exponent:
 - Remember \(2^{\text{exponent}} - \text{bias}\)
 - \(\text{Bias} = 127\)

- Formula \(\text{Formula} = (-1)^{\text{sign}} \times (1 + \text{significand}) \times 2^{\text{exponent}} - \text{bias}\)

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have “underflow”
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields “infinity”
 - zero divide by zero yields “not a number”
 - other complexities
- Implementing the standard can be tricky

MIPS Floating Point Basics

- Floating point registers
 - \(f0, f1, f2, \ldots, f31\) Used in pairs for double precision \((f0, f1) (f2, f3), \ldots\)
 - \(f0\) not always zero
- Register conventions:
 - Function arguments passed in
 - Function return value stored in
 - Where are addresses (e.g. for arrays) passed?
- Load and store:
 - \(lwc1 \ f2, 0(\$sp)\)
 - \(swc1 \ f4, 4(\$t2)\)
MIPS FP Arithmetic

- Addition, subtraction: add.s, add.d, sub.s, sub.d

 \[
 \begin{align*}
 \text{add.s} & \quad $f1, f2, f3 \\
 \text{add.d} & \quad $f2, f4, f6 \end{align*}
 \]

- Multiplication, division: mul.s, mul.d, div.s, div.d

 \[
 \begin{align*}
 \text{mul.s} & \quad $f2, f3, f4 \\
 \text{div.s} & \quad $f2, f4, f6 \end{align*}
 \]

MIPS FP Control Flow

- Pattern of a comparison: c.___.s (or c.___.d)

 \[
 \begin{align*}
 \text{c.lt.s} & \quad $f2, f3 \\
 \text{c.ge.d} & \quad $f4, f6 \end{align*}
 \]

- Where does the result go?

- Branching:

 \[
 \begin{align*}
 \text{bclt} & \quad \text{label10} \\
 \text{bc1f} & \quad \text{label20} \end{align*}
 \]

Example #1

- Convert the following C code to MIPS:

  ```c
  float max (float A, float B) {
    if (A <= B) return A;
    else return B;
  }
  ```

Example #2

- Convert the following C code to MIPS:

  ```c
  void setArray (float F[], int index, float val) {
    F[index] = val;
  }
  ```
Chapter Three Summary

• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do exist
 – two’s complement
 – IEEE 754 floating point
• Computer instructions determine “meaning” of the bit patterns
• Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).

• We are (almost!) ready to move on (and implement the processor)

Chapter Goals

• Introduce 2’s complement numbers
 – Addition and subtraction
 – Sketch multiplication, division
• Overview of ALU (arithmetic logic unit)
• Floating point numbers
 – Representation
 – Arithmetic operations
 – MIPS instructions