ADMIN

+ Read pages 259-262 (MIPS floating point instructions)

* Read 3.8
1C220
Set #10:
More Computer Arithmetic (Chapter 3)
1
An Arithmetic Logic Unit (ALU) A simple 32-bit ALU
Carryln
The ALU is the ‘brawn’ of the computer
a0 —=| Carryln
b0 —sl ALUyo ————————— Result0
+ What does it do? Carryoud
al —| Carryln R "
operation i C:rLr;J(;ut
+ How wide does it need to be? a a2 — Caryn
——> b2 ALU2 ————————— Result2
b CarryOut

* What outputs do we need for MIPS?

a3t — Carryin

ALU31

[Result31
b31 —

ALU Control and Symbol

ALU Control Lines Function
0000 AND
0001 OR
0010 Add
0110 Subtract
0111 Set on less than
1100 NOR

Multiplication: Simple Implementation

b —=

— Joro
— Rosult
—= Chverflow

CarmyCut

—

Miticard

Shft left [¢—

64kits

\V4

640t AU

Multiplication

More complicated than addition
— accomplished via shifting and addition
Example: grade-school algorithm

0010 (multiplicand)
_ x 1011 (multiplier)

Multiply m * n bits, How wide (in bits) should the product be?

Multipllsrd = 1

1a. Add multipicand o product and
plica the resall in Praduct register

T L)
| 2. St e Muiplicand register et 1 bit |

[2. st e Mg rogister rignt 1 bt |

Mo: < 37 repedSions
32nd repetiton? ————————

Yes: 32 repettions

Using Multiplication

* Product requires 64 bits
— Use dedicated registers
— HI — more significant part of product
— LO - less significant part of product
* MIPS instructions
mult $s2, $s3
multu $s2, $s3

mfhi $t0
mflo $tl
» Division

— Can perform with same hardware! (see book)
div $s2, $s3 Lo = $s2 / $s3
Hi = $s2 mod $s3

divu $s2, $s3

IEEE754 Standard

Single Precision (float): 8 bit exponent, 23 bit significand
30 [20 [28 [27[26[25 2428 [22 21 J2o]. [. [. o [8 [7[6 [5]a[3]2]1]o
S | Exponent (8 Bits) Significand (23 bits)

Q

Double Precision (double): 11 bit exponent, 52 bit significand

s0 20 28] [. [. [a1 ooz]. [. [. JoJs]7 Je s [a[s]z]1Jo
S | Exponent (11 Bits) Significand (20 bits)

st a0 2o 28] [. [. JarJo[e[s[z[. . J. JeJs 7 Je s [a]s]2]1]o

More Significand (32 more bits)

3

11

Floating Point

+ We need a way to represent
— numbers with fractions, e.g., 3.1416
— very small numbers, e.g., .000000001
— very large numbers, e.g., 3.15576 x 1023
* Representation:
— sign, exponent, significand:
. (_l)sign X significand X 2exponent(some power)
— Significand always in normalized form:
* Yes:
* No:
— more bits for significand gives more
— more bits for exponent increases

IEEE 754 — Optimizations

21
2-1
zﬂ
21

10

+ Significand
— What'’s the first bit?

- So...

+ Exponent is “biased” to make sorting easier
— Smallest exponent represented by:
— Largest exponent represented by:
— Bias values
* 127 for single precision
* 1023 for double precision

* Summary: (—1)s9" x (1+significand) x 2exponent-bias

12

Example:

* Represent -9.75,, in binary, single precision form:

+ Strategy
— Transfer into binary notation (fraction)
— Normalize significand (if necessary)
— Compute exponent
* (Real exponent) = (Stored exponent) - bias
— Apply results to formula
(—1)sion x (1+significand) x 2exponent -bias

13

Floating Point Complexities

+ Operations are somewhat more complicated (see text)
+ In addition to overflow we can have “underflow”
+ Accuracy can be a big problem
— IEEE 754 keeps two extra bits, guard and round
— four rounding modes
positive divided by zero yields “infinity”
— zero divide by zero yields “not a number”

— other complexities
+ Implementing the standard can be tricky

15

Example continued:

Represent -9.75,, in binary single precision: -2
« 975, =
21
L
21
22

Compute the exponent:
— Remember (2exponem - bias)
— Bias=127

Formula(-1)sign x (1+significand) x 2exponent-bias

0 [20 [28 27 [2s[2s [2a [2a 22 [ar[2o[. [. [. JoJs 7 Je s [a]a]2]1 o

MIPS Floating Point Basics

Floating point registers
$f0, $f1, $12, ..., $f31
Used in pairs for double precision (f0, f1) (f2, f3), ...
$f0 not always zero

Register conventions:
— Function arguments passed in
— Function return value stored in
— Where are addresses (e.g. for arrays) passed?

Load and store:
lwc1 $f2, 0($sp)
swcl $f4, 4($t2)

16

MIPS FP Arithmetic MIPS FP Control Flow

+ Addition, subtraction:add.s, add.d, sub.s, sub.d + Pattern of a comparison: c.__.s (orc.__.d)
add.s $M, $12, $13 c.lt.s $£2, $£3
c.ge.d $f4, $f6
add.d $f2, $14, $16 * Where does the result go?
+ Multiplication, division: mul.s, mul.d, div.s, div.d

+ Branching:
mul.s $f2, $f3, $f4

bclt labellO
div.s $f2, $f4, $f6 beclf label20
17 18
Example #1 Example #2
« Convert the following C code to MIPS: « Convert the following C code to MIPS:
float max (float A, float B) { void setArray (float F[], int index,
if (A <= B) return A; float val) {
else return B; F[index] = val;

19 20

Chapter Three Summary

+ Computer arithmetic is constrained by limited precision
+ Bit patterns have no inherent meaning but standards do exist
— two’s complement
— |EEE 754 floating point
+ Computer instructions determine “meaning” of the bit patterns

+ Performance and accuracy are important so there are many
complexities in real machines (i.e., algorithms and implementation).

+ We are (almost!) ready to move on (and implement the processor)

21

Chapter Goals

 Introduce 2’s complement numbers

— Addition and subtraction

— Sketch multiplication, division
+ Overview of ALU (arithmetic logic unit)
* Floating point numbers

— Representation

— Arithmetic operations

— MIPS instructions

22

