
1

IC220 Set #17:
Caching Finale and Virtual Reality

(Chapter 5)

2

ADMIN

• Reading – finish Chapter 5

– Sections 5.4 (skip 511-515), 5.5, 5.11, 5.12

3

Cache Performance

• Simplified model:

execution time = (execution cycles + stall cycles) ×××× cycle time
= execTime + stallTime

stall cycles =

(or) =

• Two typical ways of improving performance:

– decreasing the miss rate

– decreasing the miss penalty

What happens if we increase block size?

Add associativity?

yMissPenalt
nInstructio

Misses

ogram

nsInstructio
••

Pr

yMissPenaltMissRate
ogram

ssesMemoryAcce
••

Pr

4

Performance Example

• Suppose processor has a CPI of 1.5 given a perfect cache. If there are 1.2
memory accesses per instruction, a miss penalty of 20 cycles, and a miss
rate of 10%, what is the effective CPI with the real cache?

5

• Instructions and data have different properties

– May benefit from different cache organizations (block size, assoc…)

• Why else might we want to do this?

Split Caches

ICache

(L1)

DCache

(L1)

L2 Cache

Main memory

L1

L2 Cache

Main memory

6

Cache Complexities

• Not always easy to understand implications of caches:

Radix sort

Quicksort

Size (K items to sort)

0

4 8 16 32

200

400

600

800

1000

1200

64 128 256 512 1024 2048 4096

Radix sort

Quicksort

Size (K items to sort)

0

4 8 16 32

400

800

1200

1600

2000

64 128 256 512 1024 2048 4096

Theoretical behavior of

Radix sort vs. Quicksort

Observed behavior of

Radix sort vs. Quicksort

7

Cache Complexities

• Here is why:

• Memory system performance is often critical factor

– multilevel caches, pipelined processors, make it harder to predict outcomes

– Compiler optimizations to increase locality sometimes hurt ILP

• Difficult to predict best algorithm: need experimental data

Radix sort

Quicksort

Size (K items to sort)

0

4 8 16 32

1

2

3

4

5

64 128 256 512 1024 2048 4096

8

Program Design for Caches – Example 1

• Option #1

for (j = 0; j < 20; j++)

for (i = 0; i < 200; i++)

x[i][j] = x[i][j] + 1;

• Option #2

for (i = 0; i < 200; i++)

for (j = 0; j < 20; j++)

x[i][j] = x[i][j] + 1;

9

Program Design for Caches – Example 2

• Why might this code be problematic?

int A[1024][1024];

int B[1024][1024];

for (i = 0; i < 1024; i++)

for (j = 0; j < 1024; j++)

A[i][j] += B[i][j];

• How to fix it?

10

VIRTUAL MEMORY

11

Virtual memory summary (part 1)

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

Data access without

virtual memory:

Cache

Memory

Disk

Memory address

12

Virtual memory summary (part 2)

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Translation

Cache

Memory

Disk

Data access with

virtual memory:

13

Virtual Memory

• Main memory can act as a cache for the secondary storage (disk)

• Advantages:

– Illusion of having more physical memory

– Program relocation

– Protection

• Note that main point is caching of disk in main memory but will

affect all our memory references!

Virtual addresses Physical addresses

Address translation

Disk addresses

14

Address Translation

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

Terminology:

•Cache block ����

•Cache miss ����

•Cache tag ����

•Byte offset ����

15

Pages: virtual memory blocks

• Page faults: the data is not in memory, retrieve it from disk

– huge miss penalty (slow disk), thus

• pages should be fairly

• Replacement strategy:

– can handle the faults in software instead of hardware

• Writeback or write-through?

16

Page Tables

Page table
Physical page or

disk address

Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1
1

1
1

1

0

0

Valid

17

Example – Address Translation Part 1

• Our virtual memory system has:

– 32 bit virtual addresses

– 28 bit physical addresses

– 4096 byte page sizes

• How to split a virtual address?

• What will the physical address look like?

• How many entries in the page table?

Virtual page # Page offset

Physical page # Page offset

18

Example – Address Translation Part 2

Physical Page
or Disk Block #

Valid?

1

0

1

1

0

1

1

F5C0C0006

5600C0005

7290C0004

8003C0003

FB00C0002

A200C0001

A204C0000

…

Page Table

Translate the following addresses:

1. C0001560

2. C0006123

3. C0002450

EX 7-31…

19

Making Address Translation Fast

• A cache for address translations: translation lookaside buffer

1
1
1
1
0
1
1

1
1

1

0

0

1
0
0
0
0
0
0

1
1

1

0

0

1
0
0
1
0
1
1

1
1

1

0

0

Physical page
or disk addressValidDirtyRef

Page table

Physical memory

Virtual page

number

Disk storage

1
1
1
1
0
1

0
1
1
0
0
0

1
1
1
1
0
1

Physical page
addressValidDirtyRef

TLB

Tag

Typical values: 16-512 entries,

miss-rate: .01% - 1%

miss-penalty: 10 – 100 cycles

20

Protection and Address Spaces

• Every program has its own “address space”

– Program A’s address 0xc000 0200 not same as program B’s

– OS maps every virtual address to distinct physical addresses

• How do we make this work?

– Page tables –

– TLB –

• Can program A access data from program B? Yes, if…

1. OS can map different virtual page #’s to same physical page #’s

• So A’s 0xc000 0200 = B’s 0xb320 0200

2. Program A has read or write access to the page

3. OS uses supervisor/kernel protection to prevent user programs

from modifying page table/TLB

21

Integrating Virtual Memory, TLBs, and Caches

Yes
Write access

bit on?

No

Yes
Cache hit?

No

Write data into cache,

update the dirty bit, and
put the data and the

address into the write buffer

Yes
TLB hit?

Virtual address

TLB access

Try to read data

from cache

No

Yes
Write?

No

Cache miss stall
while read block

Deliver data

to the CPU

Write protection
exception

Yes
Cache hit?

No

Try to write data
to cache

Cache miss stall
while read block

TLB miss

exception
Physical address

(Figure 5.25)

22

TLBs and Caches

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Translation

What happens after translation?

Cache

23

Modern Systems

24

Concluding Remarks

• Fast memories are small, large memories are slow

– We really want fast, large memories

– Caching gives this illusion

• Principle of locality

– Programs use a small part of their memory space
frequently

• Memory hierarchy

– L1 cache ↔↔↔↔ L2 cache ↔↔↔↔ … ↔↔↔↔ DRAM memory
↔↔↔↔ disk

• Memory system design is critical for multiprocessors

