IC220 Set #19:
Laundry, Co-dependency, and other Hazards
of Modern (Architecture) Life

Return to Chapter 4
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Smarty Laundry

Pipelining

« Improve performance by increasing instruction throughput
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Ideal speedup is number of stages in the pipeline. Do we achieve this?



Basic Idea
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ID: Instruction decode/ WB: Write back
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Pipeline Diagrams

Clock cycle: 1 2 3 4 5 6
add $s0, $s1, $s2 IF 5D @ MEM wB
sub $al, $s2, $a3 IF 51D EX MEM WB
add $t0, $t1, s$t2 IF rWlD— EX MEM WB
Assumptions:
* Reads to memory or register file in 2" half of clock cycle
 Writes to memory or register file in 15t half of clock cycle
What could go wrong?
7
Problem: Dependencies
+ Problem with starting next instruction before first is finished
Clock cycle: 1 2 3 4 5 6 7 8
sub $s0, $sl, $s2| |F rW|D— EX MEM WB
and $al, $s0, #a3 IF D exl—vem—fwe |
add $t0, $t1, $s0 — !\ —
IF ) @ MEM w8
or $t2, $s0, $s0 IE =1)) EX MEM EE

Dependencies that “go backward in time” are

Will the “or” instruction work properly?



Solution: Forwarding

Use temporary results, don’t wait for them to be written

Clock cycle:
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Where do we need this?

MEM

Will this deal with all hazards?

Problem?
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1w $tO,

sub $al,
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0($s1)

$to,
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Clock cycle:

$a3

st2

MEM

Forwarding not enough...
When an instruction tries to

a register following a

to the same register.

MEM

EX

MEM
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Solution: “Stall” later instruction until result is ready

Clock cycle: 1 2 3 4 5 6 7

lw $t0, 0($sl)

sub $al, $t0, $a3

add $a2, $t0, $t2

Why does the stall start after ID stage?
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Assumptions

« For exercises/exams/everything assume...
— The MIPS 5-stage pipeline
— That we have forwarding

...unless told otherwise
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Exercise #1 — Pipeline diagrams

+ Draw a pipeline stage diagram for the following sequence of instructions.
Start at cycle #1.
You don’t need fancy pictures — just text for each stage: ID, MEM, etc.

add $sl1l, $s3, $s4
lw $v0, 0($a0)
sub $t0, $t1, $t2

» What is the total number of cycles needed to complete this sequence?
* What is the ALU doing during cycle #4?
* When does the sub instruction writeback its result?

* When does the Iw instruction access memory?
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Exercise #2 — Data hazards

« Consider this code:

1. add $sl1, $s3, $s4
2. add $v0, $s1, $s3
3. sub $t0, $v0, $t2

4. and $a0, $v0, $s1

1. Draw lines showing all the data dependencies in this code

2. Which of these dependencies do not need forwarding to avoid stalling?
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Exercise #3 — Data hazards

« Draw a pipeline diagram for this code. Show stalls where needed.
1. add $sl1l, $s3, $s4
2. 1lw §&v0, 0($sl)
3. sub $v0, $v0, $sl
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Exercise #4 — More Data hazards | HW: 4-81 104-82 ]

+ Draw a pipeline diagram for this code. Show stalls where needed.
1. 1w $sl1, 0($t0)
2. 1w §&v0, 0($sl)
3. sw &v0, 4($sl)
4. sw $t0, 0(S$t1)
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The Pipeline Paradox

+ Pipelining does not the execution time of
any instruction

* But by instruction execution, it can
greatly improve performance by the
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Structural Hazards

* Occur when the hardware can’t support the combination of
instructions that we want to execute in the same clock cycle

+ MIPS instruction set designed to reduce this problem

* But could occur if:
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Control Hazards

What might be a problem with pipelining the following code?
beq $a0, $al, Else
1w $v0, 0($sl)
sw $v0, 4($sl)

Else: add $al, $a2, $a3

What other kinds of instructions would cause this problem?

Control Hazard Strategy #1: Predict not taken

19

+  What if we are wrong?

Assume branch target and decision known at end of ID cycle. Show a
pipeline diagram for when branch is taken.

beq $a0, $al, Else

lw $v0, 0($sl)

sw $v0, 4(S$sl)
Else: add $al, $a2, $a3

20



Control Hazard Strategies

1. Predict not taken
One cycle penalty when we are wrong — not so bad
Penalty gets bigger with longer pipelines — bigger problem
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Branch Prediction

7N

Not taken

Not taken

Not taken

w

With more sophistication can get 90-95% accuracy
Good prediction key to enabling more advanced pipelining techniques!
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Code Scheduling to Improve Performance

« Can we avoid stalls by rescheduling?

lw $t0, 0($tl)
add $t2, $tO0, $t2
1w  $t3, 4($tl)
add $t4, $t3, $t4

+ Dynamic Pipeline Scheduling
— Hardware chooses which instructions to execute next
— Will execute instructions out of order (e.g., doesn’t wait for a
dependency to be resolved, but rather keeps going!)
— Speculates on branches and keeps the pipeline full
(may need to rollback if prediction incorrect)

Dynamic Pipeline Scheduling
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» Let hardware choose which instruction to execute next
(might execute instructions out of program order)
*  Why might hardware do better job than programmer/compiler?

Example #1

1w $tO,
add $t2,
1w $t3,
add $t4,

0($t1)
$to, $t2
4(st1)
$t3, $t4

Example #2

sw $s0, 0($s3)
1w $t0, 0($tl)
add $t2, $t0, $t2
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Exercise #1

» Can you rewrite this code to eliminate stalls?
1. 1w $sl1, 0($t0)
2. 1w $v0, 0($sl)
3. sw $v0, 4(S$sl)
4. add $t0, $t1, $t2
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Exercise #2 | HW: 4-86 104-87 |

+ Show a pipeline diagram for the following code, assuming:
— The branch is predicted not taken
— The branch actually is taken
lw $t1, 0($tO0)
beq $sl1, $s2, Label2
sub $v0, $vl, $v2
Label2: add $t0, $t1, $t2
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Exercise #3 — Stretch

+ This diagram (from before) has a serious bug. What is it?
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Implementing Pipelining

* What makes it easy?
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

«  What makes it hard?
— data hazards
— structural hazards
— control hazards

* What make it really hard?

— exception handling
— Improving performance with out-of-order execution, etc.
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Pipeline Control

» Generate control signal during the stage
. control signals along just like the
Execution/Address Calculation | Memory access stage | stage control
| stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg |Mem to
Instruction | Dst Op1 Op0 Src |Branch| Read | Write | write | Req
R-format 1 1 0 0 0 0 0 1 0
1w 0 0 0 1 0 1 0 1 1
SW X 0 0 1 0 0 1 0 X
beg X 0 1 0 1 0 0 0 X
Instruction
IF/ID ID/EX EXMEM MEM/WB
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