IC220 Set #19:
Laundry, Co-dependency, and other Hazards
of Modern (Architecture) Life

Return to Chapter 4

Midnight Laundry

10 11 12 1 2 AM

) 6 PM 7 8 9
RAS R N N N N .

Task
order
5=l
S0=l__

L1
(8]
I
=

Smarty Laundry

Pipelining

« Improve performance by increasing instruction throughput

Program
execution _. 200 400 600 800 1000 1200 1400 1600 1800
order Time T T T T T T T T T

(in instructions)

™ $1,100($0)"’?g‘g]m‘mg‘ AU ‘ Data ‘ng‘

w $2, 200($0) 800 ps ’Ir%ﬁm‘m‘ AU ‘ Data ‘ng
Iw $3, 300($0) 800 ps |n?g¥g]0'1
P ————
800 ps
Program
execution . 200 400 600 800 1000 1200 1400
order Time T T T T T T T

(in instructions)
Iw $1,100($0)]'“$g*g‘hm\ ’Fég au | Data Rag‘
w $2, 200($0) 200 ps| T |Ry| AU | D@ ng‘

| *
w $3, 300($0) 200 ps| " ’Feg Ay | Daa ‘Feg‘

200 ps 200 ps 200ps 200 ps 200 ps
Ideal speedup is number of stages in the pipeline. Do we achieve this?

Basic Idea

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

I | | \
I | | |
I | | |
I | | !
I | | !
I | | |
I | | !
I | | !
T T I |
I | | |
I | 1 !
I | | !
I | | |
Add (&L 1 | |
[T 1 !
4> I | | !
I | 0 |
I | | |
I | | !
I | | !
I | | |
0 ! 1 | |
M | —p[Road Read | | |
u PC Address } register 1 data 1 } | }
X | Read | T !
1 ‘ register 2 | U ndgess ||
; resu ea
Registers 0
| wite ! M ! datal >
N | g— Read| | u | Data |
Instruction| | register data2| | M | Vemory |
memery |1 Write K= | |
} data } ! Write }
dat:
I | ‘ ata !
I | | !
! 16 a2 ! !
! Sign | | |
! extend T | 1
I | | !
I | | !
I | | |
I | | !
Pipelined Datapath
IF/ID ID/EX EX/MEM MEM/WB
—
hoa
4 Add Add
Shift resul
left 2
PC
register 1 Read
— [
.
Instruction Togister2
Registers s
memery wits foas | Address Read Lo
regiter o —
wite e
Gaie

Pipeline Diagrams

Clock cycle: 1 2 3 4 5 6
add $s0, $s1, $s2 IF 5D @ MEM wB
sub $al, $s2, $a3 IF 51D EX MEM WB
add $t0, $t1, s$t2 IF rWlD— EX MEM WB
Assumptions:
* Reads to memory or register file in 2" half of clock cycle
 Writes to memory or register file in 15t half of clock cycle
What could go wrong?
7
Problem: Dependencies
+ Problem with starting next instruction before first is finished
Clock cycle: 1 2 3 4 5 6 7 8
sub $s0, $sl, $s2| |F rW|D— EX MEM WB
and $al, $s0, #a3 IF D exl—vem—fwe |
add $t0, $t1, $s0 — !\ —
IF) @ MEM w8
or $t2, $s0, $s0 IE =1)) EX MEM EE

Dependencies that “go backward in time” are

Will the “or” instruction work properly?

Solution: Forwarding

Use temporary results, don’t wait for them to be written

Clock cycle:

sub $s0,

and $al,

add $toO,

or

$t2,

$s1,

$s0,

$t1,

$s0,

$s2

$a3

$s0

$s0

1

IF

2

3

4

Where do we need this?

MEM

Will this deal with all hazards?

Problem?

MEM

MEM

EX

MEM

=]

1w $tO,

sub $al,

add $a2,

0($s1)

$to,

$to,

Clock cycle:

$a3

st2

MEM

Forwarding not enough...
When an instruction tries to

a register following a

to the same register.

MEM

EX

MEM

10

Solution: “Stall” later instruction until result is ready

Clock cycle: 1 2 3 4 5 6 7

lw $t0, 0($sl)

sub $al, $t0, $a3

add $a2, $t0, $t2

Why does the stall start after ID stage?

11

Assumptions

« For exercises/exams/everything assume...
— The MIPS 5-stage pipeline
— That we have forwarding

...unless told otherwise

12

Exercise #1 — Pipeline diagrams

+ Draw a pipeline stage diagram for the following sequence of instructions.
Start at cycle #1.
You don’t need fancy pictures — just text for each stage: ID, MEM, etc.

add $sl1l, $s3, $s4
lw $v0, 0($a0)
sub $t0, $t1, $t2

» What is the total number of cycles needed to complete this sequence?
* What is the ALU doing during cycle #4?
* When does the sub instruction writeback its result?

* When does the Iw instruction access memory?

13

Exercise #2 — Data hazards

« Consider this code:

1. add $sl1, $s3, $s4
2. add $v0, $s1, $s3
3. sub $t0, $v0, $t2

4. and $a0, $v0, $s1

1. Draw lines showing all the data dependencies in this code

2. Which of these dependencies do not need forwarding to avoid stalling?

14

Exercise #3 — Data hazards

« Draw a pipeline diagram for this code. Show stalls where needed.
1. add $sl1l, $s3, $s4
2. 1lw §&v0, 0($sl)
3. sub $v0, $v0, $sl

15

Exercise #4 — More Data hazards | HW: 4-81 104-82]

+ Draw a pipeline diagram for this code. Show stalls where needed.
1. 1w $sl1, 0($t0)
2. 1w §&v0, 0($sl)
3. sw &v0, 4($sl)
4. sw $t0, 0(S$t1)

16

The Pipeline Paradox

+ Pipelining does not the execution time of
any instruction

* But by instruction execution, it can
greatly improve performance by the

17

Structural Hazards

* Occur when the hardware can’t support the combination of
instructions that we want to execute in the same clock cycle

+ MIPS instruction set designed to reduce this problem

* But could occur if:

18

Control Hazards

What might be a problem with pipelining the following code?
beq $a0, $al, Else
1w $v0, 0($sl)
sw $v0, 4($sl)

Else: add $al, $a2, $a3

What other kinds of instructions would cause this problem?

Control Hazard Strategy #1: Predict not taken

19

+ What if we are wrong?

Assume branch target and decision known at end of ID cycle. Show a
pipeline diagram for when branch is taken.

beq $a0, $al, Else

lw $v0, 0($sl)

sw $v0, 4(S$sl)
Else: add $al, $a2, $a3

20

Control Hazard Strategies

1. Predict not taken
One cycle penalty when we are wrong — not so bad
Penalty gets bigger with longer pipelines — bigger problem

21

Branch Prediction

7N

Not taken

Not taken

Not taken

w

With more sophistication can get 90-95% accuracy
Good prediction key to enabling more advanced pipelining techniques!

22

Code Scheduling to Improve Performance

« Can we avoid stalls by rescheduling?

lw $t0, 0($tl)
add $t2, $tO0, $t2
1w $t3, 4($tl)
add $t4, $t3, $t4

+ Dynamic Pipeline Scheduling
— Hardware chooses which instructions to execute next
— Will execute instructions out of order (e.g., doesn’t wait for a
dependency to be resolved, but rather keeps going!)
— Speculates on branches and keeps the pipeline full
(may need to rollback if prediction incorrect)

Dynamic Pipeline Scheduling

23

» Let hardware choose which instruction to execute next
(might execute instructions out of program order)
* Why might hardware do better job than programmer/compiler?

Example #1

1w $tO,
add $t2,
1w $t3,
add $t4,

0($t1)
$to, $t2
4(st1)
$t3, $t4

Example #2

sw $s0, 0($s3)
1w $t0, 0($tl)
add $t2, $t0, $t2

24

Exercise #1

» Can you rewrite this code to eliminate stalls?
1. 1w $sl1, 0($t0)
2. 1w $v0, 0($sl)
3. sw $v0, 4(S$sl)
4. add $t0, $t1, $t2

25

Exercise #2 | HW: 4-86 104-87 |

+ Show a pipeline diagram for the following code, assuming:
— The branch is predicted not taken
— The branch actually is taken
lw $t1, 0($tO0)
beq $sl1, $s2, Label2
sub $v0, $vl, $v2
Label2: add $t0, $t1, $t2

26

Exercise #3 — Stretch

+ This diagram (from before) has a serious bug. What is it?

IF/ID ID/EX EX/MEM MEM/WB

Add Add|

; resul
Shift
left 2

jste
egisters
Read

L

27

Implementing Pipelining

* What makes it easy?
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

« What makes it hard?
— data hazards
— structural hazards
— control hazards

* What make it really hard?

— exception handling
— Improving performance with out-of-order execution, etc.

28

Pipeline Control

» Generate control signal during the stage
. control signals along just like the
Execution/Address Calculation | Memory access stage | stage control
| stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg |Mem to
Instruction | Dst Op1 Op0 Src |Branch| Read | Write | write | Req
R-format 1 1 0 0 0 0 0 1 0
1w 0 0 0 1 0 1 0 1 1
SW X 0 0 1 0 0 1 0 X
beg X 0 1 0 1 0 0 0 X
Instruction
IF/ID ID/EX EXMEM MEM/WB

29

