
1

IC220
SlideSet #2: Instructions

(Chapter 2)

Credits: Much course material in some way derived from…

Official textbook (Copyright Morgan Kaufmann)

Prof. Margarget McMahon (USNA)

2

Chapter Goals

• Teach a subset of MIPS assembly language

• Introduce the stored program concept

• Explain how MIPS instructions are
represented in machine language

• Illustrate basic instruction set design
principles

3

Instructions:

• Language of the Machine

• More primitive than higher level languages

• Very restrictive
e.g., MIPS Arithmetic Instructions

• We’ll be working with the MIPS instruction set architecture

– similar to other architectures developed since the 1980's

– used by Tivo, Cisco routers, Nintendo 64, Sony PlayStation…

Design principles: to be found…

Design goals:

4

MIPS arithmetic

• All instructions have 3 operands

• Operand order is fixed

Example:

C code: A = B + C

MIPS code: add $s0, $s1, $s2

5

MIPS arithmetic

• Design Principle #1: simplicity favors regularity. Why?

• Of course this complicates some things...

C code: A = B + C + D;

E = F - A;

MIPS code: add $t0, $s1, $s2

add $s0, $t0, $s3

sub $s4, $s5, $s0

6

• Design Principle #2: smaller is faster. Why?

• Therefore, arithmetic instruction operands must be “registers”

– And only 32 registers provided

• Compiler associates variables with registers

• What about programs with lots of variables?

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

7

Memory Organization

• Viewed as a large, single-dimension array, with an address.

• A memory address is an index into the array

• "Byte addressing" means that the index points to a byte of memory.

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8

Memory Organization

• Bytes are nice, but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1

• 230 words with byte addresses 0, 4, 8, ... 232-4

• Words are aligned
i.e., what are the least 2 significant bits of a word address?

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

9

Array layout in memory

10

Memory Instructions

• Load and store instructions

• Example:

C code: A[8] = h + A[8];

MIPS code: lw $t0, 32($s3)

add $t0, $s2, $t0

sw $t0, 32($s3)

• For lw/sw, address always = register value + offset

• How about this?

add $t0, 32($s3), $t0

11

So far we’ve learned:

• MIPS

— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3

sub $s1, $s2, $s3 $s1 = $s2 – $s3

lw $s1, 100($s2) $s1 = Memory[$s2+100]

sw $s1, 100($s2) Memory[$s2+100] = $s1

12

• Instructions, like registers and words of data, are also 32 bits long

– Example: add $t0, $s1, $s2

– registers have numbers, $t0=8, $s1=17, $s2=18

• Instruction Format (r-type):

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

Machine Language

13

• Consider the load-word and store-word instructions,

– What would the regularity principle have us do?

– Principle #3: Make the common case fast

– Principle #4: Good design demands a compromise

• Introduce a new type of instruction format

– I-type for data transfer instructions

• Example: lw $t0, 44($s2)

35 18 8 44

op rs rt 16 bit number

• Where's the compromise?

Machine Language

14

Example Part 1

• What is the machine code for the following:

A[300] = h + A[300];

Variable h is assigned register $s2

Array A base address is assigned register $t1

• Do the assembly code first, then machine language instructions,
and then machine code

15

Example Part 2

• What is the machine code for the following: A[300] = h + A[300];
– Variable h is assigned register $s2 & Array A base address is assigned register $t1

• First part of answer:

lw $t0, 1200($t1) # Temporary reg $t0 gets A[300]

add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300]

sw $t0, 1200($t1) # Stores h + A[300] back into A[300]

• Second part of answer (DECIMAL):

functshamtrdrtrsop

12008935

12008943

32088180

16

Example Part 3

• What is the machine code for the following: A[300] = h + A[300];
– Variable h is assigned register $s2 & Array A base address is assigned register $t1

• First part of answer:

lw $t0, 1200($t1) # Temporary reg $t0 gets A[300]

add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300]

sw $t0, 1200($t1) # Stores h + A[300] back into A[300]

• Second part of answer (BINARY):

functshamtrdrtrsop

0000 0100 1011 00000100001001100011

0000 0100 1011 00000100001001101011

10000000000010000100010010000000

17

Stored Program Computers

• Instructions represented in binary, just
like data

• Instructions and data stored in memory
• Programs can operate on programs

– e.g., compilers, linkers, …
• Binary compatibility allows compiled

programs to work on different
computers
– Standardized ISAs

• Fetch & Execute Cycle
– Instructions are fetched and put into

a special register
– Bits in the register "control" the

subsequent actions
– Fetch the “next” instruction and

continue

18

QUICK REVIEW

• Design Principles

– 4 of them

• Arithmetic

– Operands

– Order

– Location of data

• Register

– MIPS provides

• Memory

– Organization

– Bits / Bytes / Words

– Alignment

