Chapter Goals

* Teach a subset of MIPS assembly language

1IC220 + Introduce the stored program concept
SlideSet #2: Instructions + Explain how MIPS instructions are
(Chapter 2) represented in machine language
« lllustrate basic instruction set design
principles

Credits: Much course material in some way derived from...
Official textbook (Copyright Morgan Kaufmann)
Prof. Margarget McMahon (USNA)

1
Instructions: MIPS arithmetic
Language of the Machine + All instructions have 3 operands
- . « Operand order is fixed
More primitive than higher level languages
Very restrictive Example:
e.g., MIPS Arithmetic Instructions
C code: A=B+C
We’ll be working with the MIPS instruction set architecture MIPS code: add $s0, $s1, $s2

— similar to other architectures developed since the 1980's
— used by Tivo, Cisco routers, Nintendo 64, Sony PlayStation...

Design principles: to be found...
Design goals:

MIPS arithmetic

+ Design Principle #1: simplicity favors regularity. Why?

+ Of course this complicates some things...

C code: A =B+ C + D;
E=F - A;
MIPS code: add $t0, $s1, $s2

add $s0, $tO0, $s3
sub $s4, $s5, $s0

Memory Organization

+ Viewed as a large, single-dimension array, with an address.
+ A memory address is an index into the array
+ "Byte addressing” means that the index points to a byte of memory.

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

(o Y =]

8 bits of data

Registers vs. Memory

» Design Principle #2: smaller is faster. Why?

+ Therefore, arithmetic instruction operands must be “registers”
— And only 32 registers provided

Control Input
Memory
Datapath Output
Processor 1/0

+ Compiler associates variables with registers
« What about programs with lots of variables?

Memory Organization

+ Bytes are nice, but most data items use larger "words"
« For MIPS, a word is 32 bits or 4 bytes.

0 | 32bits of data

Registers hold 32 bits of data

32 bits of data

32 bits of data

12 | 32 vits of data

« 232 pytes with byte addresses from 0 to 232-1
« 230 words with byte addresses 0, 4, 8, ... 232-4
+ Words are aligned
i.e., what are the least 2 significant bits of a word address?

Array layout in memory Memory Instructions

+ Load and store instructions

+ Example:
C code: A[8] = h + A[8];
MIPS code: 1w $t0, 32($s3)

add $t0, $s2, $tO
sw $t0, 32($s3)

+ For lw/sw, address always = register value + offset
* How about this?
add $t0, 32(%$s3), $tO

9
So far we’ve learned: Machine Language
- MIPS + Instructions, like registers and words of data, are also 32 bits long
— loading words but addressing bytes — Example: add $t0, $sl1, $s2
— arithmetic on registers only — registers have numbers, $t0=8, $s1=17, $s2=18
* Instruction Meaning « Instruction Format (r-type):
add $s1, $s2, $s3 $sl = $s2 + $s3 [l000000[10001] 10010] 01000[00000 100000]
sub $s1, $s2, $s3 $sl = $s2 - $s3
1w $s1l, 100 ($s2) $s1l = Memory[$s2+100]
sw $s1, 100 ($s2) Memory[$s2+100] = $sl l op [rs [rt [rd[ShMt[funct l

11

Machine Language Example Part 1

+ Consider the load-word and store-word instructions, + What is the machine code for the following:
— What would the regularity principle have us do?
— Principle #3: Make the common case fast A[300] = h + A[300];
— Principle #4: Good design demands a compromise Variable h is assigned register $s2

Array A base address is assigned register $t1
* Introduce a new type of instruction format

— I-type for data transfer instructions « Do the assembly code first, then machine language instructions,
+ Example: 1w $t0, 44($s2) and then machine code

| 3] 18 [8 | 4 l

l op | rs | rt | 16 bit number l

* Where's the compromise?

13 14
Example Part 2 Example Part 3
« What is the machine code for the following: A[300] = h + A[300]; « What is the machine code for the following: A[300] = h + A[300];
— Variable h is assigned register $s2 & Array A base address is assigned register $t1 — Variable h is assigned register $s2 & Array A base address is assigned register $t1
« First part of answer: « First part of answer:
lw $t0, 1200($t1) # Temporary reg $t0 gets A[300] lw $t0, 1200($t1) # Temporary reg $t0 gets A[300]
add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300] add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300]
sw $t0, 1200($t1) # Stores h + A[300] back into A[300] sw $t0, 1200($t1) # Stores h + A[300] back into A[300]
« Second part of answer (DECIMAL): « Second part of answer (BINARY):
op rs rt rd ‘ shamt ‘ funct op rs rt rd ‘ shamt ‘ funct
35 9 8 1200 100011 01001 01000 0000 0100 1011 0000
0 18 8 8 ‘ 0 ‘ 32 000000 10010 01000 01000 ‘ 00000 ‘ 100000
43 9 8 1200 101011 01001 01000 0000 0100 1011 0000

15 16

Stored Program Computers

Processor

Accounting program
(machine code)

Editor program
(machine code)

Instructions represented in binary, just
like data
Instructions and data stored in memory
Programs can operate on programs

— e.g., compilers, linkers, ...
Binary compatibility allows compiled
programs to work on different
computers

— Standardized ISAs

Fetch & Execute Cycle

— Instructions are fetched and put into
a special register

— Bits in the register "control" the
subsequent actions

— Fetch the “next” instruction and
continue

17

QUICK REVIEW

+ Design Principles
— 4 of them
+ Arithmetic
— Operands
— Order
— Location of data
* Register
— MIPS provides
* Memory
— Organization
— Bits / Bytes / Words
— Alignment

18

