Chapter Goals

* Teach a subset of MIPS assembly language

1IC220 + Introduce the stored program concept
SlideSet #2: Instructions + Explain how MIPS instructions are
(Chapter 2) represented in machine language
« lllustrate basic instruction set design
principles

Credits: Much course material in some way derived from...
Official textbook (Copyright Morgan Kaufmann)
Prof. Margarget McMahon (USNA)
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Instructions: MIPS arithmetic
Language of the Machine + All instructions have 3 operands
- . « Operand order is fixed
More primitive than higher level languages
Very restrictive Example:
e.g., MIPS Arithmetic Instructions
C code: A=B+C
We’ll be working with the MIPS instruction set architecture MIPS code: add $s0, $s1, $s2

— similar to other architectures developed since the 1980's
— used by Tivo, Cisco routers, Nintendo 64, Sony PlayStation...

Design principles: to be found...
Design goals:



MIPS arithmetic

+ Design Principle #1: simplicity favors regularity. Why?

+ Of course this complicates some things...

C code: A =B+ C + D;
E=F - A;
MIPS code: add $t0, $s1, $s2

add $s0, $tO0, $s3
sub $s4, $s5, $s0

Memory Organization

+ Viewed as a large, single-dimension array, with an address.
+ A memory address is an index into the array
+ "Byte addressing” means that the index points to a byte of memory.
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Registers vs. Memory

» Design Principle #2: smaller is faster. Why?

+ Therefore, arithmetic instruction operands must be “registers”
— And only 32 registers provided

Control Input
Memory
Datapath Output
Processor 1/0

+ Compiler associates variables with registers
«  What about programs with lots of variables?

Memory Organization

+ Bytes are nice, but most data items use larger "words"
« For MIPS, a word is 32 bits or 4 bytes.

0 | 32bits of data

Registers hold 32 bits of data

32 bits of data

32 bits of data

12 | 32 vits of data

« 232 pytes with byte addresses from 0 to 232-1
« 230 words with byte addresses 0, 4, 8, ... 232-4
+ Words are aligned
i.e., what are the least 2 significant bits of a word address?



Array layout in memory Memory Instructions

+ Load and store instructions

+ Example:
C code: A[8] = h + A[8];
MIPS code: 1w $t0, 32($s3)

add $t0, $s2, $tO
sw $t0, 32($s3)

+ For lw/sw, address always = register value + offset
* How about this?
add $t0, 32(%$s3), $tO
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So far we’ve learned: Machine Language
- MIPS + Instructions, like registers and words of data, are also 32 bits long
— loading words but addressing bytes — Example: add $t0, $sl1, $s2
— arithmetic on registers only — registers have numbers, $t0=8, $s1=17, $s2=18
* Instruction Meaning « Instruction Format (r-type):
add $s1, $s2, $s3 $sl = $s2 + $s3 [l000000[10001] 10010] 01000[ 00000 100000 ]
sub $s1, $s2, $s3 $sl = $s2 - $s3
1w $s1l, 100 ($s2) $s1l = Memory[$s2+100]
sw $s1, 100 ($s2) Memory[$s2+100] = $sl l op [ rs [ rt [ rd[ ShMt[ funct l
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Machine Language Example Part 1

+ Consider the load-word and store-word instructions, +  What is the machine code for the following:
— What would the regularity principle have us do?
— Principle #3: Make the common case fast A[300] = h + A[300];
— Principle #4: Good design demands a compromise Variable h is assigned register $s2

Array A base address is assigned register $t1
* Introduce a new type of instruction format

— I-type for data transfer instructions « Do the assembly code first, then machine language instructions,
+ Example: 1w $t0, 44($s2) and then machine code

| 3] 18 [ 8 | 4 l

l op | rs | rt | 16 bit number l

*  Where's the compromise?
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Example Part 2 Example Part 3
« What is the machine code for the following: A[300] = h + A[300]; « What is the machine code for the following: A[300] = h + A[300];
— Variable h is assigned register $s2 & Array A base address is assigned register $t1 — Variable h is assigned register $s2 & Array A base address is assigned register $t1
« First part of answer: « First part of answer:
lw  $t0, 1200($t1) # Temporary reg $t0 gets A[300] lw  $t0, 1200($t1) # Temporary reg $t0 gets A[300]
add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300] add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300]
sw $t0, 1200($t1) # Stores h + A[300] back into A[300] sw  $t0, 1200($t1) # Stores h + A[300] back into A[300]
« Second part of answer (DECIMAL): « Second part of answer (BINARY):
op rs rt rd ‘ shamt ‘ funct op rs rt rd ‘ shamt ‘ funct
35 9 8 1200 100011 01001 01000 0000 0100 1011 0000
0 18 8 8 ‘ 0 ‘ 32 000000 10010 01000 01000 ‘ 00000 ‘ 100000
43 9 8 1200 101011 01001 01000 0000 0100 1011 0000
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Stored Program Computers

Processor

Accounting program
(machine code)

Editor program
(machine code)

Instructions represented in binary, just
like data
Instructions and data stored in memory
Programs can operate on programs

— e.g., compilers, linkers, ...
Binary compatibility allows compiled
programs to work on different
computers

— Standardized ISAs

Fetch & Execute Cycle

— Instructions are fetched and put into
a special register

— Bits in the register "control" the
subsequent actions

— Fetch the “next” instruction and
continue
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QUICK REVIEW

+ Design Principles
— 4 of them
+ Arithmetic
— Operands
— Order
— Location of data
* Register
— MIPS provides
* Memory
— Organization
— Bits / Bytes / Words
— Alignment
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