
IC220
SlideSet #4: Procedures &

Chapter 2 Finale
(Sections 2.8)

• Read Section 2.10 of text!

• You should understand the basics of “PC-relative” addressing

Addressing in Conditional Branches

Stack Example

Action Stack Output

push(3)

push(2)

push(1)

pop()

pop()

push(6)

pop()

pop()

pop()

Procedure Example & Terminology

void function1() {

int a, b, c, d;

…

a = function2(b, c, d);

…

}

int function2(int b, int c, int d) {

int x, y, z;

…

return x;

}

Big Picture – Steps for Executing a Procedure

1. Place parameters where the callee procedure can access them

2. Transfer control to the callee procedure

3. (Maybe) Acquire the storage resources needed for the callee procedure

4. Callee performs the desired task

5. Place the result somewhere that the “caller” procedure can access it

6. Return control to the point of origin (in caller)

Step #1: Placement of Parameters

• Assigned Registers: _____, _____, _____, & _____

• If more than four are needed?

• Parameters are not “saved” across procedure call

Step #2: Transfer Control to the Procedure

• jal –

– Jumps to the procedure address AND links to return address

• Link saved in register _____

– What exactly is saved?

– Why do we need this?

Allows procedure to be called at __________ points in

code, _________ times, each having a _________
return address

Step #3: Acquire storage resources needed by callee

• Suppose callee wants to use registers $s1, s2, and $s3

– But caller still expects them to have same value after the call

– Solution: Use stack to

• Saving Registers $s1, $s2, $s3

addi _____,_____, ____#

sw $s1, ___($sp) #

sw $s2, ___($sp) #

sw $s3, ___($sp) #

Step #3 Storage Continued

Contents of register

Contents of register

Contents of register

Step #4: Callee Execution

• Use parameters from _________________ and _________________

(setup by caller)

• Temporary storage locations to use for computation:

1. Temporary registers ($t0-$t9)

2. Argument registers ($a0-$a3)

if…
3. Other registers

but…
4. What if still need more?

Step #5: Place result where caller can get it

• Placement of Result

– Must place result in appropriate register(s)

• If 32-bit value:

• If 64-bit value:

• Often accomplished by using the $zero register

– If result is in $t0 already then

add ______, ______, $zero

Step #6: Return control to caller – Part A

Contents of register

Contents of register

Contents of register

• Part I – Restore appropriate registers before returning from the procedure

– lw $s3, 0($sp) # restore register $s0 for caller

– lw $s2, 4($sp) # restore register $t0 for caller

– lw $s1, 8($sp) # restore register $t1 for caller

– addi $sp, $sp, ______ # adjust stack to delete 3 items

Step #6: Return control to caller – Part B

• Part II – Return to proper location in the program at the end of the
procedure

– Jump to stored address of next instruction after procedure call

jr ________

Recap – Steps for Executing a Procedure

1. Place parameters where the callee procedure can access them

2. Transfer control to the callee procedure

3. (Maybe) Acquire the storage resources needed for the callee procedure

4. Callee performs the desired task

5. Place the result somewhere that the “caller” procedure can access it

6. Return control to the point of origin (in caller)

Example – putting it all together

• Write assembly for the following procedure

int dog (int n)

{

n = n + 7;

return n;

}

• Call this function to compute dog(5):

EX: 2-31 to 2-33

return address (function call)

frame pointer

stack pointer

global pointer

reserved for OS

temporary registers (functions)

saved registers (main program)

temporary registers (functions)

arguments passed to function (or system call)

returned values from functions

($v0 used to set value for system call)

assembler temporary

constant value 0

Usage

Yes31$ra

Yes30$fp

Yes29$sp

Yes28$gp

N/A26-27$k0 - $k1

No24-25$t8 - $t9

Yes16-23$s0 - $s7

No8-15$t0 - $t7

No4-7$a0 - $a3

No2-3$v0 - $v1

N/A1$at

N/A0$zero

Preserved on CallReg#Name

Register Conventions

•Register Convention – for “Preserved on Call” registers (like $s0):

1. If used, the callee must store and return values for these registers

2. If not used, not saved

Nested Procedures

• What if the callee wants to call another procedure – any problems?

• Solution?

• This also applies to recursive procedures

Nested Procedures

• “Activation record” – part of stack holding procedures saved values and local
variables

• $fp – points to first word of activation record for procedure

Example – putting it all together (again)

• Write assembly for the following procedure

int cloak (int n)

{

if (n < 1) return 1;

else return (n * dagger(n-1));

}

• Call this function to compute cloak(6):

Example – putting it all together

cloak:

addi $sp, $sp, -8

sw $ra, 4($sp)

sw $a0, 0($sp)

slti $t0, $a0, 1

beq $t0, zero, L1

addi $v0, $zero, 1

addi $sp, $sp, 8

jr $ra

L1:

addi $a0, $a0, -1

jal dagger

lw $a0, 0($sp)

mul $v0, $a0, $v0 # pretend

lw $ra, 4($sp)

addi $sp, $sp, 8

jr $ra

int cloak (int n) {
if (n < 1) return 1;
else return (n * dagger(n-1)); }

What does that function do?

int cloak (int n)

{

if (n < 1) return 1;

else return (n * dagger(n-1));

}

EX: 2-36 to 2-38 MIPS Addressing Summary

MIPS Memory Organization

• MIPS philosophy – small number of fast, simple operations

– Name:

– Others: ARM, Alpha, SPARC

• Design alternative:

– Name:

– provide more powerful operations

– goal is to reduce number of instructions executed

– Example VAX: minimize code size, make assembly language easy

instructions from 1 to 54 bytes long!

– Others: 80x86, Motorola 68000

– Danger?

• Virtually all new instruction sets since 1982 have been

Alternative Architectures

The Intel x86 ISA

• Evolution with backward compatibility

– 8080 (1974): 8-bit microprocessor

• Accumulator, plus 3 index-register pairs

– 8086 (1978): 16-bit extension to 8080

• Complex instruction set (CISC)

– 8087 (1980): floating-point coprocessor

• Adds FP instructions and register stack

– 80286 (1982): 24-bit addresses, MMU

• Segmented memory mapping and protection

– 80386 (1985): 32-bit extension (now IA-32)

• Additional addressing modes and operations

• Paged memory mapping as well as segments

The Intel x86 ISA

• Further evolution…
– i486 (1989): pipelined, on-chip caches and FPU

• Compatible competitors: AMD, Cyrix, …
– Pentium (1993): superscalar, 64-bit datapath

• Later versions added MMX (Multi-Media eXtension) instructions

• The infamous FDIV bug
– Pentium Pro (1995), Pentium II (1997)

• New microarchitecture (see Colwell, The Pentium Chronicles)
– Pentium III (1999)

• Added SSE (Streaming SIMD Extensions) and associated
registers

– Pentium 4 (2001)

• New microarchitecture

• Added SSE2 instructions

The Intel x86 ISA

• And further…
– AMD64 (2003): extended architecture to 64 bits
– EM64T – Extended Memory 64 Technology (2004)

• AMD64 adopted by Intel (with refinements)

• Added SSE3 instructions
– Intel Core (2006)

• Added SSE4 instructions, virtual machine support
– AMD64 (announced 2007): SSE5 instructions

• Intel declined to follow, instead…
– Advanced Vector Extension (announced 2008)

• Longer SSE registers, more instructions
• If Intel didn’t extend with compatibility, its competitors would!

– Technical elegance ≠ market success

A dominant architecture: 80x86

• See your textbook for a more detailed description

• Complexity:

– Instructions from 1 to 17 bytes long

– one operand must act as both a source and destination

– one operand can come from memory

– complex addressing modes
e.g., “base or scaled index with 8 or 32 bit displacement”

• Saving grace:

– Hardware: the most frequently used instructions are…

– Software: compilers avoid the portions of the architecture…

“what the 80x86 lacks in style is made up in quantity,

making it beautiful from the right perspective”

Chapter Goals

1.Teach a subset of MIPS assembly
language

2.Introduce the stored program concept

3.Explain how MIPS instructions are
represented in machine language

4.Illustrate basic instruction set design
principles

Summary – Chapter Goals

• (1) Teach a subset of MIPS assembly language
– Show how high level language constructs are expressed in

assembly

• Demonstrated selection (if, if/else) and repetition (for,
while) structures

• MIPS instruction types

• Various MIPS instructions & pseudo-instructions

• Register conventions

• Addressing memory and stack operations

MIPS

MIPS operands

Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

2
30

 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper immediate lui $s1, 100
$s1 = 100 * 2

16 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to

PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to

PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;

else $s1 = 0

Compare less than; for beq, bne

set less than

immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;

else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address

Uncondi- jump register jr $ra go to $ra For switch, procedure return

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

Summary – Chapter Goals

(2) Stored Program Concept

• Instructions are composed of bits / bytes / words

• Programs are stored in memory
— to be read or written just like data

• Fetch & Execute Cycle

– Instructions are fetched and put into a special register

– Bits in the register "control" the subsequent actions

– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Summary – Chapter Goals

• (3) Explain how MIPS instructions are represented
in machine language
– Instruction format and fields
– Differences between assembly language and

machine language
– Representation of instructions in binary

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

Summary – Chapter Goals

• (4) Illustrate basic instruction set design principles

1.

– Instructions similar size, register field in same place in each instruction format

2.

– Only 32 registers rather than many more

3.

– Providing for larger addresses and constants in instructions while keeping all
instructions the same length

4.

– Immediate addressing for constant operands

