
1

IC220

Slide Set #8: Digital Logic Finale

(Appendix C)

2

ADMIN

• READING

– Appendix: Read C.7-C.10, and C.12.

(skip the Verilog details).

• Course Paper description due by Mon Feb 28 for approval (email)

– Current computer architectural topic/issue

– 3-5 pages

– Suggested topics on course calendar – but a topic alone is not a

description! (see online instructions)

• NO homework on this part of Appendix C – just in-class exercises

– Will be related lab and project

3

“Real World” Example

• Buzzer Feature for a Car

• Should Buzz when

1. the engine is on, the door is closed, and the seat belt is

unbuckled

2. the engine is on, the door is open

• What are our input(s)?

• What are our output(s)?

(extra space)

5

Check Yourself

• Could you have filled in the truth table?

• Could you have filled in the K-Map?

• Can you use the K-Map to minimize the equation?

• Can you draw the circuit?

6

Bigger Units of Combinational Logic

• Gates useful but fairly low level

• Easier to constructs circuits with higher-level building blocks

instead:

– Combinational Logic

• Multiplexors (mux)

• Decoders

– (later) Sequential Logic

• Registers

• Arithmetic unit (ALU)

• What is this an example of?

7

Multiplexor – Example Usage

Adder

$t0

$t1

$t2

$a3

$a2

8

Multiplexor – 1-bit version

• Think of a mux as a selector

• S selects one input to be the output

• N-way mux has

– # inputs:

– # selector lines (S):

– # outputs:

• Implementation?

D0
D1
D2
D3

S0
S1

EN

Q

9

Multiplexor – Wider version

• 32 bit wide, 2-way Mux:

• Pictures don’t always show the width

(especially if 32 bits)

EX: B-31 to B-32

10

(5 pts) Exercise B-31

• A. A 8-way mux has ______ “inputs” , _____ selector bit(s), and

______ output(s)

11

(5 pts) Exercise B-32

• Draw an 8-input mux with inputs: A, B, C, D, E, F, G, H and output:

OUT (Remember to draw the selector bits)

(you don’t need to draw the internals, just the external view)

12

End of Combinational Logic

13

Combinational vs. Sequential Logic

• Combinational Logic – output depends only on

• Sequential Logic – output depends on:

• Previous inputs are stored in “state elements”

– __________ determines when an element is updated

• State elements will involve use of feedback in circuit

– Not permitted in combinational circuits

14

Truth Tables ���� Next State Tables

• New kind of input:

1110

0001

0101

0011

1

0

0

0

A

111

101

110

000

Qt+1QtB

15

Clocks and State Elements

• Clock Frequency is the __________ of _______________.

• When should updates occur to state elements?

– Edge – change state when

– Level – change state when

16

D-Type Flip Flop

• State only changes

• Otherwise…

remembers previous state

• Abstraction:
D

C

Q

Q-flipflop

EX: B-41

17

(5 pts) Exercise B-41 – Complete the timing diagram below

Q-FlipFlop
(falling edge

triggered)

Q-FlipFlop
(rising edge

triggered)

18

State Diagrams

• State = Contents of memory

• Diagrams are a tool to

represent ALL transitions

from one state to another

– What causes state

changes?

• Example for D Flip-Flop:

Q=0 Q=1

19

Finite State Machines

• Can use state diagrams to express more complex sequential logic.

• Example: Candy Machine

– Inputs: N (nickel received), D (dime received)

– Outputs: C (dispense candy), R (give refund)

– Should dispense candy after 15 cents deposited, + refund if

overpaid. Then await next customer.

• We’ll use Moore machine – output depends only on

• What states do we need?

20

Example: Candy Machine

Inputs: (N)ickel, (D)ime

Outputs: (C)andy, (R)efund

EX: B-51 to B-53

21

(5 pts) Exercise B-51

• Draw a state diagram for the

following next state function:

• How would you describe what

input ‘A’ is accomplishing?

111

101

110

000

Qt+1QtA

23

(10 pts) Exercise B-52

• John and Mary agree to play rock-paper-scissors to decide who has to pay for
dinner. The overall winner will be whoever wins two rounds in a row.

• Assume you have 6 inputs:

– JR, JP, JS (only one true depending on if John plays rock, paper, or scissors)

– MR, MP, MS

• At each round,

1. If John and Mary play the same (both scissors, etc.), then the game returns to
the initial state.

2. If either John or Mary has just won twice in a row, the next state should be a
“Game over” state.

3. Otherwise, the next state should reflect who won the most recent round

Your task:

1. How many different states do you need?

2. Draw the next state diagram for this game

Of course:

Rock beats scissors

Paper beats rock

Scissors beats paper

25

Implementing Finite State Machines

• Squares =

• Circles =

• We don’t always show the clock for registers/memory diagrams, but

will be implicit
26

FSM Example

27

Combining Combinational and Sequential Logic

• Finite State Machine was our first example of this

• Two general patterns:

1. State Machine

2. Pipeline

• In either case, have important timing concerns

– Output of combinational logic block may oscillate before settling

– Clock cycle time must be long enough so combo-logic settles before
the sequential logic (state) reads the new value

– State elements ensure that combo-logic inputs remain stable

28

Registers and Register Files

• Registers store data (bits) (i.e. have memory)

– Each register =

• Register files contain:

– Set of registers

– Logic for read/write

• MIPS register file has how
many registers?

• How does it store data?

• How does it know which
register to access?

29

Memory

• Why so many types?

• Basic types:

– RAM “random access memory” (read/write)

• Main memory

• Volatile

• Types:

– SRAM – async, sync, pipeline burst, cache;

– DRAM – M, FPM, EDO, burst EDO, sync, DR, DDR

– ROM (read only)

• Small

• Stores critical operating instruction (BOOT strap)

• Non-volatile

• Common in embedded system (toys, cameras, printers, etc)

• Types: PROM, EPROM, EEPROM, flash memory

30

Appendix C Summary

• Truth tables and Gates

– AND, OR, NOT, NOR, NAND, XOR

• Boolean Algebra

– Distributive, DeMorgan’s, Inverse, Identity, etc

• Combinational Logic

– Circuits – Design, reduction / minimization, K-maps

– Multiplexor

• Sequential Logic

– Flip/flops

– Clock & state diagrams

• Register files

• Memory

– RAM vs ROM, SRAM vs. DRAM

