
SI232 – Homework #5 (Chapter 5)
Due: Friday March 31, 2006, start of class.
NOTE: Last possible time to submit will be Monday April 3 at 0755
(solutions provided after this point)

Show your work.

1) (20 pts) A “stuck-at-0” fault is a defect that can occur during manufacturing, where a particular
signal becomes hardwired to zero. Considering the single-cycle implementation shown in
Figure 5.17 on page 307, describe the effect that a stuck-at-0 fault would have for each of the
following signals. Which instructions, if any, will not work correctly? Explain why. The first
is done for you as an example. Consider these instructions: R-type, lw, sw, beq

a. RegDst = 0. lw and sw would not work, because the immediate value from the
instruction couldn’t be provided to the ALU as needed.

b. MemRead = 0
c. MemWrite = 0
d. ALUop1 =0
e. ALUop0 = 0
f. RegWrite = 0

2) (20 pts) Consider the jr instruction (jump register), which is described as follows:

We wish to add this instruction to our single-cycle implementation. Add any necessary
hardware (gates, adders, wires, etc.) to the single-cycle datapath of page 307 and add an
appropriate row to the control chart of page 308 for this new instruction (a copy of these are
provided for you on the next page). Note: ‘jr $s0’ states that the next PC value should come
from register $s0. It is not the same as instructions like ‘j Loop’, whose datapath and control is
described on page 315 (though reading about may help with the general idea)

3) (20 pts) Do the same as above, but for the ‘lui’ instruction:

You can find more info on this instruction in Section 2.9.
Again, the following page provides figures for you to use. There are multiple ways to solve
this problem; provide some brief text explaining how your solution works. Make sure that the
other instructions continue to work.

(more on back)

4) (10 pts) Suppose we want to add a new instruction to MIPS called l_inc (load and
increment). This instruction loads a word from memory and increments the index register after
performing the load. For instance, the single instruction
 l_inc $rs, 0($rt)
would have the same effect as the following:
 lw $rs, 0($rt)
 addi $rt, $rt, 4
Explain why it is not possible to modify the single-cycle implementation given in Figure 5.17
to implement this new instruction without modifying the register file (other changes would also
be necessary, be focus here on the register file).

5) (20 pts) This is like the first question on stuck-at-0 faults, but for the multi-cycle

implementation. For each of the following faults, describe what instructions will not work and
explain why. Consider these instructions: R-type, lw, sw, beq.

a. IRWrite =0
b. PCWrite = 0
c. MemRead=0
d. MemWrite=0
e. RegWrite=0

Problem #2 (adding jump register)

Figure 5.18 – add new row to table for the new instruction

Instr RegDst ALUSrc MemtoReg Reg-
Write

Mem-
Read

Mem-
Write

Branch ALUOp1 ALUOp2

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

 Problem #3 (adding load upper immediate)

Figure 5.18 – add new row to table for the new instruction

Instr RegDst ALUSrc MemtoReg Reg-
Write

Mem-
Read

Mem-
Write

Branch ALUOp1 ALUOp2

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

