S1232
Set #15: Multicycle Implementation
(Chapter Five)

Recall — Single Cycle Implementation

Read
RAead —
* address regieier 1 Fiaad
data 1
=1 rogioer 2
Instruction | ¥ reqi data 2
regiter
mamary
| vitite
data
RagiV e
.'r/ \",
16 | | 3z
| Sign ;
"|| axtend |
Yoo

Evaluation — Single Cycle Approach

+ Good:
+ Bad:
Multicycle Approach

» Break up the instructions into steps, each step takes a cycle
— balance the amount of work to be done
— restrict each cycle to use only one major functional unit:

+ At the end of a cycle
— store values for use in later cycles
— introduce additional “internal” registers

+ Each instruction will take cycles to fully execute

Simplified Multicycle Datapath

Insiruction|
PG e ddrmss it .
\"'\-\.
Irstruction '
M or dala .i.l.lﬂ‘h- BLLMDuL -
m o
Data data -
register

Breaking down an instruction

+ Steps for an R-type instruction:

— IR <= Memory [PC]

A <= Reg[IR[25:21]]

B <= Reg[IR[20:16]]

— ALUOut <= A op B

Reg[IR[15:11]] <= ALUOut
* What did we forget?

« Above notation is called RTL — Register Transfer Language

Example #1 — sub $t0, $s1, $s2

| BLLROIE

AN ol ol

IR <= Memory[PC]

A <= Reg[IR[25:21]]

B <= Reg[IR[20:16]]

ALUOut <= A op B

Reg[IR[15:11]] <= ALUOut

PC <= PC + 4 7

Example #2 — 1w $t0, 8 ($s2)

| AL

SR WND=

IR <= Memory[PC]

A <= Reg[IR[25:21]]

ALUOut <= A + sign-extend(IR[15-0])

MDR = Memory[ALUOut]

Reg[IR[20-16]] = MDR

PC<=PC +4 8

How many cycles do we need?

In once cycle can do: Register read or write, memory access, ALU

a.) Fill in the cycle number for each task below

Cycle # Task (for R-type instruction)

IR <= Memory[PC]

A <= Reg[IR[25:21]]

B <= Reg[IR[20:16]]
ALUOut <= A op B
Reg[IR[15:11]] <= ALUOut
PC<=PC +4

b.) What is the total number of cycles needed?

Exercise #1: How many cycles do we need?

In once cycle can do: Register read or write, memory access, ALU

a.) Fill in the cycle number for each task below

Cycle # Task (for load instruction)

IR <= Memory[PC]
A <= Reg[IR[25:21]]
ALUOQOut <= A + sign-extend(IR[15-0])
MDR = Memory[ALUOut]
Reg[IR[20-16]] = MDR
PC<=PC+4

b.) What is the total number of cycles needed?

10

Exercise #2: How many cycles do we need?

In once cycle can do: Register read or write, memory access, ALU

a.) Fill in the cycle number for each task below

Cycle # Task (for store instruction)

IR <= Memory[PC]

A <= Reg[IR[25-21]]

B <= Reg[IR[20-16]]

ALUOQOut <= A + sign-extend(IR[15-0])
Memory[ALUOut] = B

PC<=PC +4

b.) What is the total number of cycles needed?

Exercise #3: How many cycles do we need?

11

In once cycle can do: Register read or write, memory access, ALU

a.) Fill in the cycle number for each task below

Cycle # Task (for branch instruction)

IR <= Memory[PC]
PC<=PC+4
A <= Reg[IR[25-21]]
B <= Reg[IR[20-16]]
ALUOut <= PC + (sign-extend(IR[15-0]) << 2)
if (A ==B) PC = ALUOQut
b.) What is the total number of cycles needed?

12

Exercise #4

« The branch instruction from Exercise #3 can’t really be executed
given our simple datapath — why not?

Multicycle Implementation

13

* Goals:

Pack as much work into each step as possible

Share steps across different instruction types

+ 5 Steps

R wN o

Instruction Fetch

Instruction Decode and Register Fetch

Execution, Memory Address Computation, or Branch Completion
Memory Access or R-type instruction completion

Write-back step

14

Step 1: Instruction Fetch

IR <= Memory[PC];

PC <= PC + 4;

What is the advantage of updating the PC now?

Step 2: Instruction Decode and Register Fetch

15

* Read registers rs and rt
A <= Reg[IR[25:21]1];
B <= Reg[IR[20:16]];

+ Compute the branch address
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

+ Does this depend on the instruction type?

+ Could it depend on the instruction type?

16

Step 3 (instruction dependent)

* ALU function depends on instruction type

- 1.

ALUOut <= A + sign-extend(IR[15:0]);

ALUOut <= A op B;

if (A==B) PC <= ALUOut;

17

Step 4 (R-type or memory-access)

* Loads and stores access memory

MDR <= Memory[ALUOut];
or
Memory [ALUOut] <= B;

* R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

18

Step 5: Write-back

+ Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Summary:

19

n for Riype Action for memory- n for Action for
Step name instruetion: referanca instruetions Jumps

Instruction fetch IR == Mamory[PC]
PC==PC+4
Instruction dacods,reglstar fetch A <=Reg [IR[25:21]]

B <= Reg [IR[20:18])
ALLOUL <= PC + (slgrn-extend (IR[L5:0]) << 2)

Exsoutlon, address computation, | ALUOUL <= Aop B ALUIOUT == A+ sigreatend I (A =—=B) PC <= [PC [31:28],
branch Jump completon (IR[15:0]) PC == ALLIOUL {IR[25:0]).2" 6000}
Meimory accass of Rype Reg [IR[15:11]] <= Load: MDR <= Memory[ALUOut]
cormplation ALLIOUL or

Stora: Mamory [ALUOUT] <= B
Mamary read completon Load: Reg[IR[20:16]] <= MDR

FAGURE 530 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first two steps are independent of the instruction class. After these steps, an instruction takes from one to three more cycles to complete, depending on
the instruction class. The empty entrizs for the Memory access step or the Memory read completion step indicate that the particular instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as scon as the current instruction completes, so these oycles are
not idle or wasted. As mentioned earlier, the register file actually reads every cycle, but s long as the IR does not change, the values read from the reg-
ister file are identical. In particular, the value read into register B during the Instruction decode stage, for a branch or B-type instruction, is the same as

the value stored into B during the Executicn stage and then used in the Memory access stage for a store word instruction.

20

Questions

» How many cycles will it take to execute this code?

1w $t2, 0($t3)
1w $t3, 4(5$t3)
beq $t2, $t3, Label #assume not taken
add $t5, $t2, $t3
sw $t5, 8($t3)
Label: .

* What is going on during the 8th cycle of execution?

* In what cycle does the actual addition of $t2 and $t3 takes place?

21

Control for Multicycle Implementation

22

' PCwWrEeCond PCSoures
POWre | s | ALLIOR
by ALUScB
MemPgad | Conirol
MamWrie 1 AL Eheon
ymioRg Op Wik
nmicFeg 501 .
1AW RagDst a
— Jump 1 I:
ardress r
instroction 12501 by Bl A P
Ingssuetian i e N et
1-26]
F3 B 7 PC [21-28]
PC l:. e Ingtruction Fead @
u [+ Address [25-21] regiatec 1 M
. Inasusstian da 1 [TA|
1 J
U | ey || [Pl s 4
MamData Instructian |] M Registers
[15-0] [iresructicn| u |- Wit Read e
| Wiile 15-11] | X | |regEer on -||i--—- o
data i L el [1l=
o - data 2x
Inglruction . a J
[15-a] 1, N g il
LY 2
——I— 1% | | a2 I/S’hln‘ ALU
extend a2 7 cantral
| § AR
\ i _—
M,
Instruction [5-0]

ALUSrcA =
ALUSrcB =

Control for “sub $t0, $s1, $s2”

Multicycle Control

Control for single cycle implementation was

based only on the

Control for multicycle implementation will be

based on the

and current

We’ll implement this control with state machines

24

Two Weird Things

1. For enable sighals (RegWrite, MemRead, etc.) we’ll write down the
signal only if it is true.
For multiplexors (ALUSrcA, lorD, etc.) , we’ll always say what the
value is. (unless it’'s a “don’t care”)

2. Some registers are written every cycle, so no write enable control
for them (MDR, ALUOut).
Others have explicit control (register file, IR)

Random (but useful) Refresher:
ALUOp =00 > ALU adds
ALUOp =01 - ALU subtracts
ALUOp = 10 > ALU uses function field

25

Example Control

o
Aigaas -1
B | g%
A
-~
.{Pc "’-
u [+ Address -
ML | demory [l
Wirite: [
daia

7N
T f oo Vae| 720
{ Shirt |
Im, etz cantrol
1 ! A

Xl]

o
Instructon [5-0]

Step 1: Instruction Fetch
IR <= Memory[PC]
PC<=PC+4

Example Control

nssruction
[31-26]

| ALUSH
[| comrar | —

AW FRegDst o

. — Jump]

' -/M\ address " 1 A
L hww#ﬂs-ﬂl[% | jn2)® -0 | |, y

I) =

4

nesruclion
[25-21]

nezd)

™

nesruction
[20-16]

nssrustion ||
[15-0] | [Instnuctien

regiater
Instruction
[15-a]

Instructon [5-0]

Step 2: Decode/Register Fetch
A <= Reg[IR[25:21]];

B <= Reg[IR[20:16]];

ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

Exercise #1: Specify control signals needed for a load instruction

Step 3:
ALUOQOut <= A + sign-extend(IR[15:0]);

Step 4:
MDR = Memory[ALUOut]

Step 5:
Reg[IR[20-16]] = MDR

Exercise #2: Specify control signals needed for a R-type instruction

Step 3:
ALUOut <= A op B

Step 4:
Reg[IR[15:11]] <= ALUOut;

Exercise #3: Specify control signals needed for a branch instruction

Step 3:
if (A==B) PC <= ALUOut;

Exercise #4: Write out steps 3-4 for a store instruction and show the
control signals needed

Exercise #5: Write out the step(s) (beyond 1 and 2) needed for
a “jump” instruction, along with associated control.

Graphical Specification (o

of FSM

* How many state

bits will we need?

dump

[P -.,,\.
f W i
| Posauree - 0]
M

complelion

Mai

NV N
[MemRead | | Memiwie | [FegDsted
= /' YR I\.mrnu:Fv:Q;q o)

\ \ =0
N _./ _ //

| agWirile
\MU"WRW =0 _."I
i

Finite State Machine for Control

* Implementation:

PCWrite

lorD

IRWrite
Control logic

PCSource
Outputs | A USIcB

RegWrite

NS3

PCWriteCond

MemRead
MemWrite

MemtoReg
ALUOp
ALUSIrcA

RegDst

NS2
NS1
Inputs NSO

| @ o =
ol 2| 2| o
O O| Of ©

Op5
Op0

ol ol =| ©
D o »w| @

Instruction register

State register ,
opcode field

i —

34

Chapter 5 Summary

» If we understand the instructions...
We can build a simple processor!

» If instructions take different amounts of time, multi-cycle is better
» Datapath implemented using:

— Combinational logic for arithmetic

— State holding elements to remember bits
+ Control implemented using:

— Combinational logic for single-cycle implementation

— Finite state machine for multi-cycle implementation

35

