
1

Slide Set #16:
Exploiting Memory Hierarchy

2

ADMIN

• 12 week exam next Wed
– Do practice problems before Monday

• Homework due Friday
– Last late turn-in Monday at 0800

• Chapter 7 Reading
– 7.1-7.3

3

• Ideal World: we want a memory that is
– Fast,
– Big, &
– Cheap!

• Real World:
SRAM access times are .5 – 5ns at cost of $4000 to $10,000 per GB.
DRAM access times are 50-70ns at cost of $100 to $200 per GB.
Disk access times are 5 to 20 million ns at cost of $.50 to $2 per GB.

• Solution?

Memory, Cost, and Performance

2004

4

Locality

• A principle that makes caching work

• If an item is referenced,
1. it will tend to be referenced again soon
why?

2. nearby items will tend to be referenced soon.
why?

5

Caching Basics

• Definitions
1. Minimum unit of data: “block” or “cache line”

For now assume, block is 1 byte

2. Data requested is in the cache:
3. Data requested is not in the cache:

• Cache has a given number of blocks (N)

• Challenge: How to locate an item in the cache?
– Simplest way:

Cache index = (Data address) mod N
e.g., N = 10, Address = 1024, Index =

e.g., N = 16, Address = 33, Index =
– Implications

For a given data address, there is __________ possible cache index
But for a given cache index there are __________ possible data items that

could go there

6

Example – (Simplified) Direct Mapped Cache

DataAddress

Cache (N = 5)

3630

5628

9831

8729

2427

5926

7825

10124

3223

2722

321

720

Memory Processor

1. Read 24
2. Read 25
3. Read 26
4. Read 24
5. Read 21
6. Read 26
7. Read 24
8. Read 26
9. Read 27

Total hits?
Total misses?

0

1

2

3

4

7

Exercise #1 – Direct Mapped Cache

DataAddress

Cache (N = 5)

3630

5628

9831

8729

2427

5926

7825

10124

3223

2722

321

720

Memory Processor

1. Read 30
2. Read 31
3. Read 30
4. Read 26
5. Read 25
6. Read 28
7. Read 23
8. Read 25
9. Read 28

Total hits?
Total misses?

0

1

2

3

4

8

Exercise #2 – Direct Mapped Cache

DataAddress

Cache (N = 4)

3630

5628

9831

8729

2427

5926

7825

10124

3223

2722

321

720

Memory Processor

1. Read 30
2. Read 31
3. Read 30
4. Read 26
5. Read 25
6. Read 28
7. Read 23
8. Read 25
9. Read 28

0

1

2

3

Total hits?
Total misses?

9

Exercise #3 – Stretch

• Look back at Exercises 1 and 2 and identify at least two different
kinds of reasons for why there might be a cache miss.

• How might you possibly address each type of miss?

10

Exercise #4 – Stretch

• Suppose we want to minimize the total number of bits needed to
implement a cache with N blocks. What is inefficient about our
current design?

• (Hint – consider bigger addresses)

11

Improving our basic cache

• Why did we miss? How can we fix it?

12

Approach #1 – Increase Block Size

DataAddress

3630

5628

9831

8729

2427

5926

7825

10124

3223

2722

321

720

CacheMemory Processor

1. Read 24
2. Read 25
3. Read 26
4. Read 24
5. Read 21
6. Read 18
7. Read 24
8. Read 27
9. Read 26

Index = N
ockBytesPerBl

sByteAddres
mod�
�

�
�
�

�

0

1

2

3

13

Approach #2 – Add Associativity

DataAddress

3630

5628

9831

8729

2427

5926

7825

10124

3223

2722

321

720

CacheMemory Processor

1. Read 24
2. Read 25
3. Read 26
4. Read 24
5. Read 21
6. Read 18
7. Read 24
8. Read 27
9. Read 26

Index =
ityAssociativ

N
ockBytesPerBl

sByteAddres
mod�
�

�
�
�

�

0

1

14

Performance Impact – Part 1

1 KB�
8 KB�
16 KB�
64 KB�
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

• To be fair, want to compare cache organizations with same data size
– E.g., increasing block size must decrease number blocks (N)

• Overall, increasing block size tends to decrease miss rate:

15

Performance Impact – Part 2

• Increasing block size…

– May help by exploiting _____________locality

– But, may hurt by increasing _____________

(due to smaller __________)

– Lesson – want block size > 1, but not too large

• Increasing associativity

– Overall N stays the same, but smaller number of sets

– May help by exploiting _____________ locality

(due to fewer ____________)

– May hurt because cache gets slower

– Do we want associativity?

16

Exercise #1 – Show final cache and total hits

DataAddress

3630

5628

9831

8729

2427

5926

7825

10124

3223

2722

321

720

CacheMemory Processor

1. Read 16
2. Read 14
3. Read 17
4. Read 13
5. Read 24
6. Read 17
7. Read 15
8. Read 25
9. Read 27

Block size = 2, N = 4

0

1

2

3

17

Exercise #2

• Show the correct formula for calculating the cache index, given the
cache parameters below

1. N = 10, Block size = 4

2. N = 8, Block size = 1, Associativity = 4

3. N = 16, Block size = 8, Associativity = 2

18

Exercise #3 – Fill in blanks, show final cache & total hits

DataAddress

3630

5628

9831

8729

2427

5926

7825

10124

3223

2722

321

720

CacheMemory Processor

1. Read 24
2. Read 25
3. Read 26
4. Read 24
5. Read 21
6. Read 26
7. Read 24
8. Read 26
9. Read 27

0

1

Block size = _____, N = ______, Assoc = _____

19

Exercise #4

• When the associativity is > 1 and the cache is full, then whenever
there is a miss the cache will:
– Find the set where the new data should go
– Choose some existing data from that set to “evict”
– Place the new data in the newly empty slot
How should the cache decide which data to evict?

20

Further Issues

• How to deal with writes?

• Bit details – how can we store more efficiently?

• What happens on a miss? Evictions?

