
1

SI 232
SlideSet #2: Instructions

(Chapter 2)

2

Slide Credits

• Much material in some way derived from…
– Official textbook (Copyright Morgan Kaufmann)
– Prof. Margarget McMahon (USNA)
– Major W. Clay James (USNA)

3

Chapter Goals

• Teach a subset of MIPS assembly language
• Introduce the stored program concept
• Explain how MIPS instructions are

represented in machine language
• Illustrate basic instruction set design

principles

4

Instructions:

• Language of the Machine

• More primitive than higher level languages

• Very restrictive
e.g., MIPS Arithmetic Instructions

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's
– used by NEC, Nintendo, Silicon Graphics, Sony

Design principles: to be found…
Design goals:

5

MIPS arithmetic

• All instructions have 3 operands
• Operand order is fixed

Example:

C code: A = B + C

MIPS code: add $s0, $s1, $s2

6

MIPS arithmetic

• Design Principle #1: simplicity favors regularity. Why?

• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code: add $t0, $s1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0

7

• Design Principle #2: smaller is faster. Why?

• Therefore, arithmetic instruction operands must be “registers”
– And only 32 registers provided

• Compiler associates variables with registers
• What about programs with lots of variables?

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

8

Memory Organization

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of memory.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

9

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the least 2 significant bits of a word address?

0

4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

10

Memory Instructions

• Load and store instructions
• Example:

C code: A[8] = h + A[8];

MIPS code: lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 32($s3)

• How about this?
add $t0, 32($s3), $t0

11

So far we’ve learned:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

12

Exercise #1

• What is the MIPS assembly code for the following:
g = g + h - i;

Variables g, h, & i are assigned registers $s1, $s2, and $s4

13

Exercise #2

• What is the MIPS assembly code for the following:
g = h + A[3];

Variables g, h, & i are assigned registers $s1, $s2, and $s4
Array A base address is assigned register $s3

14

Exercise #3

• What is the MIPS assembly code for the following:
g = h + A[i];

Variables g, h, & i are assigned registers $s1, $s2, and $s4
Array A base address is assigned register $s3

15

Extra space

16

• Instructions, like registers and words of data, are also 32 bits long
– Example: add $t0, $s1, $s2
– registers have numbers, $t0=8, $s1=17, $s2=18

• Instruction Format (r-type):

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

Machine Language

17

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– Principle #3: Make the common case fast

– Principle #4: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions

• Example: lw $t0, 44($s2)

35 18 8 44

op rs rt 16 bit number

• Where's the compromise?

Machine Language

18

Example Part 1

• What is the machine code for the following:

A[300] = h + A[300];

Variable h is assigned register $s2
Array A base address is assigned register $t1

• Do the assembly code first, then machine language instructions,
and then machine code

19

Example Part 2

• What is the machine code for the following: A[300] = h + A[300];
– Variable h is assigned register $s2 & Array A base address is assigned register $t1

• First part of answer:
lw $t0, 1200($t1) # Temporary reg $t0 gets A[300]
add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300]
sw $t0, 1200($t1) # Stores h + A[300] back into A[300]

• Second part of answer:

functshamtrdrtrsop

12008935

12008943

32088180

20

Example Part 3

• What is the machine code for the following: A[300] = h + A[300];
– Variable h is assigned register $s2 & Array A base address is assigned register $t1

• First part of answer:
lw $t0, 1200($t1) # Temporary reg $t0 gets A[300]
add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[300]
sw $t0, 1200($t1) # Stores h + A[300] back into A[300]

• Second part of answer:

functshamtrdrtrsop

0000 0100 1011 00000100001001100011

0000 0100 1011 00000100001001101011

01000000000010000100010010000000

21

• Instructions are composed of bits / bytes / words
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

