
1

SI232
Slide Set #8: Digital Logic Finale

(Appendix B)

2

ADMIN

• Project 1 due Wed Feb 8
– No collaboration this time – start early & see instructor for help

• READING
– Appendix: Read B.7,B.8,B.9, B.10, and B.12.

(skip the Verilog details).
• Quiz #2 on Friday Feb 10

– Digital Logic: SlideSets 6, 7, and parts of 8
• Course Paper description due by Feb 24 for approval

– Current computer architectural topic/issue
– 3-5 pages
– Suggested topics on course calendar – but a topic alone is not a

description! (see online instructions)
• 6 week exam, in class, Wed February 15

– Review to come

3

Big Picture

• Computer Overview (Chapter 1)
• A specific instruction set architecture (Chapter 2)
• Logic Design (Appendix B)
• Arithmetic and how to build an ALU (Chapter 3)
• Performance issues (Chapter 4)
• Constructing a processor to execute our

instructions (Chapter 5)
• Pipelining to improve performance (Chapter 6)
• Memory: caches and virtual memory (Chapter 7)
• I/O (Chapter 8)
• A few advanced topics

4

“Real World” Example

• Buzzer Feature for a Car
• Should Buzz when

1. the engine is on, the door is closed, and the seat belt is
unbuckled

2. the engine is on, the door is open
• What are our input(s)?

• What are our output(s)?

(extra space)

6

Check Yourself

• Could you have filled in the truth table?
• Could you have filled in the K-Map?
• Can you use the K-Map to minimize the equation?
• Can you draw the circuit?

7

Bigger Units of Combinational Logic

• Gates useful but fairly low level
• Easier to constructs circuits with higher-level building blocks

instead:
– Combinational Logic

• Multiplexors (mux)
• Decoders

– (later) Sequential Logic
• Registers
• Arithmetic unit (ALU)

• What is this an example of?

8

Multiplexor – Example Usage

Adder

$t0

$t1

$t2

$a3

$a2

9

Multiplexor – 1-bit version

• Think of a mux as a selector
• S selects one input to be the output
• N-way mux has

– # inputs:
– # selector lines (S):
– # outputs:

• Implementation?

D0
D1
D2
D3

S0
S1

EN

Q

10

Multiplexor – Wider version

• 32 bit wide, 2-way Mux:

• Pictures don’t always show the width
(especially if 32 bits)

11

Decoders

• Translates an n-bit input into a single asserted output
– # inputs:
– # outputs

• Named by inputs/outputs:
• Example uses:

– Memory addressing
– Identifying instruction op codes

OR

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

S0
S1
S2

EN

12

Decoder Implementation

000111

001001

010010

100000

Q0Q1Q2Q3s0s1

XY

X~Y

~XY

~X~Y

0
1

x

0
1

y

1

0

0

0

13

Exercise #1

• A. A 8-way mux has ______ “inputs” , _____ selector bit(s), and
______ output(s)

• B. For a 3-input decoder, there are _______ output(s)

• C. For a 4-input decoder, there are _______ output(s)

14

Exercise #2

• Draw an 8-input mux with inputs: A, B, C, D, E, F, G, H and output:
OUT (Remember to draw the selector bits)

(you don’t need to draw the internals, just the external view)

15

Exercise #3

• Draw the internals of a 1 to 2 decoder.

16

Implementing Combinational Logic

Given logic with inputs A, B, C; outputs D, E, F
Several ways to implement combinational logic besides raw gates:
1. Read only memory
2. PLA (programmable logic arrays – next slide)

Specific logic may be hardcoded at factory or programmable in field,
depending on the technology

17

PLAs

18

End of Combinational Logic

19

Combinational vs. Sequential Logic

• Combinational Logic – output depends only on

• Sequential Logic – output depends on:

• Previous inputs are stored in “state elements”
– __________ determines when an element is updated

• State elements will involve use of feedback in circuit
– Not permitted in combinational circuits

20

Clocks and State Elements

• Clock Frequency is the __________ of _______________.
• When should updates occur to state elements?

– Edge – change state when

– Level – change state when

21

Outline: Types of Memory Elements

1. Unclocked
– Our example: S-R Memory Element
– Our purpose: demonstrate feedback

2. Latches
• Memory elements that are
• Our example: D-type Latch
• Our purpose: building block for flip-flops

3. Flip-Flops
• Memory elements that are
• Our example: D-type Flip-flop
• Our purpose: Used extensively in CPU

Note: S-R element sometimes called S-R latch, but for this class we assumes all
latches are clocked

22

#1: S-R Memory Element

11

00

10

01

ActionRS

• Output Q is the “state” of the latch

23

Truth Tables ���� Next State Tables

• New kind of input:

• New kind of output:
– Each X can be either a 0 or 1

(helps with minimization)
– But in actual circuit, will have some

specific value
– Applies to combination logic too

xx111

00100

10110100S\RQ

24

#2: D-Latch

• State only changes when
• Latch is “open” when clock is high
• Latch is “closed” when clock is low

– During this time

Q-Latch

25

#3: D-Type Flip Flop

• State only changes

• Otherwise…
remembers previous state

• Abstraction:
D

C

Q

Q-flipflop
26

Exercise #1 – Complete the timing diagram below

D Latch – active high
D FlipFlop – falling edge triggered

Q-Latch

Q-FlipFlop

27

Exercise #2 – Complete diagram – note different assumptions

D Latch – active low
D FlipFlop – rising edge triggered

Q-Latch

Q-FlipFlop

28

Exercise #3

• Draw the circuit diagram for D flip-flop that is rising-edge triggered.
You may use a D-latch as a building block. Could you do this without
looking at your notes?

29

Exercise #4 - Stretch

• Draw the Next State Table for a D-latch, including the clock as one of
the inputs. Reduce this function with a K-map. Do you get the same
function as the circuit we drew for this latch?

30

State Diagrams

• State = Contents of memory

• Diagrams are a tool to
represent ALL transitions
from one state to another
– What causes state

changes?

• Example for D Latch:

Q=0 Q=1

31

Finite State Machines

• Can use state diagrams to express more complex sequential logic.
• Example: Candy Machine

– Inputs: N (nickel received), D (dime received)
– Outputs: C (dispense candy), R (give refund)
– Should dispense candy after 15 cents deposited, + refund if

overpaid. Then await next customer.
• We’ll use Moore machine – output depends only on

• What states do we need?

32

Example: Candy Machine Inputs: (N)ickel, (D)ime
Outputs: (C)andy, (R)efund

33

Exercise #1

• Draw a state diagram for the
following next state function:

• How would you describe what
input ‘A’ is accomplishing?

111

101

110

000

Qt+1QtA

34

Exercise #2

• John and Mary agree to play rock-paper-scissors to decide who has to pay for
dinner. The overall winner will be whoever wins two rounds in a row.

• Assume you have 6 inputs:
– JR, JP, JS (only one true depending on if John plays rock, paper, or scissors)
– MR, MP, MS

• At each round,
1. If John and Mary play the same (both scissors, etc.), then the game returns to

the initial state.
2. If either John or Mary has just won twice in a row, the next state should be a

“Game over” state.
3. Otherwise, the next state should reflect who won the most recent round

Your task:
1. How many different states do you need?
2. Draw the next state diagram for this game

Of course:
Rock beats scissors
Paper beats rock
Scissors beats paper

35

Extra space

36

Exercise #3

• How you could you make the rock/papers/scissors machine function
on just 4 inputs? Draw the next state table for this version of the
game. Do you have any don’t cares?

37

Implementing Finite State Machines

• Squares =
• Circles =
• We don’t always show the clock for registers/memory diagrams, but

will be implicit
38

FSM Example

39

Combining Combinational and Sequential Logic

• Finite State Machine was our first example of this
• Two general patterns:

1. State Machine

2. Pipeline

• In either case, have important timing concerns
– Output of combinational logic block may oscillate before settling
– Clock cycle time must be long enough so combo-logic settles before

the sequential logic (state) reads the new value
– State elements ensure that combo-logic inputs remain stable

40

Registers and Register Files

• Registers store data (bits) (i.e. have memory)
– Each register =

• Register files contain:
– Set of registers
– Logic for read/write

• MIPS register file has how
many registers?

• How does it store data?

• How does it know which
register to access?

41

Register Files - Read

• Read: Input = _____________; Output = ________
• How / why is the mux used?

• What is the width (bits) of the output?

42

Register Files - Write

• Write: Input =
Output =

• How / why is the decoder used?

• Why the clock?

43

Memory

• Why so many types?

• Basic types:
– RAM “random access memory” (read/write)

• Main memory
• Volatile
• Types:

– SRAM – async, sync, pipeline burst, cache;
– DRAM – M, FPM, EDO, burst EDO, sync, DR, DDR

– ROM (read only)
• Small
• Stores critical operating instruction (BOOT strap)
• Non-volatile
• Common in embedded system (toys, cameras, printers, etc)
• Types: PROM, EPROM, EEPROM, flash memory

44

Static Random Access Memory (SRAM)

• Relative expensive, fast memory – used for cache memory
• Usually just one port to read or write
• Height (15) / width (8) relationship
• What do we need for a write?

• for a read?

45

Static Random Access Memory (SRAM)

• On read ,how to select the proper data (register) for output?
– i.e. which Flip-Flops have the data?
– Register file uses mux – problem?

• Solution: Shared output line (aka bit line)

• Each flip-flop has “tri-state buffer” output
– One asserted at a given time

• Otherwise, can’t connect outputs
together!

• Where does select signals come from?

46

Dynamic Random Access Memory (DRAM)

• Each bit stored via charge in a capacitor
• Data accessed via a transistor

– Single transistor per bit of storage (SRAM 4 to 6 per bit)
– Dense and cheap

• Problem?

• Refresh
– Via reading and writing contents back to cell
– By rows vice individual cells
– ~2 % of cycles needed (98% available for data read & write)

• 2 level decode structure
– Part of address specifies “row”
– Part of address specifies “column”
– Access time 5 - 10x longer than SRAM

• Less expensive than SRAM
• Used in main memory

47

In the Book

• DRAM usage details
• Error correction – parity, error correcting codes

48

Appendix B Summary

• Truth tables and Gates
– AND, OR, NOT, NOR, NAND, XOR

• Boolean Algebra
– Distributive, DeMorgan’s, Inverse, Identity, etc

• Combinational Logic
– Circuits – Design, reduction / minimization, K-maps
– Decoder & multiplexor

• Sequential Logic
– Latches, Flip/flops
– Clock & state diagrams

• Register files
• Memory

– RAM vs ROM, SRAM vs. DRAM

