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Abstract 
Collective classification can significantly improve accuracy 
by exploiting relationships among instances. Although 
several collective inference procedures have been reported, 
they have not been thoroughly evaluated for their 
commonalities and differences. We introduce novel 
generalizations of three existing algorithms that allow such 
algorithmic and empirical comparisons. Our generalizations 
permit us to examine how cautiously or aggressively each 
algorithm exploits intermediate relational data, which can be 
noisy. We conjecture that cautious approaches that identify 
and preferentially exploit the more reliable intermediate 
data should outperform aggressive approaches. We explain 
why caution is useful and introduce three parameters to 
control the degree of caution. An empirical evaluation of 
collective classification algorithms, using two base 
classifiers on three data sets, supports our conjecture. 

Introduction   
Classification is the task of assigning one or more class 
labels to an unlabeled instance. Many supervised learning 
algorithms induce classifiers (e.g., that induce Bayesian 
networks, decision trees, neural networks, rules).  
 An underlying assumption of traditional learning 
methods is that the instances are independent of each other. 
However, instances in many classification tasks are often 
implicitly or explicitly related, such as when assigning 
topics to web pages. Hyperlinked web pages are more 
likely to share common class labels than non-linked pages, 
and this factor should be considered when classifying 
them. Such auto-correlation (correlation of class labels 
among interrelated instances) has been observed in a wide 
variety of data (Jensen and Neville 2002), including 
situations where the relationships are implicit. For 
example, email messages between two people are likely to 
share topics. 
 Collective classification is a methodology that 
simultaneously classifies related instances. It can increase 
classification accuracies over non-collective methods when 
instances are interrelated (Neville and Jensen 2000; Taskar, 
Abbeel, and Koller 2002; Lu and Getoor 2003). A number 
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of algorithms have been used for such collective inference, 
including relaxation labeling (Chakrabarti, Dom, and Indyk 
1998), iterative convergence techniques (Neville and 
Jensen 2000; Lu and Getoor 2003), belief propagation 
(Taskar et al. 2002), and Gibbs sampling (Jensen, Neville, 
and Gallagher 2004). 
 In this paper, we observe that all collective inference 
algorithms exploit relational features based on uncertain 
(and thus noisy) class labels, which is potentially 
problematic. However, they differ in how (if at all) they 
manage such uncertainty while exploiting the relational 
features. We call algorithms cautious if they seek to 
explicitly identify and preferentially exploit the more 
certain relational information, and otherwise call them 
aggressive. On this basis, we develop novel generalizations 
of three existing algorithms. In particular, we introduce 
three parameters to control the degree of caution used by 
collective inference algorithms, and conjecture that 
cautious algorithms should attain higher classification 
accuracies compared to their more aggressive variants. 
Our investigations confirm that, indeed, the most cautious 
algorithms perform best, and that caution enables a simple 
iterative algorithm to outperform Gibbs sampling, a 
popular yet much more computationally expensive choice.  
 To date, collective inference algorithms have not been 
thoroughly evaluated for their commonalities and 
differences. Sen and Getoor (2006) did evaluate three 
algorithms on synthetic data using a single classifier, and 
found the Iterative Classification Algorithm (ICA) to be 
the most reliable.  In this paper, we generalize two popular 
families of algorithms (including ICA), and evaluate them 
using two base classifiers on three real world datasets.  
 Our research is complementary to that of Jensen et al. 
(2004).  They use a single collective algorithm to examine 
the impact that different types of relational links in the 
model have on accuracy. We instead vary the collective 
inference algorithm, focusing on how noisy intermediate 
class labels are exploited in the algorithm. This effect has 
only been partially addressed (Neville and Jensen 2000); 
we discuss this in more detail after presenting our results. 
 In the next section, we provide background on collective 
classification. We then introduce our generalization of 
collective classification algorithms and explain the 
parameters for their degree of caution in exploiting 
relational information. Finally, we present our 
experimental evaluation and conclude with future work.  



Collective Classification 
In some classification tasks, the unlabeled instances can be 
implicitly or explicitly related. For example, consider 
classifying a university web page as belonging to a faculty 
member or a student when many such pages may interlink. 
Standard classifiers ignore such relations or links and 
would classify a web page by considering only the features 
derived from its contents (e.g., words it contains). 
Classification accuracy can be increased by adding features 
derived from the content of related instances (e.g., words 
from the hyperlinked web pages). Even greater accuracy 
increases can occur when the class label(s) of the related 
web pages are used to derive relevant relational features 
(Jensen et al. 2004). However, some or all of the class 
labels of the related web pages are initially unknown and 
need to be estimated or inferred to bootstrap the 
classification process. For instance, initial estimates of 
class labels can be obtained using content features only. 
Next, these estimates could be used to compute the values 
of the relational features and reclassify the instances. This 
iterative process of inferring and reclassifying could be 
repeated, possibly resulting in higher accuracy. However, 
since some labels will be incorrect, there is also the 
potential for relational features to harm performance. This 
is the motivation for cautiously exploiting such features, as 
we examine in the next section. 

Collective classification algorithms simultaneously 
classify interrelated instances using estimated or inferred 
relational features. They have three primary characteristics: 
• Related instances: The instances to be classified (e.g., 

web pages, emails) are explicitly or implicitly related.  
• Classifier: To classify an instance i (e.g., a webpage), 

the base classifier uses non-relational features (e.g., the 
words in page i) and relational features (e.g., the most 
common class label among other pages linked to i). 
Many classifiers have been used for this purpose, 
including Naïve Bayes (Jensen et al. 2004), Markov 
networks (Taskar et al. 2002), case-based classifiers 
(McDowell, Gupta, and Aha 2007), and logistic 
regression (Lu and Getoor 2003). However, results with 
different classifiers have seldom been compared. 

• Collective inference: An inference algorithm is used to 
update the class labels (or conditional probabilities), 
which are then used to recompute the relational feature 
values. As stated above, several inferencing techniques 
have been used (e.g., Gibbs sampling and belief 
propagation), but they have seldom been compared.  

Algorithms for Collective Inference 
We introduce two generalizations of existing collective 
inference algorithms:  
1. Iterative Collective Classification (ICC): ICC is a 

generalization of (i) the unnamed iterative algorithm of 
Neville and Jensen (2000), which is cautious, and (ii) 
the ICA algorithm of Lu and Getoor (2003), which is  

aggressive. This generalization introduces parameters to 
control the propensity to use uncertain relational data.  

2. Parameterized Gibbs Sampling for Collective 
Classification (PGCC) Like ICC, this is a 
generalization of Gibbs Sampling for collective 
classification that introduces a parameter to control how 
uncertain relational information is used. 

We use a case-based classifier (k-NN) and a Bayesian 
classifier with these algorithms. 

Algorithm 1: Iterative Collective Classification  
Figure 1 shows the pseudocode for the ICC algorithm, 
which includes three parameters to control its degree of 
caution. Before explaining the use of these parameters in 
detail, we describe the algorithm in its most aggressive 
mode (all three parameters are false) where it blindly uses 
all available relational information in its entirety.  

Aggressive ICC. In step 1, the algorithm computes the 
values of all relational features for the fully labeled 
training set. In step 2, a model is learned using the training 
data. Step 3 is a bootstrapping step, where it predicts class 
labels for the test instances using only non-relational 
features. Steps 5-6 are ignored in the aggressive mode. In 
step 7, the algorithm updates the relational feature values 
based on its predictions. In step 8, it reclassifies the test set 
using all features. Steps 7 and 8 then repeat for n iterations. 
Lastly, step 9 returns the final set of class labels.   

Cautious ICC. The aggressive mode of ICC can be 
tempered by setting three Boolean parameters:  

Parameter 1. ZfavorConfidentInstances for cautiously using 
intermediate instance labels: In step 7 of ICC’s aggressive 
mode, the relational feature values are computed assuming 
that the assigned instance labels are all equally likely to be 
correct. We modify this aggressive behavior to be more 
cautious by only considering label assignments for which 
we are more confident. To do this, we set ZfavorConfidentInstances 
to true. With this setting, step 6 selects only the “best” K of 

ICC(Tr,Te,NR,R,n,C, Z) = 
// Tr=Training data, Te=Test data,  NR=non-relational features,   
// R=rel. features,  n=#iterations, C=classifier, Z=Bool. params 

1 Tr.R.values�setRelFeatures(Tr,R,ZtreatAbsentAsUnknown) 
2 M�induce_model(Tr,NR,R,C) // Train 
3 Te.Labels�classify(Te,Tr,M,NR,∅,C) // Bootstrap 
4 for J = 0 to n // Iterate 
5 if ( J == 0) && (ZfavorTrainLinks) 

 Te.Labels�∅ //Set all to unknown; use train labels only 
6 else if (ZfavorConfidentInstances) // Keep top K labels 

 K = (J / n) * |Te| 
 Te.Labels�commit_best_k (Te.Labels, K) 

7 Te.R.values�setRelFeatures(Te∪Tr,R,ZtreatAbsentAsUnknown) 

8 Te.Labels�classify(Te,Tr,M,NR,R,C) // Classify 

9 return Te.Labels // return most likely class per test instance 

Figure 1. Pseudocode for iterative collective classification.  



the current label assignments, “commits” those labels, and 
sets all other labels to unknown. Step 7 then computes the 
relational features using only the committed labels, and 
step 8 classifies using this information. Step 6 gradually 
increases the number of labels that are committed in each 
iteration (e.g., if n=10, then the iterations commit {0%, 
10%, 20%,…,100%} of the test set instances). Note that 
instances “committed” in one iteration are not necessarily 
committed again in the next. 
 Leaving some label assignments as unknown in step 6 
impacts the relational feature value computation in step 7 
in two ways. First, feature values are computed without 
using the unknown labels. Since this computation depends 
only on the most reliable label assignments, subsequent 
assignments should also be more reliable. Second, the 
computed value of some features will be unknown (e.g., 
when an instance links only to instances labeled unknown).   
 This approach requires determining the “best” K of the 
current label assignments. We adopt Neville and Jensen’s 
(2000) approach and use the probability of the most likely 
class for each instance as a confidence measure. In 
exploratory experiments, we found that alternative 
measures (e.g., probability difference of top two classes) 
produced similar results. This approach also requires that 
the classifier handle features with unknown values. 

Parameter 2 ZfavorTrainLinks for increasing caution by 
favoring linked training set instance labels over linked test 
set instance labels: A realistic collective classification 
scenario frequently involves a test set with links to training 
set instances (the “in-sample” task of Neville and Jensen 
(2005)). For instance, a new set of web pages may be 
published that link to pages with known labels. Such links 
between the test and training sets provide known instance 
labels (i.e., the most certain) for relational feature value 
computation. Therefore, we add another degree of caution 
by favoring the class labels of linked training instances 
over the most confident estimations of labels from the test 
set. To accomplish this, we set the ZfavorTrainLinks to true. 
With this setting, in the first iteration, the relational feature 
values are computed using only the links to instances in the 
training set (via setting all test set labels to unknown in step 
5). The behavior of subsequent iterations depends on the 
value of ZfavorConfidentInstances. 

Parameter 3 ZtreatAbsentAsUnknown for cautiously handling 
absent links: Many machine learning algorithms assume 
that their input data have no missing values. However, 
relational features offer more complexity. In particular, 
consider a relational feature that is true when an instance 
has at least one outgoing link to an instance labeled “B”. 
What is the value of this feature when an instance i does 
not out-link to any other appropriate instances, regardless 
of their current labels? For example, an instance may only 
have incoming links or link only to instances not used in 
the current task. In such cases, the aggressive approach for 
using information entails setting the feature value to false – 
essentially treating the absence of any link data as a 
negative indicator for class “B.” Here, we consider a more 
cautious alternative. When ZtreatAbsentAsUnknown is true, we set 

the feature value to unknown for such instances. This 
allows the feature to distinguish (a) instances that have no 
appropriate links vs. (b) instances that do appropriately 
link to other instances, but where those instances’ labels 
are not “B.” The former case yields a feature value of 
unknown; the latter, false. If ZtreatAbsentAsUnknown were false, 
the feature value for both cases would be false. 

Relation to previous work: With the parameters 
ZfavorConfidentInstances and ZfavorTrainLinks set to false, ICC reduces 
to the ICA algorithm of Lu and Getoor (2003) (aside from 
different interleaving of steps 7 and 8). Similarly, when 
only ZfavorConfidentInstances is set to true, ICC reduces to the 
iterative algorithm described in Neville and Jensen (2000). 
In their experiments, there were no effective links between 
the test and training sets, so ZfavorTrainLinks would have no 
effect. Regarding the parameter ZtreatAbsentAsUnknown, we 
found no discussion of this issue in the collective inference 
literature, although feature descriptions in several papers 
(e.g., Neville and Jensen 2000; Lu and Getoor 2003) 
suggest that a value of false would be (aggressively) 
assigned for the instances we described. 

Algorithm 2: Parameterized Gibbs Sampling for 
Collective Classification (PGCC) 
Figure 2 summarizes how Gibbs sampling can be applied 
to collective inference. Steps 1-3 are identical to those in 
Figure 1, with the exception that the classifier must output 
distributions with the likelihood of each class. In step 5, 
within the loop, the algorithm probabilistically samples the 
current class label distributions and assigns a label to each 
instance based on its distribution. In step 6, it records these 
labels, and in step 7 it computes the relational features 
given the current class labels. In step 8, it re-computes the 
posterior class label probabilities given these relational 
features. The process then repeats. When the process 
terminates, the statistics recorded in step 6 approximate the 
joint distribution of class labels, which is used in step 9 to 
identify each instance’s most likely class label.  These 
labels are returned in step 10.  

PGCC(Tr,Te,NR,R,n,C, Z) = 
// Tr=Training data, Te=Test data,  NR=non-relational features,   
// R=rel. features, n=#iterations, C=classifier, Z=Bool. params 
1 Tr.R.values�setRelFeatures(Tr,R, ZtreatAbsentAsUnknown) 
2 M�induce_model(Tr,NR,R,C) // Train 
3 Te.ClassProbs�classify(Te,Tr,M,NR,∅,C) // Bootstrap 
4 for j =1 to n // Iterate 
5 Te.Labels �sampleDist(Te.ClassProbs) // Sample 

6 Te.Stats�updateStats(Te.Stats,Te.Labels) // Take stats 

7   Te.R.values�setRelFeatures(Te∪Tr,R,ZtreatAbsentAsUnknown) 

8 Te.ClassProbs�classify(Te,Tr,M,NR,R,C) // Classify 

9 Te.Labels�pickMostLikelyClass(Te.Stats)  

10 return Te.Labels // return most likely class for each instance 

Figure 2. Collective classification using Gibbs sampling.  



 Like ICC, we use ZtreatAbsentAsUnknown to cautiously handle 
“absent” links. Gibbs sampling is inherently somewhat 
cautious as it considers its confidence in estimated test set 
labels when it re-samples the distribution in step 5, 
although the classifier still treats all links equally. Unlike 
with ICC, it’s unclear how to favor the training links while 
still enabling the re-sampling to properly explore the state 
space. These properties also apply to other algorithms such 
as relaxation labeling; we will explore more in future work. 

Computational Complexity Analyses 
Both algorithms use space that is linear in the number of 
instances (N). The dominant computation costs for both 
stem from the relational features computation and instance 
classification. Typically, instances are connected to a small 
number of other instances, so the first cost is O(N). The 
classification time per iteration is O(N) for Naive Bayes, 
and is O(N2) for k-NN. Favoring more confident instances 
requires sorting the instances by probability with a cost of 
O(NlogN), although classification time usually dominates. 
Therefore, the overall computational cost per iteration of 
both algorithms is roughly the same. However, the number 
of iterations varies significantly across the algorithms.  
Based on Neville and Jensen (2000), we set n=10 for ICC 
and found that more iterations did not improve 
performance. In contrast, Gibbs sampling typically requires 
thousands of iterations. Based on Neville and Jensen 
(2004), we set n=2000 and ignored the first 200 iterations 
for “burn-in” (larger n did not improve performance). The 
comparatively larger number of Gibbs iterations implies 
that ICC is much less expensive than PGCC. 

Evaluation 
Hypotheses. (1) The most cautious version of ICC 
outperforms its aggressive version, (2) The cautious 
version of PGCC outperforms its aggressive version.  

Data Sets. We used the following data sets (see Table 1): 
1. Cora (McCallum et al. 2000): A collection of machine 

learning papers categorized into seven classes.  
2. CiteSeer (Lu and Getoor 2003): A collection of 

research papers drawn from CiteSeer (2006). 
3. WebKB (Craven et al. 1998): A collection of web pages 

from four computer science departments categorized 
into six classes (Faculty, Student, Staff, Course, 
ResearchProject, or Other). Other is problematic 
because it is too general, representing 74% of the pages.  
Like Taskar et al. (2002), we discarded all Other pages 
that did not have at least three outgoing links, yielding a 
total of 1541 instances of which 30% are Other.  

In Cora and CiteSeer, links exist between the test and 
training sets that can help collective inference (see links to 
“different folds” in Table 1). This was previously 
described as the “in-sample” classification task. For 
WebKB, there are no links between the schools, so we 
measure accuracy on the “out-of-sample” task. 

Table 1.  Data sets summary 

Characteristics Cora CiteSeer WebKB 
Instances 2708 3312 1541 
Avg. links per instance (total) 4.01 2.77 6.59 
Avg. links per inst.(to diff. fold) 1.46 0.30 0 
Class labels 7 6 6 
Non-rel. features available 1433 3703 100 
Non-rel. features used  100 100 100 
Relational features used 14 12 12 
Folds 3 3 4 

Feature Representation. We focus on collective 
classification tasks involving data sets that are 
predominantly textual (e.g., web pages or scientific 
literature). Our instance representation includes relational 
and non-relational features, as described below. 

Non-relational (content features): We use a bag-of-words 
representation for the textual content of instances. In 
particular, we use a binary representation where the feature 
corresponding to a word is assigned true if the word occurs 
in the instance and false otherwise. For WebKB, we used 
all 100 words available in our version of the dataset. For 
Cora and CiteSeer, we used information gain on the 
training set to identify and select the 100 highest-scoring 
words to use as the non-relational features. Using more 
words did not improve performance. 

Relational features: We compute relational features like 
the following:  
      fB(i) = NeighborsB(i) / Neighbors(i)                         (1) 
where Neighbors(i) is the number of instances hyperlinked 
to instance i that are not labeled unknown, and 
NeighborsB(i) is the number of such instances that 
currently have the label “B.” If Neighbors(i) is zero, then 
fB(i) is set to unknown if ZtreatAbsentAsUnknown is true (see 
Figure 1) or false otherwise. There is one such feature per 
possible class label. We compute individual features using 
only incoming and only outgoing links. Thus, for a dataset 
with six possible class labels, we compute 12 relational 
features. We also investigated the use of binary features 
and found the results consistent with those reported below. 
Hence, we omit further details.  

Classifiers. We used two classifiers with the algorithms: 
1. NB: A naïve Bayes classifier (based on the Proximity 

toolkit developed at the University of Massachusetts 
Amherst, http://kdl.cs.umass.edu/proximity). 

2. k-NN: A case-based classifier that uses the k-nearest 
neighbor rule (k-NN). Similarities are computed with a 
function that treats all features equally, but we 
experimentally found consistent results with other 
weighting functions. We used k=11 neighbors for voting.  

Gibbs sampling requires that all input probabilities be non-
zero, so we smoothed the estimated probabilities. 

Tested Algorithms. We considered a traditional 
classification algorithm and the two collective inference 
algorithms with their cautious variants as follows: 



1.  NonColl: is a traditional (i.e., non-collective) 
classification algorithm that performs a single run of the 
base classifier without any relational features. 

2.  We tested the following 4 variants of ICC ranging from 
the most aggressive to the most cautious: 
i. ICC0: ICC in its most aggressive form obtained by 

setting the three cautious parameters to false. 
ii. ICCU: A slightly cautious version of ICC obtained by 

setting ZtreatAbsentAsUnknown to true. 
iii. ICCU/Tr: A version of ICC that is even more cautious 

than ICCU, obtained by setting ZfavorTrainLinks to true. 
iv. ICCU/Tr/C: The most cautious version of ICC; it sets 

all three cautious parameters to true (adding in the 
favoring of more confident instances).  

3.  We tested two algorithms that use Gibbs sampling:  
i. PGCC0: PGCC with ZtreatAbsentAsUnknown set to false. 
ii. PGCCU: A more cautious variant of PGCC obtained by 

setting  ZtreatAbsentAsUnknown to true. 

Performance Measure. We compared all the algorithms 
for their average classification error rate on the test sets. 

Test Procedure. We conducted an n-fold cross-validation 
study for each algorithm and its variants. The Cora and 
CiteSeer data sets, as provided to us, were split into three 
roughly equal sized folds that preserved linking within a 
fold, which we used as is. We did not use randomly 
generated folds because that could remove the naturally 
occurring relations, resulting in folds that would be 
unrealistic for a collective classification task. For WebKB, 
we conducted a 4-fold cross-validation study, treating each 
of the four schools as a separate fold. 

Analysis. We performed independent analyses for each 
data set and joint analyses by pooling the observations 
from all the data sets and across both classifiers. Our 
conclusions are based on one-tailed paired t-tests accepted 
at the 95% confidence level.  

Results. Table 2 displays the classification error rates 
averaged over all the folds for each algorithm. For each 
data set and classifier, the best result is shown in bold.  
Result 1. The most cautious variant of ICC significantly 
outperforms its aggressive variant: Comparing ICC0 with 

ICCU/Tr/C, we find that when all 3 cautious behaviors are 
combined, they reduce classification error by 0.7% to 
7.4%, for an average improvement of 3.8%. This 
improvement is significant in every case except 
CiteSeer+NB and WebKB+NB. Using a pooled data 
analysis (not shown in Table 2), ICCU/Tr/C significantly 
outperforms ICC0 (average errors of 31.7% vs. 35.5% 
[p=0.003]). Therefore, we accept Hypothesis #1. 
 Examining the individual contribution of parameter 
settings reveals that the largest error reduction comes from 
setting  ZfavorConfidentInstances to true. For example, comparing 
ICCU/Tr with ICCU/Tr/C, we notice that errors are reduced 
in all six cases across the three data sets and two classifiers 
(significantly, for Cora and Citeseer). A pooled data 
analysis shows a significant improvement (31.7% vs. 
34.1% [p=0.025]). The other two parameters also improve 
performance, but comparatively less in magnitude and less 
consistently across the data sets. For example, setting 
ZtreatAbsentAsUnknown to true (ICCU) improves performance in 
three cases (by 1.7% to 4%), and has negligible impact in 
the others. The difference is significant for Cora+NB, and 
for the pooled analysis (34.4% vs. 35.5% [p=0.037]). 
Likewise, the incremental impact of setting ZfavorTrainLinks to 
true (ICCU/Tr) is small (and not significant) in Cora+kNN 
and essentially none otherwise. This is because Cora has 
by far the most links between folds, and WebKB has none 
(see  Table 1). 
Result 2. The cautious variant of PGCC does not 
outperform the aggressive variant: Comparing PGCC0 vs. 
PGCCU, we see that setting ZtreatAbsentAsUnknown to true has 
negligible effect for CiteSeer, improves performance for 
Cora and WebKB+kNN, and hurts performance with 
WebKB+NB. Overall, we find that treating absent links as 
unknown was generally helpful, but not in a statistically 
significant manner. Therefore, we reject Hypothesis #2. 
Result 3.  The most cautious variant of ICC significantly 
outperforms the most cautious variant of PGCC.  
ICCU/Tr/C almost always outperforms PGCCU with the 
exception of WebKB+kNN.  The difference is significant 
for Cora and CiteSeer+NB. In addition, a pooled analysis 
shows ICCU/Tr/C significantly beats PGCCU (31.7% vs. 
34.8% [p=0.001]). Note that this advantage over Gibbs 
does not hold for less cautious variants (i.e., ICC0 and 
ICCU).  
Result 4. Collective classification algorithms, cautious or 
otherwise, outperform non-collective classification: We 
found that, for these classification tasks, collective 
inference almost always improves accuracy across the two 
inference algorithms and two classifiers. Using the pooled 
analysis, the six collective classification approaches shown 
in Table 2 each significantly outperform NonColl. 
Considering the data set and classifier combinations 
individually, WebKB+NB is the only exception. In this 
combination, the baseline error rate is high, so there is 
increased potential for decreased performance due to 
uncertainty in instance labels. Nevertheless, when all three 
cautious settings are used (with ICCU/Tr/C), collective 
inference slightly reduces the error vs. NonColl. 

Table 2.   Average % classification error rate. 

Cora CiteSeer WebKB 
Algorithm 

kNN NB kNN NB kNN NB 
NonColl  39.1* 31.8* 39.1* 34.2* 46.0* 44.4 
ICC0  28.8* 23.3* 31.5* 31.2 43.5* 47.8 
ICCU  26.9* 21.6* 32.1* 31.1* 39.5 48.5 
ICCU/Tr  25.1* 21.6* 31.9* 31.2* 39.5 48.5 
ICCU/Tr/C  21.4 19.7 28.9 30.5 39.4 43.7 
Gain† 7.4 3.6 2.6 0.7 4.1 4.1 
PGCC0   26.6* 22.4* 31.7 30.9 44.2* 48.7 
PGCCU  24.9* 21.2* 31.9 30.9* 39.1 53.2 
* indicates significantly worse behavior than ICCU/Tr/C. Higher cross-

validation variance makes some comparisons not significant. 
† indicates gain from caution (ICC0 – ICCU/Tr/C ) 



Discussion 
Overall, cautious behavior for collective inference is highly 
effective. Within an algorithm family, ICC or PGCC, 
cautious settings improved performance. In particular, the 
gains were larger and statistically significant for ICC. Also, 
the most cautious ICC (ICCU/Tr/C) outperformed the best 
PGCC. While further Gibbs tuning (e.g., with random 
restarts) might marginally improve PGCC’s performance, 
ICC’s ability to match or exceed PGCC’s results suggests 
that ICC is a promising alternative. 
 Our results show that favoring instances with higher 
confidence class label predictions and favoring links to the 
training set significantly improves performance. Although 
Neville and Jensen (2000) previously showed that the 
former factor could improve accuracy compared to a non-
relational classifier (e.g., NonColl), to our knowledge, 
this paper is the first to (1) show that this approach  
outperforms other collective algorithms (e.g., ICCU), (2) 
identify two distinct factors providing its advantage, and 
(3) evaluate its effects on more than one dataset. 
 Our findings are inconsistent with those of Lu and 
Getoor (2003) on the same datasets. They reported no 
significant improvement from using a confidence-based 
ordering derived from Neville and Jensen’s algorithm. 
However, our algorithm differs in the way confidence is 
used. In our approach, early ICC iterations utilize only 
those instance labels that have high confidence, treating 
others as unknown. In contrast, Lu and Getoor’s algorithm 
instead utilizes all neighboring labels; the only change is in 
the order in which these decisions are made. Our results 
suggest that explicitly excluding the lower confidence 
labels, via unknown values, is critical for effectively 
utilizing confidence. 

Conclusion 
Collective inference has the potential to substantially 
improve classification accuracy on interrelated data, but 
must be carefully applied because uncertain predicted 
labels can produce incorrect relational features that 
diminish accuracy. We conjectured that cautious use of 
such uncertain information could improve performance. 
On this basis, we generalized two collective inference 
algorithms to control their degree of caution when using 
uncertain information. Our results demonstrated that, 
indeed, “cautious” approaches can be more effective. 
Furthermore, we showed how the simple ICC algorithm, in 
its most cautious mode, could outperform Gibbs sampling, 
a popular yet computationally expensive approach. 
 Further research is needed to confirm our results using 
other datasets and collective inference algorithms. Work is 
also needed to compare the relative performance of 
different types of cautious behaviors and to explore which 
types of datasets benefit most from such caution. For 
instance, how does the amount of label auto-correlation 
and noise affect performance? Finally, most collective 
algorithms have an asymmetry: models are trained using 
fully correct instance labels, yet incorrect labels will be 

present during testing. We intend to measure how cautious 
behaviors naturally compensate for this asymmetry, and 
also to explore other techniques for ameliorating it. 
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