
Case-Based Collective Classification 

Luke K. McDowell1, Kalyan Moy Gupta2, and David W. Aha3  

1Dept. of Computer Science; U.S. Naval Academy; Annapolis, MD 21402 
2Knexus Research Corp.; Springfield, VA 22153 

3Navy Center for Applied Research in Artificial Intelligence; 
Naval Research Laboratory (Code 5515); Washington, DC 20375 

lmcdowel@usna.edu, kalyan.gupta@knexusresearch.com, david.aha@nrl.navy.mil 
 
 

Abstract 
This is the first paper on textual case-based reasoning to 
employ collective classification, a methodology for 
simultaneously classifying related cases that has 
consistently attained higher accuracies than standard 
classification approaches when cases are related. Thus far, 
case-based classifiers have not been examined for their use 
in collective classification. We introduce Case-Based 
Collective Classification (CBCC) and report that it 
outperforms a traditional case-based classifier on three 
tasks. We also address issues of case representation and 
feature weight learning for CBCC. In particular, we describe 
a cross-validation approach for tuning feature weights and 
show that it increases CBCC accuracy on these tasks.  

Introduction   
Classification is the task of assigning one or more class 
labels to an unlabeled instance (or case). Many methods 
for automatically inducing classifiers exist (e.g., those that 
induce Bayesian networks, decision trees, neural networks, 
or rules). Case-based classification (CBC) is one such 
method: it classifies an unlabeled case by retrieving closely 
matching labeled cases and reusing their labels.  
 An underlying assumption of traditional classification 
methods is that the cases are independent of each other. 
For example, this has been assumed in most previous 
research on case-based classification (Aha and Marling 
2005). However, there are many classification tasks where 
cases are implicitly or explicitly related. One such task is 
that of assigning classes (topics) to web pages (cases), 
which may contain hyperlinks to each other. Hyperlinked 
web pages are more likely to share common class labels 
than non-linked pages, and this is an important factor to 
consider when classifying them. Such auto-correlation 
(correlation of class labels among interrelated cases) has 
been observed in a wide variety of data (Jensen and Neville 
2002) including data sets where the relationships are 
implicit. For example, email messages between two people 
are likely to share topics. 

Collective classification is a methodology that 
simultaneously classifies cases which may be interrelated. 
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Recent research has shown that it can significantly increase 
classification accuracies over standard classification 
methods when cases are interrelated (Taskar, Abbeel, and 
Koller 2002; Lu and Getoor 2003; Neville and Jensen 
2003). Classifiers that have been used in collective 
classification research include naïve Bayes, logistic 
regression, dependency networks, and Markov networks. 
CBC has not been used for collective classification. 
 In this paper, we introduce and develop a Case-Based 
Collective Classification (CBCC) methodology. We 
demonstrate that CBCC yields higher classification 
accuracy than standard CBC approaches for three textual 
CBC tasks. To do so, we create an appropriate relational 
representation for cases. We also describe a cross-
validation method for learning feature weights and show 
that it significantly increases CBCC accuracy.  
 We next describe collective classification, discuss 
related work, and introduce CBCC. Our empirical 
evaluation and discussion of future work follows. 

Collective Classification 
In some classification tasks, the unlabeled cases may be 
implicitly or explicitly related. For example, consider 
classifying a university web page as belonging to a faculty 
member or a student. Many of the student and faculty web 
pages may hyperlink to each other. Standard classifiers 
typically ignore such relations or links and would 
independently classify a web page by considering only the 
features derived from its contents (e.g., words it contains). 
Classification accuracy can be increased by carefully 
adding features derived from the content of related cases 
(e.g., words from the hyperlinked web pages) (Yang, 
Slattery, and Ghani 2002). Even greater accuracy increases 
can occur when the class label(s) of the related web pages 
are used to derive relevant relational features for 
classification (Jensen, Neville, and Gallagher 2004). 
However, some or all of the class labels of the related web 
pages are initially unknown and need to be estimated or 
inferred to bootstrap the classification process. This can be 
done in several ways. For instance, initial estimates of 
class labels can be obtained using content features only. 
Next, these estimates could be used to compute the 
relational features’ values and reclassify the cases. This 



process of inferring and reclassifying could be repeated 
until the class labels converge.  

Such an iterative approach for simultaneously 
classifying interrelated cases using estimated or inferred 
relational features is called collective classification (Jensen 
et al. 2004). These approaches have three characteristics:  
• Related cases: The cases to be classified (e.g., web 

pages, emails) are explicitly or implicitly inter-related.  
• Collective inference: A collective inference algorithm is 

used to update the class labels (or class conditional 
probabilities), which are subsequently used to identify 
the values of relational features. Several inferencing 
schemes have been used for collective classification (see 
Table 1). In the Iterative Classification Algorithm (ICA) 
(Lu and Getoor 2003), class labels are initially assigned 
based purely on non-relational features or a priori 
knowledge of the class distribution. Subsequently, they 
are updated in each iteration by the classifier. Neville 
and Jensen (2000) described a “gradual commitment” 
version of this iterative approach in which no initial label 
assignments are made. Instead, only a predefined 
proportion of the unlabeled cases are labeled per 
iteration, starting with the cases whose assignment 
confidence is highest. Relaxation labeling is yet another 
approach (Chakrabarti, Dom, and Indyk 1998), some 
forms of which can be viewed as essentially the same as 
ICA where class labels are assigned using estimated 
class conditional probabilities for each linked case (Sen 
and Getoor 2006). Belief propagation and Gibbs 
Sampling have also been used to estimate the joint 
probabilities of class labels. We use ICA in this paper. 
This algorithm was the most reliable performer on a 
range of synthetic data (Sen and Getoor, 2006), and it 
and its variants have also been effective on publicly 
available (non-synthetic) data sets (Neville and Jensen 
2000; Lu and Getoor, 2003). 

• Classifier: The classifier uses inferred relational 
features in addition to non-relational features to classify 
the set of related cases. For example, the words in a 
webpage can be the non-relational features and the most 
common class label across the other pages hyperlinked 
to that page can serve as an inferred relational feature. 
Naïve Bayes, Markov networks, logistic regression, and 

dependency networks have been used for this purpose 
(see Table 1). To our knowledge, no previous collective 
classification approach has used a case-based classifier. 

Case-Based Collective Classification 
We use the k-nearest neighbor (k-NN) rule for case-base 
classification. k-NN requires defining the case 
representation and the similarity function, which may 
employ algorithms for feature selection and/or weighting. 
In addition, we must select a collective inference scheme. 
Below we describe our case representation and the cross-
validation procedure that we use to learn feature weights 
for the similarity function. In addition, we detail our 
collective inference scheme. 

Case Representation 
We focus on collective classification tasks involving data 
sets that are predominantly textual (e.g., classifying web 
pages or research publications). Our case representation for 
collective classification includes the following: 
• Non-relational (content) features: We use a bag-of-

words representation for the textual content of cases 
(e.g., Gupta, Aha, and Moore 2006). In particular, we 
use a binary representation where, for the selected set 
of features, the feature corresponding to a word is 
assigned the value true if the word occurs in the case 
and is assigned false otherwise. 

• Relational features: We include several binary features 
whose values are computed by applying a threshold on 
the number of links to other matching labeled training 
cases, and also, during testing, to test cases (whose 
labels are uncertain). For example, a relational feature  
fB2 is true for a case i if i has at least two hyperlinked 
cases that currently have class B as their label. While 
other representations for relational features are possible, 
in this introductory paper we decided to use only these 
binary features. This decision was guided in part by our 
empirical observations that this approach compensates 
for disparities between the average number of links per 
case in the training set vs. in the test set, a disparity that 
can occur when the test set links to the training set. 

Table 1. A partial summary of research on collective classification 

Publication Base Classifier Inference Method Datasets 

Increase in % 
acc.vs. non-

collective 
Chakrabarti et al. 1998 Naïve Bayes Relaxation Labeling Patent DB, Yahoo 15-47 

Neville and Jensen 2000 Naïve Bayes Iterative (gradual commit) SEC (corporations) 6-12  

Taskar et al. 2002 Markov Network Belief Propagation WebKB 2-10 

Lu and Getoor 2003 Logistic Regression Iterative (ICA) Cora, CiteSeer, WebKB 2-8  

Neville and Jensen 2003 Dependency Network Gibbs Sampling IMDb, Cora 10-47 

Jensen et al. 2004 Naïve Bayes Gibbs Sampling Yeast 11 

This paper Case-Based (k-NN) Iterative (ICA) Cora, CiteSeer, WebKB 5-13 



Similarity Function  
We selected a weighted overlap similarity function for our 
k-NN classifier.  In particular, for cases i and j: 
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where wk is the weight of feature k, and fk(i) is the (binary) 
value of feature k for case i. Weighted similarity is used for 
voting. We examined three weight-learning techniques: 
• Equal weights (EW): This assigns the same weight to 

all features.  
• Information gain weights (IGW): Information gain is a 

popular and effective method for feature weighting in 
textual case-based reasoning (Gupta et al. 2006; 
Wiratunga, Koychev, and Massie 2004).  However, its 
effectiveness in CBCC has not been evaluated and is 
potentially problematic because the intermediate values 
of relational features (i.e., that depend on the unknown 
labels of linked test cases) during testing may be 
incorrect.  Hence, weights learned on (fully correct) 
training data may be misleading. 

• Cross-validation weights (CVW): To address this 
problem with IGW, we devised a cross-validation 
method for learning feature weight settings. In this 
method, values for non-relational feature weights are, 
like IGW, set using information gain. However, the 
weight values of all relational features are held equal, 
and this one value is linearly searched by estimating its 
resultant classification accuracy on a hold-out set. We 
expect that the weight settings for relational features, 
whose values will be uncertain and contain some noise, 
will be lower than those set using IGW, and that CVW 
will subsequently yield higher classification accuracies.  

Collective Inference 
Figure 1 shows CBCC, which is an adaptation of Lu and 
Getoor’s (2003) Iterative Classification Algorithm for use 
with CBC. After initializing the relational feature values 
for the training set (step 1), training involves assigning 
feature weight settings using one of the three learning 
algorithms (step 2). Next, a bootstrap step (3) makes initial 
predictions for the test cases using only non-relational 

features. Then it repeatedly updates the relational features’ 
values based on these predicted classifications and 
reclassifies the test set (using all features), continuing until 
a stopping criterion is satisfied (steps 4-6). After empirical 
analyses, we decided to use a fixed number of iterations 
(n=10, which Neville and Jensen (2000) also used). 

Evaluation 
We evaluate hypotheses corresponding to the following 
two claims:  
1. CBCC attains higher accuracies than standard CBC on 

data with relational information. 
2. The CVW is the most effective weighting technique, 

among the three described here, for CBCC. 

Data Sets 
We tested these claims on three data sets (see Table 2) that 
were also used in previous studies (see Table 1): 
1. Cora (McCallum et al. 2000): A collection of machine 

learning publications categorized into seven classes.  
2. CiteSeer (Lu and Getoor 2003): A collection of 

research publications drawn from CiteSeer (2006). 
3. WebKB (Craven et al. 1998):  This contains web pages 

from four computer science departments categorized 
into six classes (Faculty, Student, Staff, Course, 
ResearchProject, or Other). Other is problematic 
because it is too general, representing 74% of the pages.  
Like Taskar et al. (2002), we discarded all Other pages 
that did not have at least three outgoing links, yielding a 
total of 1541 cases of which 30% are Other.  

For Cora and CiteSeer, links exist between the test and 
training sets that can assist the collective inference process. 
This is the “in-sample” classification task described by 
Neville and Jensen (2005). For WebKB, there are no links 
between the different schools, so we measure the accuracy 
on the “out-of-sample” classification task. 
 
Case Representation. For WebKB, we used the 100 most 
frequent words (all that were available in our version of the 
dataset) as the non-relational features. For Cora and 
CiteSeer, we instead used information gain on the training 
set to identify and select the 100 highest-scoring words as 
the non-relational features. Using more words provided 
little improvement in baseline classification accuracy, and 
thus we chose 100 words for consistency with WebKB. 

CBCC(Tr,Te,NR,R,n) = 
// Tr=Training data, Te=Test data,  NR=non-relational features,   
// R=relational features,  n=# iterations, W=feature weights 
1 Tr.R.values�setRelFeatures(Tr,R) // Initialize  
2 W�learn_feature_weights(Tr,NR,R) // Train 
3 Te.ClassLabels�classify(Te,Tr,W,NR,∅) // Bootstrap 
4 for i =1 to n // Iterate 
5 Te.R.values�setRelFeatures(Te∪Tr,R)  // Update 

6 Te.ClassLabels�classify(Te, Tr,W,NR,R)  // Classify 

7 return Te.ClassLabels  

Figure 1. Generic case-based collective classification 
pseudocode, where the classifier is a weighted k-NN rule  

Table 2.  Data sets summary 

Characteristics Cora CiteSeer WebKB 
Cases 2708 3312 1541 
Average links per case 4.01 2.77 6.59 
Classes 7 6 6 
Non-rel. features available 1433 3703 100 
Non-rel. features used  100 100 100 
Relational features used 21 18 36 
Folds 3 3 4 



When developing relational features, we considered the 
directionality of links. We empirically established that 
undirected links perform better than directed links for Cora 
and CiteSeer, and directed links work best for WebKB.  
This is consistent with our intuition that citation links in 
Cora and CiteSeer are semantically fairly symmetric, while 
the WebKB hyperlinks are not. Therefore, we represented 
WebKB’s relational features using directed links and used 
undirected links to represent relational features for Cora 
and CiteSeer. For each data set, we created relational 
features with thresholds of 1, 2, and 3 for each class in the 
dataset (e.g., corresponding to Cora’s 7 classes, we created 
21 relational binary features). WebKB has six classes, but 
has 36 relational features due to its use of directed links. 

Weight learning: We applied CVW as follows. For each 
training set, the weights of non-relational features were set 
using information gain. Two of the training set folds were 
then selected. We ran the classification algorithm, training 
with the first fold and evaluating accuracy on the second 
(hold-out) set. We repeated this process, each time setting 
the relational feature weights to one of 13 settings ranging 
from 0.01 to 200.0.  The weight yielding the best accuracy 
was then used for evaluation on the test set.  

Implemented Algorithms 
We tested three algorithms in our experiments: 
1. NonColl: This version implements the standard CBC 

that uses only the non-relational features. 
2. Coll0: This version operates on cases represented with 

non-relational and relational features. However, it 
performs only a single classification step, where each 
test set relational feature is used only if its value can be 
determined using just the links to the training set. Coll0 
is intended to measure the performance improvement 
due solely to adding relational features, even without 
performing iterative collective inference. 

3. Colln: This version implements CBCC when iterating n 
times. We set n=10 in our experiments. 

Finally, we empirically set k=11 for this evaluation. 

Performance Measure 
We compared all the algorithms for their average 
classification accuracy, which is the proportion of cases 
from the test sets that are correctly classified. 

Hypotheses 
1. CBCC (Colln) outperforms standard CBC with 

(Coll0) and without (NonColl) relational features. 
2. CVW yields significantly higher accuracies than EW and 

IGW for CBCC (Colln). 

Test Procedure 
We conducted an n-fold cross-validation study for each 
algorithm. The Cora and CiteSeer data sets, as provided to 
us, were split into three roughly equal-sized folds (intended 

to preserve linking within a fold), which we used as is. We 
did not use randomly generated folds because that could 
remove the naturally occurring relations, resulting in folds 
that would be unrealistic for a collective classification task. 
For WebKB, we conducted a 4-fold cross-validation study, 
treating each of the four schools as a separate fold. 

Analysis 
We analyzed the results for each data set and performed a 
joint analysis by pooling the observations from all the data 
sets. Our conclusions are based on a one-tailed paired t-test 
for statistical significance at the 95% level.  

Results 
Table 3 displays the classification accuracies averaged 
over all the folds for each algorithm. The best performance 
for each algorithm for each dataset is shown in bold. We 
first evaluate Hypothesis 1 for each weighting method. 
EW. For Cora, Colln’s accuracy is significantly higher 
than NonColl and Coll0 (71.2 vs. 59.6 [p=0.005] and 
71.2 vs. 64.9 [p=0.003]). For CiteSeer, Colln does not 
significantly outperform NonColl and Coll0 (65.0 vs. 
59.2 [p=0.067] and 65.0 vs. 59.7 [p=0.076]).  For WebKB, 
Colln’s accuracies are again significantly higher than 
NonColl and Coll0 (60.2 vs. 50.9 [p=0.004] for both).  

Using a pooled data analysis, Colln’s accuracies are 
significantly higher than NonColl (64.94 vs. 56.00 
[p=0.000]) and Coll0 (64.94 vs. 57.78 [p=0.000]). 

Comparing the performance of Coll0 with NonColl, 
we found that adding relational features alone, even 
without collective inference, can increase classification 
accuracy (e.g., 5.3% in Cora and 0.5% in CiteSeer). 
However, there was no increase for WebKB because it has 
no hyperlinks from the test cases to the training cases. That 
is, all relational features with Coll0 are set to false. 

To assess the magnitude of improvement attributable to 
collective inference, we compared the classification 
accuracies of Colln with Coll0. The increases (ranging 
between 5.3% and 9.3%) are substantial. 
IGW. For Cora, Colln does not significantly increase 
accuracies compared with NonColl (67.4 vs. 62.4 
[p=0.062]) and Coll0 (67.4 vs. 65.6 [p=0.225]).   
However, for WebKB, Colln does significantly 
outperform NonColl and Coll0 (70.5 vs. 59.5 
[p=0.001] for both). The performance on CiteSeer is 
inconsistent with that of Cora and WebKB. Although 
statistically not significant, on Citeseer Colln performs 
poorly compared to NonColl and Coll0 (53.3 vs. 62.1 
[p=0.226] and 53.3 vs. 62.5 [p= 0.218]).  

As anticipated, IGW with Colln had an unpredictable 
and sometimes adverse effect on accuracy. Other 
experiments confirmed this even with fewer relational 
features (e.g., only features with a threshold of 1). 
However, as discussed later, CVW resolves this problem. 
Thus, we do not perform a pooled analysis for IGW. 
CVW. For Cora, Colln attained significantly higher 
accuracies than NonColl (75.4 vs. 62.4 [p=0.002]). 



However, it does not significantly outperform Coll0 (75.4 
vs. 71.8 [p=0.089]). For CiteSeer, Colln does not 
significantly outperform NonColl (66.9 vs. 62.1 
[p=0.051]) but it does significantly outperform Coll0 
(66.9 vs. 63.2 [p=0.038]). For WebKB, Colln 
significantly outperforms NonColl and Coll0 (69.8 vs. 
59.5 [p=0.000] for both).   

Using a pooled data analysis, we found that, for CVW, 
Colln yields significantly higher accuracies than 
NonColl (70.60 vs. 61.13 [p=0.000]) and Coll0 (70.60 
vs. 64.31 [p=0.000]). 

 The magnitude of performance improvements of Colln 
versus Coll0 on CVW are 3.6% for Cora, 3.7% for 
CiteSeer, and 10.3% for WebKB. 

Overall conclusion: Based on the pooled analysis, we 
accept Hypothesis 1 for EW and CVW, but not for IGW.  

Hypothesis 2. A per dataset analysis shows that CVW 
does significantly increase classification accuracy on Cora 
(e.g., 75.4 vs. 71.2 [p=0.031] for EW, and 75.4 vs. 67.4 
[p=0.041] for IGW). Although similar improvements 
occurred for CiteSeer, they are not significant (66.9 vs. 
65.0 [p=0.072]) and (66.9 vs. 53.3 [p=0.115]). For 
WebKB, we found that CVW significantly outperforms 
EW (69.8 vs. 60.2, [p=0.001]) but slightly under performs 
IGW, although this difference is not significant (69.8 vs. 
70.5 [p=0.297]).  

Pooling our observations across all the datasets to assess 
the overall effectiveness of CVW, we found that it does 
provide a significant advantage over EW (70.6 vs. 64.9 
[p=0.000]) and IGW (70.6 vs. 64.4 [p=0.033]).   

Overall Conclusion: Based on the pooled analysis, we 
accept Hypothesis 2. 

We posited earlier that IGW, when used with collective 
inference, can adversely impact classification accuracy by 
amplifying the errors from incorrectly predicted relational 
feature values. We expected CVW to counter this adverse 
effect by selecting a smaller weight setting for the 
relational features when compared with those selected by 
IGW. This occurred for Cora and CiteSeer (see Table 4). 
The average total weight of relational features selected by 
CVW is substantially lower than those selected by IGW 
(e.g., 1.12 vs. 5.01 for Cora). However, CVW’s search 
procedure found higher weights for WebKB (3.60 vs. 
1.40). This explains its marginally lower classification 
performance on WebKB. This inability of CVW to locate 
better weight settings could be attributed to the nature of 
hyperlinks or the smaller size of the WebKB training set. 
Further investigation is needed to confirm this conjecture. 

Table 4.  Average total weight of relational features 

Data Set IGW CVW 
Cora 5.01 1.12 
CiteSeer 2.79 0.66 
WebKB 1.40 3.60 

Table 3 shows that CVW yields the best classification 
accuracies with Coll0, when relations from test to training 
sets are available. For Cora, the improvement versus EW is 
6.9% and 6.2% versus IGW. Similar (though smaller) 
improvements occurred with CiteSeer.  

Overall, CVW improves performance in part because it 
is a wrapper approach (Kohavi and John 1997); it directly 
uses classification performance to select the best weights. 
In contrast, IGW uses a filter approach in which IG is a 
proxy measure instead of the classifier’s accuracy. In 
general, wrapper approaches often yield higher accuracies. 

Discussion 
Previous research on case-based classification (e.g., Gupta 
et al., 2006), relational case representations (e.g., 
Bergmann, Kolodner, and Plaza 2005), and textual case-
based reasoning (Weber, Ashley, and Brüninghaus 2005) 
has not examined using inter-case relations to classify all 
cases simultaneously. In contrast, CBCC’s context is that 
the cases are related and knowing the label of one can 
affect the prediction for another, related case. 

For the datasets we examined, relational features appear 
to be informative and suitable for improving performance.  
Where links between training and test cases are available 
(Cora, CiteSeer), adding relational features, even without 
collective inference, increased accuracy. However, the best 
performance for all the datasets was achieved using CBCC. 
The magnitude of CBCC’s improvements is similar to 
what Lu and Getoor (2003) reported for ICA with logistic 
regression on Cora and CiteSeer. However, for WebKB we 
found a much larger performance improvement than they 
did; we attribute this to their different data pre-processing 
which removed all pages in the Other category (we 
removed just some), resulting in a less connected graph. 
 Because relational data is common and important in 
many applications, CBCC appears to be a useful new 
technology, particularly when the data meets the following 
conditions. First, the data must contain (or be amenable to 
inferring) a sufficient number of inter-case relations. The 
number of such relations necessary will vary; our datasets 
contained between 2.8 and 6.6 relations per case. Second, 
knowing the class of one case must be informative in 

Table 3.   Average % classification accuracies (generalization) 
Cora CiteSeer WebKB Algorithm 

EW IGW CVW EW IGW CVW EW IGW CVW 
NonColl 59.6 62.4 62.4 59.2 62.1 62.1 50.9 59.5 59.5 
Coll0 64.9 65.6 71.8 59.7 62.5 63.2 50.9 59.5 59.5 
Colln  71.2 67.4 75.4 65.0 53.3 66.9 60.2 70.5 69.8 



predicting the class of a linked case; auto-correlation is a 
common occurrence that meets this requirement (Jensen 
and Neville 2002). Finally, we found that CBCC improved 
classification accuracies for baseline accuracies as low as 
51% (obtained for WebKB). There may be a lower bound 
on baseline accuracy below which CBCC may not be 
effective, which we will analyze in our future research. 

Conclusion 
We introduced case-based collective classification (CBCC) 
and demonstrated that it can significantly increase 
classification accuracy for relational data. We summarized 
collective classification and explained how to apply such 
techniques with a k-nearest neighbor classifier. Our choice 
of relational features led to good performances for three 
classification tasks. We also explored the impact of feature 
weighting. CBCC accuracy generally increased when using 
feature weighting, although information gain often 
performed poorly when the relational features’ values were 
incorrectly predicted. In response, we introduced a cross-
validation feature-weighting technique that yields 
consistently high accuracies, always approaching or 
exceeding those of the other algorithms we considered. 
 There is much room for future work. First, these results 
should be validated with other datasets. Second, we will 
investigate other relational features, such as those that are 
non-binary or based on links that are more complex (e.g., 
co-citations) or are inferred from other content. Third, we 
considered only one collective inference technique, ICA. 
Other robust techniques (e.g., Gibbs sampling) deserve 
examination, and ICA itself could also be refined. 
 Finally, we plan to examine how collective inference 
could be applied to problem-solving tasks other than 
classification (e.g., diagnosis, planning). Collective 
inference can be viewed as a process for incorporating 
background knowledge (represented explicitly or otherwise 
inferred) into a reasoning task. This relational knowledge, 
which is available in many applications, may also be useful 
for these other types of problem-solving tasks. 
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