

Meta-Prediction for Collective Classification

Luke K. McDowell
1
, Kalyan Moy Gupta

2
, and David W. Aha

3

1Dept. of Computer Science; U.S. Naval Academy; Annapolis, MD 21402

2Knexus Research Corp.; Springfield, VA 22153
3Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5514); Washington, DC 20375
lmcdowel@usna.edu | kalyan.gupta@knexusresearch.com | david.aha@nrl.navy.mil

Abstract

When data instances are inter-related, as are nodes in a
social network or hyperlink graph, algorithms for collective
classification (CC) can significantly improve accuracy.
Recently, an algorithm for CC named Cautious ICA (ICAC)
was shown to improve accuracy compared to the popular
ICA algorithm. ICAC improves performance by initially
favoring its more confident predictions during collective
inference. In this paper, we introduce ICAMC, a new
algorithm that outperforms ICAC when the attributes that
describe each node are not highly predictive. ICAMC learns a
meta-classifier that identifies which node label predictions
are most likely to be correct. We show that this approach
significantly increases accuracy on a range of real and
synthetic data sets. We also describe new features for the
meta-classifier and demonstrate that a simple search can
identify an effective feature set that increases accuracy.

 Introduction

In many classification tasks, the instances to be classified
(such as web pages or people in a social network) are
related in some way. Collective classification (CC) is a
methodology that jointly classifies such instances (or
nodes). CC algorithms can attain higher accuracies than
non-collective methods when nodes are interrelated
(Neville and Jensen 2000; Taskar, Abbeel, and Koller
2002). Several CC algorithms have been studied, including
relaxation labeling (Chakrabarti, Dom, and Indyk 1998),
the Iterative Classification Algorithm (ICA) (Sen et al.
2008), loopy belief propagation (LBP) (Taskar et al. 2002),
and Gibbs sampling (Jensen, Neville, and Gallagher 2004).
 We focus on ICA because it is a popular and
computationally efficient algorithm that has good
classification performance (Sen et al. 2008). It makes
initial label predictions for each node vi, then iteratively re-
computes them based on the predictions for every node that
links to vi. Recently, a variant of ICA named Cautious ICA
(ICAC) (McDowell et al. 2007, 2009) was shown to often
attain higher accuracies than ICA. ICAC is based on the

Copyright © 2010, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

observation that, since some label predictions will be
incorrect, ICA’s use of all predictions may sometimes
decrease accuracy. To counter this effect, ICAC instead
initially uses only some label predictions. By “cautiously”
choosing only those predictions that appear more likely to
be correct, ICAC can increase accuracy vs. ICA.
 In this paper, we introduce Meta-Cautious ICA (ICAMC),
which is exactly like ICAC except in how it selects the set
of predicted labels to use during classification. In
particular, ICAMC learns a meta-classifier to predict the
likelihood that a label prediction is correct. By carefully
constructing a meta-training set from the original training
set, ICAMC can learn this classifier and use it to select more
reliable predicted labels than ICAC, increasing accuracy.
 Our contributions are as follows. First, we present
ICAMC, a novel algorithm that can significantly increase
accuracy compared to ICAC, especially when the attributes
that describe each node are not very predictive. Second, we
introduce a technique to improve accuracy by generating
more training examples for ICAMC’s meta-classifier. Third,
we describe new features for the meta-classifier and
demonstrate that, while the most effective meta-features
for ICAMC are task-dependent, a simple search identifies an
effective set that increases accuracy. Empirical evaluations
using real and synthetic datasets support our claims.
 We next review CC and the ICA and ICAC algorithms.
Then we introduce ICAMC. Finally, we present our
experimental evaluation and discuss future research issues.

Collective Classification

Assume we are given a graph G = (V,E,X,Y,C), where V is
a set of nodes, E is a set of (possibly directed) edges, each

xi∈X is an attribute vector for node vi∈V, each Yi∈Y is a

label variable for vi, and C is the set of possible labels. We

are also given a set of “known” label values YK for nodes

V
K⊂V, so that YK = {yi | vi∈V

K}. Finally, assume that we are
given a training graph GTr, which is defined similarly to G

except that every node in GTr is a “known” node. Then the

task is to infer YU
=Y−Y

K, which are the values of Yi for the

nodes in G whose labels are unknown. For each node vi, let

yi be the true label and ŷi be the predicted label.

 For example, consider the task of predicting whether a

web page belongs to a professor or a student. Conventional

supervised learning approaches ignore the links and

classify each page using attributes derived from its content

(e.g., words present in the page). In contrast, a technique

for relational classification explicitly uses the links to
construct additional features for classification (e.g., for

each page, include as features the words from hyperlinked

pages). These relational features can increase classification

accuracy, though not always (Chakrabarti et al. 1998).

Alternatively, even greater (and usually more reliable)

increases can occur when the class labels of the linked

pages are used to derive relevant relational features (Jensen

et al. 2004). However, using features based on these labels

is challenging because some or all of these labels are

initially unknown. Thus, their labels must first be predicted

(without using relational features) and then re-predicted in

some manner (using all features). This process of jointly
inferring the labels of interrelated nodes is known as

collective classification (CC).
 We next describe two existing collective inference
algorithms, ICA and ICAC, and then introduce ICAMC.
Each algorithm relies on a given node classifier (MAR) that
predicts a node’s label using both attributes and relations.

ICA: Inference using all predicted labels

Figure 1 shows pseudocode for ICA, ICAC, and ICAMC

(depending on AlgType). Step 1 is a “bootstrap” step that

predicts the class label ŷi for each node in V
U using only

attributes (confi records the confidence of this prediction,

but ICA does not use it). ICA then iterates (step 2). During

each iteration, it selects all available label predictions (step

3), computes the relational features’ values based on them

(step 4), and then re-predicts the class label of each node

using both attributes and relational features (step 5). Step 6
is ignored for ICA. After iterating, step 7 returns the final

set of predicted class labels and their confidence values.

ICAC: Inference using some predicted labels

In steps 3-4 of Figure 1, ICA assumes that the predicted

node labels are all equally likely to be correct. When

AlgType is instead ICAC, the inference becomes more

cautious by only considering more confident predictions.

Specifically, step 3 “commits” into Y′ only the most
confident m of the currently predicted labels; other labels

are considered missing and are ignored. Step 4 computes
the relational features using only the committed labels, and

step 5 performs classification using this information. Step

3 gradually increases the fraction of predicted labels that

are committed per iteration. Node label assignments

committed in an iteration h are not necessarily committed

again in future iterations (and may in fact change).

ICAC requires a confidence measure (confi in Figure 1)

to rank the current label predictions. As with prior work

(Neville and Jensen 2000, McDowell et al. 2007), we set

confi to be the posterior probability of the most likely class

for each node vi. This is computed by the node classifier

MAR based on the attributes and relational features of vi.
 ICAC performs well on a variety of real and synthetic
data, and attains higher accuracies than ICA and similar
accuracies as more time-consuming algorithms such as
Gibbs sampling or LBP (McDowell et al. 2009). However,
ICAC’s ability to select the “best” predicted labels depends
entirely on the confidence value estimates from the node
classifier. Accuracy may decrease if a misclassified node is
nonetheless assigned a high confidence value.

Improving ICAC with Meta-Caution

To address this potential problem with ICAC, we created
ICAMC. They are identical except that ICAMC uses a
separate “meta classifier” to predict how likely each
prediction ŷi is to be correct. Below we describe ICAMC’s
use of this meta-classifier, methods for generating its
training data, and methods for constructing its features.

ICAMC: Inference using predicted correct labels

Figure 1 shows that ICAMC changes ICAC only in step 6. In
particular, after using the node classifier to predict the label
ŷi (and associated confidence confi) for every node, ICAMC
computes the meta-feature values and then uses the meta-
classifier MM to predict how likely ŷi is to be correct. These
predictions serve as the new confidence values that are
then used in Step 3 of the next iteration to select the

ICA_classify(V,E,X,YK,MAR,MA,MM,n,AlgType,Φ) =

// V=nodes; E=edges; X=attr. vectors; YK=labels of known nodes

// MAR=node classifier (uses attrs. & relations); MA= classifier

// that uses attrs. only; MM=meta-classifier (predicts correctness)

// n=# iters; AlgType=ICA, ICAC, or ICAMC; Φ=est. class distr.

1 for each node vi∈VU do // Bootstrap

 (ŷi,confi) ← MA(xi)

2 for h = 0 to n do

3 // Select node labels for computing relational feat. values

 if (AlgType = ICA) // Use all labels: Known or predicted

 Y′ ← YK ∪ {ŷi | vi∈VU}

 else // ICAC or ICAMC: Use known and m

 m ← |VU| * (h/n) // most confident predicted labels

 Y′ ← YK ∪ {ŷi | vi∈VU ∧ rank(confi) ≤ m}

4 for each node vi∈VU do

 fi ←calcRelatFeats(V,E,Y′)

// Use labels selected above

// to compute feat. values

5 for each node vi∈VU do

 (ŷi,confi) ←MAR(xi,fi)

// Re-predict labels using

// attributes and features

6 if (AlgType = ICAMC)

 ZU ←{(ŷi,confi) | vi∈VU}

 for each node vi∈VU do

// Compute meta-features;

// use to re-estimate conf.

// values for each node

 mfi ← calcMetaFeatures(i,V,E,X,Y′,YK,ZU,MA,Φ)

 confi ← MM(mfi)

7 // Return most likely label (and conf. estimate) for each node

return { (ŷi,confi) | vi∈VU}

Figure 1: Pseudocode for ICA, ICAC, or ICAMC. Based on prior

work (McDowell et al. 2009), we set n=10 iterations.

committed set Y′. If the meta-classifier’s confidence
predictions more accurately identify those nodes whose
labels are correctly predicted (compared to ICAC’s simple
confidence values), then accuracy should increase.

Generating meta-training data

Learning the meta-classifier requires constructing
appropriate meta-training data, which we represent as a set
of vectors. Figure 2 shows the pseudocode for this task,
whose algorithm employs a holdout graph (a subset of the
training set) with nodes V, edges E, attributes X, and true
labels Y. For each of T trials, step 3 randomly selects lp%
of the nodes to be known; this value is chosen to replicate
the fraction of known labels that are present in the test set.
It then executes ICAC on the graph, given the known nodes
(step 4). This yields the set Z

U, which contains the label
predictions and associated confidence values for each node
in V

U. Using these and the expected class distribution Φ
(from the training set), it then generates a meta-training
vector per node (steps 5-7). This vector includes eight
meta-features (described later) and a Boolean value that
indicates whether prediction ŷi is correct. This training data
is later used to learn the meta-classifier that predicts the
correctness of the ŷi estimates given the values of the meta-
features.
 We set T=10 to conduct ten trials with different known
nodes each time. The goal is to reduce the bias that might
otherwise occur due to the particular selection of YK in step
3. We later compare this with the one-trial approach (T=1).

Generating meta-features from meta-training data

ICAMC needs useful meta-features to predict when the node
classifier has correctly classified a node. The constructed
features are based on two key premises. First, we assume
that the data exhibits relational autocorrelation
(correlation of class labels among interrelated nodes,
Jensen et al., 2004) for use by the node classifier. Thus,
each node’s predicted label will be influenced by the
predictions of its neighboring labels. Second, since ICAMC
(like ICAC) exploits only some of the predicted labels
during each iteration, not all neighbor labels will affect the
prediction for vi. We assume that the accuracy of prediction
ŷi for iteration j is affected only by the neighbors of vi that
were included in the committed set Y′ during that same
iteration. Let Ni refer to the set of such neighbors for vi.
 Based on these two premises and additional intuitions
described below, we designed eight features for this initial
study of ICAMC. The first three features are based on ones
used by Bilgic and Getoor (2008) for a related problem that
is discussed later. Future work should examine these
choices and others in more detail.
 Suppose the CC algorithm predicts ŷi to be the label
for node vi, with confidence confi. Then vi’s features are:

1. Local score: The CC algorithm’s predictions should
differ from those of an attribute-only classifier (e.g., MA
in Figure 1), or there is no point in executing CC.
However, if MA and the node classifier MAR agree on a
prediction, then it is more likely to be correct. This

heuristic is captured by using, for each vi, MA’s
confidence value for the ŷi that was predicted by MAR.
“Known” nodes are assumed to be fully correct (score
of 1), though this could be reduced to account for
possible noise:

K

i

K

iiii
i

Vv

VvxyYP
lf

∈

∉=
=

1

)|ˆ(

2. Relational score: If a node is surrounded by nodes
whose predictions are more likely (e.g., have high lf
scores), then its prediction is also more likely:

3. Global score: Let Prior(c) be the fraction of training
nodes with class label c, and Posterior(c) be the fraction
of test set labels predicted as c by the CC algorithm. If
Posterior(c) is much higher than Prior(c), then many
nodes with predicted label c may be incorrect. Thus, the
global score measures whether class yi is over or under-
represented in the posterior distribution:

2

)ˆ(Posterior)ˆ(Prior1 ii
i

yy
gf

−+
=

4. Node confidence: If the node classifier is confident in
some prediction ŷi (high posterior probability), then this
suggests that ŷi is more likely to be correct:

K
i

K
ii

i
Vv

Vvconf
cf

∈

∉
=

1

If only this feature is used, ICAMC devolves to ICAC.

5. Neighbor confidence: As with the relational score, more
confident neighbor predictions suggest that a node’s
prediction is more likely to be correct:

∑
∈

=
ij Nv

j

i

i cf
N

nf
1

generateMetaVectors(V,E,X,Y,MAR,MA,n,T,lp,Φ) =

// V=nodes, E=edges, X=attribute vectors, Y=node labels

// MAR = node classifier (uses attrs. & relats), MA = classifier

// (attrs. only), n=# ICAC iters., T=# randomized trials to use

// lp=labeled proportion, Φ = expected class distribution

1 MetaTrainVecs ← ∅

2 for j =1 to T do

3 // Randomly select some nodes to be “known”

 YK ← randomSelectSomeNodes(V, Y, lp) // Randomize

 VU ← {vi | ∃yi∈Y-YK} // Nodes used for prediction

4 // Run ICAC to predict labels and compute confidences

 ZU ← ICA_classify(V,E,X,YK,MAR,MA,∅,n,ICAC,Φ)

5 for each vi∈VU do // Calc. and store meta-feature vectors

6 mfi ← calcMetaFeatures(i,V,E,X,Y,YK,ZU,MA,Φ)

7 MetaTrainVecs ← MetaTrainVecs ∪ mfi

8 return MetaTrainVecs // return all vectors of meta-features

Figure 2: Pseudocode to generate training vectors for the meta

classifier used by ICAMC.

∑
∈

=

ij Nv

j

i

i lf
N

rf
1

6. Neighbor agreement: If most of node vi’s neighbors
have the same predicted label, this may indicate that ŷi
is more likely to be correct. Let count1(Ni) and
count2(Ni) indicate the count of the two most frequent
label predictions in Ni. If the former value is large and
the latter is small, then neighbor agreement is high:

())()(
1

21 ii
i

i NcountNcount
N

naf −=

7. Known neighbors: Having many “known” neighbors
increases the chances that a node’s prediction is correct:

K
ii VNknf ∩=

8. Known vicinity: A node’s prediction may also be
influenced by known nodes that are linked to it by one
or more intervening nodes. We use a simple measure
that favors direct known neighbors, then counts (with
reduced weight) any known nodes reached via one
additional node v′:

)('|
2

1
jij

K

ii NNvvVNkvf ∩∈∃+∩=

Each of these eight features may not be useful for every
dataset. However, ICAMC needs only some of the features
to be useful – the meta-classifier (we use logistic
regression) will learn appropriate parameters for each
feature based on their predictive accuracy on the meta-
training data. Also, features that provide no benefit are
discarded by the feature search process described later.

Evaluation

Hypotheses. By default, ICAMC uses feature search and ten
randomized training data trials. This ICAMC attains higher
accuracies than ICAC (Hypothesis #1), ICAMC without such
trials (#2), ICAMC without feature search (#3), and ICAMC
with just the three features used by Bilgic and Getoor (#4).

Data Sets. We used the following data sets (see Table 1):

1. Cora (see Sen et al. 2008): A collection of machine
learning papers categorized into seven classes.

2. CiteSeer (see Sen et al. 2008): A collection of research
papers drawn from the CiteSeer collection.

3. WebKB (see Neville and Jensen 2007): A collection of
web pages from four computer science departments.

4. Synthetic: We generate synthetic data using Sen et al.’s
(2008) graph generator. Similar to their defaults, we use
a degree of homophily of 0.7 and a link density of 0.4.

Table 1: Data sets summary

Characteristics Cora CiteSeer WebKB Syn.

Total nodes 2708 3312 1541 n.a.

Avg. # nodes per test set 400 400 385 250

Avg. links per node 2.7 2.7 6 3.3

Class labels 7 6 6 5

Non-rel. features avail. 1433 3703 100 10

Non-rel. features used 10 10 10 10

Relational features used 2 2 3 1

Folds 5 5 4 25

Feature Representation. Our node representation includes
relational features and non-relational attributes, as
described below.

Non-relational (content) attributes: The real datasets are
all textual. We use a bag-of-words representation for the
textual content of each node, where the feature
corresponding to a word is assigned true if it occurs in the
node and false otherwise.
 Our version of the WebKB dataset has 100 words
available. For Cora and CiteSeer, we used information gain
to select the 100 highest-scoring words, based on
McDowell et al. (2007), which reported that using more
did not improve performance. Our focus is on the case
where relatively few attributes are available (or the
attributes are not very predictive) as may occur in large
real-world networks (c.f., Macskassy and Provost 2007,
Gallagher et al. 2008). Thus, for most of our experiments
we randomly select 10 of the 100 available words to use as
attributes. We also briefly discuss results when using 100
attributes. For the synthetic data, ten binary attributes are
generated using the technique described by McDowell et
al. (2009). This model has a parameter ap (attribute
predictiveness) that ranges from 0.0 to 1.0; it indicates how
strongly predictive the attributes are of the class label. We
evaluate ap using the values {0.2, 0.4, 0.6}.

Relational features: Each relational feature value is a
multiset. For instance, a possible feature value is {3 A, 2 B,
1 missing}, which indicates that a node links to 3 other
nodes whose predicted label is A, 2 nodes whose prediction
is B, and 1 node labeled missing. During inference, each
label in the multiset (excluding missing labels) is
separately used to update the probability that a node has
label c. This is the “independent value” approach that was
introduced by Neville et al. (2003), used by Neville and
Jensen (2007), and shown to be superior to “count” or
“proportion” features by McDowell et al. (2009). See
Neville et al. (2003) for more details.
 For Cora and CiteSeer, we compute a “multiset” feature
using only incoming links, and a separate such feature
using only outgoing links. For WebKB, we also compute
one such feature using “co-citation” links (a co-citation
link exists between nodes i and j if some node k links to
both of them). For the synthetic data, the links are
undirected, so there is a single relational feature.

Classifiers. For the node classifier, we used a naïve Bayes
classifier. McDowell et al. (2009) reported that, using
multiset features, it attained higher accuracies than did
alternatives such as logistic regression. For the meta-
classifier, we used logistic regression, as did Bilgic and
Getoor (2008). Future work should consider other choices.

Test Procedure. We conducted an n-fold cross-validation
study for each tested algorithm. For WebKB, we treated
each of the four schools as a separate fold. For Cora and
CiteSeer, we created five disjoint test sets by using
“similarity-driven snowball sampling” (McDowell et al.
2009). This is similar to the approach of Sen et al. (2008).

For all 3 datasets we tested on one graph, trained on two
others, and used the remaining two (one for WebKB) as a
holdout set for learning the meta-classifier and performing
the meta-feature search.
 For the synthetic data, we performed 25 separate trials.
For each trial we generated three disjoint graphs: one test
set, one training set, and one holdout set.
 We randomly selected lp=10% of each test set to form
V

K (nodes with known labels). This is a “sparsely labeled”
task, which is common in real data (Gallagher et al. 2008).
 To search for which of the eight meta-features to use
with ICAMC, we use the simple, greedy Backwards
Sequential Elimination (BSE) algorithm (Kittler, 1986). It
evaluates accuracy on the holdout set with ICAMC, then
recursively eliminates any meta-feature whose removal
increases accuracy. To increase robustness, accuracy is
averaged over ten executions of ICAMC, each time using a
different set of initial “known” labels (as done for T=10 in
Figure 2). The final set of meta-features is used for testing.

Tested Algorithms. We tested ICA, ICAC, and ICAMC. In
addition, to assess the utility of ICAMC’s design decisions,
we also tested three of its ablated variants:

1. “1 trial instead of 10”: this uses only one randomized
trial to collect meta-training data (i.e., T=1 in Figure 2)
and only one evaluation trial for the meta-feature search.

2. “No meta-feature search”: This skips search and uses all
eight meta-features that were previously described.

3. “Only Bilgic meta-feats”: This uses just features #1, #2,
and #3 – the set used by Bilgic and Getoor (2008).

Performance Measure. We compared all the algorithms
on their average classification error rate on the test sets.

Analysis. We performed independent analyses for each
prediction task and joint analyses by pooling the
observations, either for all the real data sets or for all the
synthetic data conditions shown. Our analysis uses one-
tailed paired t-tests accepted at the 95% confidence level.

Results. Table 2 displays the classification error rates
averaged over all the folds for each algorithm. For each
(data set, algorithm) pair, the best result is shown in bold.

Result 1: ICAMC significantly outperforms ICAC and ICA
when attribute predictiveness is low: Comparing ICAMC
with ICAC, we find that ICAMC reduces classification error
by 2.3-8.0% for the real data, and 1.9-6.9% for the
synthetic data. This improvement is significant in every
case (p < .03 for the real data and p < .045 for the synthetic
data). In addition, the pooled analyses found significant
gains for both the real and synthetic data. Therefore, we
accept Hypothesis #1.
 For the synthetic data, the gains clearly decrease as
attribute predictiveness (ap) increases. This is consistent
with the results of McDowell et al. (2009), who report that
the cautious use of relational information is more important
for CC algorithms when ap and/or the number of attributes
is small. Since ICAMC is even more cautious than ICAC,
ICAMC has larger gains over ICAC when ap is small (the
same relative trend exists between ICAC and the non-

cautious ICA). Nonetheless, ICAMC continues to provide a
small gain even when ap is high − a gain of 0.9% when
ap=0.8 (results not shown).
 For the real data, ICAMC provides gains for all three
datasets, where the largest gain is with WebKB. WebKB
has more complex and numerous linking patterns
(Macskassy and Provost 2007). For this reason, ICAMC’s
careful selection of which neighboring labels to use for
prediction may be especially important with WebKB.
 We repeated these experiments with real data using 2, 5,
or 20 attributes (instead of 10) and found similar results. In
every case pooled analyses found a significant gain for
ICAMC over ICAC (average gains ranging from 3.2- 6.9%),
with the largest gains occurring with WebKB. As with the
synthetic data, these gains diminish when the attributes are
more predictive. For instance, when 100 attributes are used
the gains of ICAMC remained but were small (0.2-1.0%)
and statistically insignificant. These results suggest that
ICAMC is especially helpful when the attributes alone are
not very predictive, and at least does no harm otherwise.

Result 2: ICAMC with randomized trials and meta-feature
search outperforms simpler variants: The bottom of Table
2 shows results with the variants of ICAMC that do not use
multiple randomized trials or do less or no meta-feature
search. ICAMC outperforms the “1 trial instead of 10” and
“Only Bilgic meta-feats” variants, often significantly, and
pooled analyses find that ICAMC outperforms both, for the
real and for the synthetic data. Thus, we accept Hypotheses
#2 and #4. ICAMC also significantly outperforms the variant
that uses all eight meta-features (“No meta-feat. search”)
for the real data, but not for the synthetic data (perhaps
because simpler, undirected linking patterns were used in
the synthetic data). Thus, we reject Hypothesis #3.

Despite the rejection of one hypothesis, ICAMC always
outperformed all three variants (or lagged by at most 0.2%)
and significantly outperformed all three variants on the real
datasets. Some of the variants that simplify ICAMC’s search
process sometimes performed notably worse than even
ICAC. Together, these results suggest that the complete
ICAMC, with randomized trials and feature search, is the
most robust performer.

Table 2: Average % classification error rate

Core Algorithms
“Real” datasets Synthetic data

Cora CS
Web
KB ap=.2 ap=.4 ap=.6

ICA 51.5† 61.0† 60.3† 53.3† 35.9† 22.6†

ICAC 36.2† 37.6† 32.5† 38.8† 27.8† 18.3†

ICAMC 31.3 35.3 24.5 31.9 25.0 16.4

Gain* 4.9 2.3 8.0 6.9 2.8 1.9

Variants of ICAMC

1 trial instead of 10 35.4† 35.8 30.0† 36.4† 27.5† 17.2

No meta-feat. search 35.9† 37.6† 31.5† 33.5 24.9 16.2

Only Bilgic meta-feats 42.1† 47.1† 26.4 37.3† 27.8† 18.2†
†
 indicates significantly worse behavior than ICAMC.

* indicates gain from meta-caution (ICAC – ICAMC)

Discussion

ICAMC increased accuracy compared to ICA and ICAC.
However, why does ICAMC’s meta-classifier more
effectively identify reliable predictions than does ICAC’s
node classifier? First, the meta-classifier’s task is simpler:
choosing between two values (correct or incorrect) vs.
between all possible class labels. Second, the meta-
classifier can use additional information, such as the
number of known labels, which has no obvious utility for
predicting a particular label, but does help estimate the
correctness of the resultant prediction. Finally, using two
different classifiers helps to reduce the bias due to using
the Naïve Bayes node classifier alone.
 Meta-feature search often significantly increased
ICAMC’s accuracy. However, is the same set of features
almost always chosen? On average, the “global score” and
“node confidence” features were selected most often, and
“known neighbor” least often. This varied substantially,
however, with some features selected 90% of the time for
one dataset and never for another. These results, combined
with the results from Table 2, suggest that search is
essential to make ICAMC robust across different data, even
if the default set of meta-features is further refined.
 We are not aware of any other work that uses a meta-
classifier to improve the operation of a CC inference
algorithm, although Bilgic and Getoor (2008) did use a
similar predictor to identify the least likely CC label
predictions (in order to “purchase” the correct labels for
them). In contrast, we seek the most likely predictions (to
favor them for inference). They considered three features
for this different task, which our search algorithm selected
for ICAMC 62%, 67%, and 91% of the time, respectively.
Thus, their features are also useful for our task, although
the results of the previous section show that using only
those features leads to very poor performance for ICAMC.
 Compared to ICAC, ICAMC requires additional
computation: to execute ICAC when collecting meta-
training data, to execute ICAMC for feature selection, and to
train the meta-classifier for each combination of meta-
features that are considered. However, in many real-world
graphs each node links to at most k other nodes, in which
case each of these steps is linear in the number of nodes. In
addition, once the meta-classifier is learned, ICAMC
requires little additional time for inference compared to
ICAC (i.e., it needs only one additional execution of the
meta-classifier per iteration).

Conclusion

We demonstrated that Meta-Cautious ICA (ICAMC)
significantly outperforms ICAC for many tasks. Moreover,
we showed that aspects of ICAMC – in particular, its use of
multiple randomized training data trials and its use of
search for selecting meta-features – were essential to
achieving performance that was robust across a range of
datasets. Since ICAC has already been shown to be a very
effective CC algorithm, these results suggest that ICAMC
should be seriously considered for CC applications,

particularly when attributes alone do not yield high
predictive accuracy.
 Further work is needed to confirm our results using
other datasets, meta-features, and classifiers, and to
consider how meta-caution might be extended to other CC
algorithms. In addition, we intend to consider techniques
for further reducing the time complexity of ICAMC
compared to ICAC.

Acknowledgements

We thank the Naval Research Laboratory for supporting
this work, and Brian Gallagher, Gita Sukthankar, and the
anonymous reviewers for their helpful comments.

References

Bilgic, M. and Getoor, L. (2008). Effective label acquisition for
collective classification. Proceedings of the Fourteenth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 43–51). Las Vegas, NV: ACM.

Chakrabarti, S., Dom, B., and Indyk, P. (1998). Enhanced
hypertext categorization using hyperlinks. Proceedings of the
ACM SIGMOD International Conference on Management of
Data (pp. 307-318). Seattle, WA: ACM.

Gallagher, B., Tong, H., Eliassi-Rad, T., and Faloutsos, C.
(2008). Using ghost edges for classification in sparsely labeled
networks. Proceedings of the Fourteenth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (pp. 256-264). Las Vegas, NV: ACM.

Jensen, D., Neville, J., and Gallagher, B. (2004). Why collective
inference improves relational classification. Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 593-598). Seattle, WA: ACM.

Kittler, J. (1986). Feature selection and extraction. In T.Y. Young
& K. Fu (Eds.), Handbook of Pattern Recognition and Image

Processing. San Diego, CA: Academic Press.
Macskassy, S. and Provost, F. (2007). Classification in network

data: a toolkit and a univariate case study. Journal of Machine
Learning Research, 8, 935-983.

McDowell, L., Gupta, K. M., and Aha, D.W. (2007). Cautious
inference in collective classification. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence (pp.
596-601). Vancouver, Canada: AAAI.

McDowell, L., Gupta, K. M., and Aha, D.W. (2009). Cautious
collective classification. Journal of Machine Learning
Research, 10, 2777-2836.

Neville, J., and Jensen, D. (2000). Iterative classification in
relational data. In L. Getoor and D. Jensen (Eds.) Learning
Statistical Models from Relational Data: Papers from the AAAI
Workshop (Technical Report WS-00-06). Austin, TX: AAAI.

Neville, J. and Jensen, D. (2007). Relational dependency
networks. Journal of Machine Learning Research, 8, 653-692.

Neville, J., Jensen, D., and Gallagher, B. (2003). Simple
estimators for relational bayesian classifiers. Proceedings of
the Third IEEE International Conference on Data Mining (pp.
609-612). Melbourne, FL: IEEE.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., and
Eliassi-Rad, T. (2008). Collective classification in network
data. AI Magazine, 29(3), 93-106.

Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative
probabilistic models for relational data. Proceedings of the
Eighteenth Conference on Uncertainty in Artificial Intelligence
(pp. 485-492). Edmonton, (BC) Canada: Morgan Kaufmann.

