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ABSTRACT
Collective Classification (CC) is the process of simultane-
ously inferring the class labels of a set of inter-linked nodes,
such as the topic of publications in a citation graph. Re-
cently, Markov Logic Networks (MLNs) have attracted sig-
nificant attention because of their ability to combine first
order logic with probabilistic reasoning. A few authors have
used this ability of MLNs in order to perform CC over linked
data, but the relative advantages of MLNs vs. other CC tech-
niques remains unknown. In response, this paper compares
a wide range of MLN learning and inference algorithms to
the best previously studied CC algorithms. We find that
MLN accuracy is highly dependent on the type of learning
and the input rules that are used, which is not unusual given
MLNs’ flexibility. More surprisingly, we find that even the
best MLN performance generally lags that of the best pre-
viously studied CC algorithms. However, MLNs do excel
on the one dataset that exhibited the most complex linking
patterns. Ultimately, we find that MLNs may be worthwhile
for CC tasks involving data with complex relationships, but
that MLN learning for such data remains a challenge.

1. INTRODUCTION
Classification is the task of assigning appropriate labels to

instances (or nodes). For instance, a simple binary classifi-
cation task could involve deciding if a web-page is “spam”
or not. Traditional classification assumes that the nodes to
be classified are independent of each other. Often, however,
there are rich relational (or linked) dependencies between
the nodes (such as hyperlinks or social connections). By
exploiting such links, techniques for collective classification
(CC) [14, 5] such as ICA and Gibbs sampling been shown
to substantially improve accuracy compared to independent
classification [15, 19, 11].

Markov Logic Networks (MLNs) are a recently developed,
powerful formalism for learning and reasoning about data
with complex dependencies [17]. In particular, MLNs pair
first order logic statements with a numerical weight. With
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properly learned weights, inference may then be used to es-
timate desired probabilities (such as the most likely class
label) from the given evidence. Because of their expressive
power and sophisticated learning and inference algorithms,
MLNs have attracted significant attention and been applied
to a wide range of problems [17, 20, 18, 1, 13].

The ability of MLNs to express complex rules about in-
terrelated objects, with learned weights that express the
strength of each rule, makes them a natural candidate for
CC tasks. In addition, the existence of multiple inference
algorithms, with a freely available and tuned implementa-
tion [6], offers the promise of obtaining strong results for
CC with (hopefully) minimal effort. Indeed, a few authors
have already considered applying MLNs to this task [9, 4].
However, as we describe in Section 2.3, this prior work has
not established whether MLNs can actually yield better re-
sults for CC than competing techniques.

This paper makes three primary contributions. First, we
provide the first evaluation of the most prominent MLN
learning and inference techniques when applied to CC for a
wide range of synthetic and real data. In particular, we eval-
uate data with varying amounts of autocorrelation [5], useful
attributes, and known labels, enabling us to draw broader
conclusions. Overall, we find that the popular MCSAT algo-
rithm performs well, but, surprisingly, the simpler MCMC
algorithm often performs better, even in the presence of
the kinds of near-deterministic dependencies that MCSAT’s
modifications to MCMC were specifically designed to ad-
dress. Second, we provide the first systematic comparison,
for CC, of the best MLN techniques vs. non-MLN tech-
niques. Given their flexibility and sophistication, we ex-
pected MLNs to deliver very strong results. We find, how-
ever, that while MLNs can outperform simple CC algorithms
such as ICA, they generally lag behind the performance of
the best CC algorithms such as ICAC and Gibbs sampling.
Nonetheless, we identify one situation in which MLNs out-
perform the other algorithms, and discuss how this may
result from the more complex linking relationships in that
dataset. Finally, we identify and measure the impact of four
algorithmic/modeling factors that significantly affect MLN
behavior. Most of the factors are not surprising by them-
selves, but we show how MLN accuracy can be very sensitive
to some of them, in dataset-specific ways. Such information
should be useful to future researchers seeking to use MLNs
for CC or other tasks.

The next section describes background on CC, MLNs, and
related work. Sections 3 and 4 present our experimental
methods and results. Finally, Section 5 concludes.



2. BACKGROUND
Below we summarize CC, MLNs, and other related work.

2.1 Collective Classification
Consider the task of predicting whether a web page be-

longs to a professor or a student. Conventional approaches
ignore the links and classify each page using attributes de-
rived from its content (e.g., words present in the page). In
contrast, a technique for relational classification explicitly
uses the links to construct additional features for classifica-
tion (e.g., for each page, include as features the words from
hyperlinked pages). Alternatively, even greater (and usu-
ally more reliable) increases can occur when the class labels
of the linked pages are used to derive relevant relational fea-
tures [5]. However, using features based on these labels is
challenging because some or all of these labels are initially
unknown. Thus, their labels must first be predicted (with-
out using relational features) and then re-predicted in some
manner (using all features). This process of jointly inferring
the labels of interrelated nodes is known as collective classifi-
cation (CC). A number of algorithms have been proposed for
CC including relaxation labeling, the Iterative Convergence
Algorithm (ICA), belief propagation, and Gibbs sampling
(see Sen et al. [19] for a summary).

2.2 Markov Logic Networks
A Markov Logic Network (MLN) is a set of first-order

formulas and their associated weights [17]. Each formula
represents some kind of relational rule, but, unlike in pure
first-order logic, a rule may be violated without causing un-
satisfiability of the entire system. Instead, the weight asso-
ciated with each formula specifies how unlikely a world is in
which that formula is violated. Thus, weights determine the
importance of the corresponding formulas during inference.

Weights are typically attached to the rules by supervised
learning. These weights can be learned generatively, based
on pseudo-likelihood [17], or discriminatively, using algo-
rithms like voted perceptron (VP) [20], conjugate gradient
(specifically, PSCG [9]), or diagonal Newton (DN) [9].

Given a set of rules with attached weights, and a set of
evidence literals (such as the attributes of a node and possi-
bly some known labels), approximate MLN inference can be
used to infer either the most likely assignment of truth val-
ues to all unknown literals (MAP inference) or to compute
the conditional probabilities for the values of each unknown
literal. Inference of the former type can be performed with
techniques like MaxWalkSAT (cf, [17]). In this paper, we
include MAP-based results with MaxWalkSat for complete-
ness, but focus on the latter case of computing conditional
probabilities. The first algorithm used for this type of MLN
inference was Gibbs sampling (MCMC) [17], but it has great
difficulty in the presence of near-deterministic dependencies.
Subsequently, Poon and Domingos introduced MCSAT [16],
which alleviates these problems of MCMC. Belief propaga-
tion (BP) can also be used [17, 1].

2.3 Related Work
MLNs have been used or proposed for a wide range of

tasks. For instance, Domingos and Richardson [17] describe
link prediction, link-based clustering, social network model-
ing, and object identification in an MLN framework. Riedel
and Meza-Ruiz use MLNs for natural language processing,
taking advantage of relational aspects of semantics [18].

Some of these applications of MLNs involve reasoning that
can be considered collective in nature, such as collective en-
tity resolution [20, 9], collective semantic role labeling [18],
and collaboration prediction [13]. These publications have
demonstrated that MLNs can reason with a wide variety of
information and handle complex dependencies.

For this paper, the most relevant other work with MLNs
concerns applications where collective reasoning is specifi-
cally applied for predicting the class labels of inter-linked
objects (e.g., collective classification), as opposed to being
used for entity resolution or collective role labeling. We are
aware of only four papers that directly address this “object-
based” CC with MLNs. Table 1 summarizes these investi-
gations; below, we discuss each in turn.

Lowd and Domingos [9] and Huynh and Mooney [4] both
focused on improving discriminative learning for MLNs. In
particular, both papers proposed one or more new tech-
niques for MLN weight learning, then evaluated the new
algorithms on object-based CC and one other inference task
(entity resolution or bibliographic segmentation). For CC,
they evaluated only one dataset (WebKB, which we also
use). Moreover, they both focus on improving learning for
MLNs in particular, and thus they do not compare against
any techniques that are not based on MLNs. Thus, they
demonstrate that MLNs can perform CC, but do not demon-
strate that MLNs are particularly well-suited for this task.

Chechetka et al. [1] utilize MLNs to collectively classify en-
tities identified in images. Relational information is defined
as attributes shared commonly between entities in different
pictures. They evaluated three different image datasets, but
used only a single type of learning and inference (PSCG
and belief propagation, respectively). They did compare
against one non-MLN based technique, the graph-cut-based
approach of Kveton et al. [7]. However, this approach did
not use the same set of features as the MLN, hampering
our ability to directly evaluate the performance advantage
of the MLN itself. In addition, they did not compare against
well-known techniques for CC like ICA or Gibbs sampling.

The only work of which we are aware that directly com-
pares MLNs with a traditional CC algorithm is the draft
manuscript of Dhurandhar and Dobra [2]. In particular,
they compared MLNs against a relational dependency net-
work (RDN) with Gibbs, as we do in this paper. They evalu-
ate performance on some synthetic data and on Cora, IMDb,
and UW-CSE, three well-known real datasets. They found
that the RDN (with Gibbs sampling) and the MLN per-
formed very similarly. Their goal, however, was to evaluate
when CC outperforms non-collective classification, not pri-
marily to evaluate how well MLNs compare to other CC
approaches. Consequently, their results leave many unan-
swered questions regarding the relative performance of MLNs.
First, while the authors claim that the MLN results were
“qualitatively the same” regardless of whether generative
learning or discriminative learning was used, and regardless
of whether MCMC or MaxWalkSAT was used for inference,
results are given only for MCMC with discriminative learn-
ing. Our results, however, suggest that the choice of learning
and inference algorithm can have a significant impact, with
MaxWalkSAT performing especially poorly for CC. Second,
even for the one MLN algorithm for which results are re-
ported, they vary only one aspect of the real datasets (the
“labeled fraction”, see Section 3), leaving only a small num-
ber of accuracy results for the real data from which to gener-



Learning Algs. Inference Algs. Inference Algs. Datasets used Known labels
(for MLNs) (for MLNs) (non-MLNs) for CC during testing

Lowd & spacercece
Domingos [9]

VP, CD, DN, PSCG MCSAT None WebKB None

Huynh & spacercee
Mooney [4]

PSCG,
Max Margin-based

MCSAT,
MaxWalkSAT,
LPRelax

None WebKB None

Dhurandhar & spar
Dobra [2]

PSCG,
{generative}

MCMC,
{MaxWalkSAT}

Gibbs, DRN Cora, IMDb, UW-CSE,
synthetic

0%, 30%, 90%

Chechetka et al. [1] PSCG Belief propagation
(BP)

Max-margin graph
cuts [7]

Three video-image spa
collections

None

This paper VP, DN, PSCG, spa
generative

MCSAT, MCMC, s
BP, MaxWalkSAT

Gibbs, ICA, ICAC ,
wvRN, MRW

Cora, CiteSeer, spacer
WebKB, synthetic

0%, 10%, 50%

Table 1: Summary of related work that has evaluated MLNs for object-based collective classification. The second and

third columns summarize the learning and inference algorithms that were evaluated with MLNs; see Section 2.2 for

references and explanation of acronyms. Algorithms shown in curly braces were considered but not reported on. The

fourth column lists the baseline algorithms (i.e., those not based on MLNs) that were also evaluated, if any. The last

two columns lists the datasets that were used with CC (excluding datasets used for other tasks), and the fraction of

nodes in the data test sets that had given or “known” labels.

alize. Third, their paper considers only one collective infer-
ence algorithm that is not based on MLNs (Gibbs sampling
with RDNs), preventing direct comparison with other im-
portant CC algorithms such as ICA or the relational-only
algorithms wvRN and MRW that we describe later.1 Fi-
nally, their paper does not describe the actual MLN rules
that were used for the experiments, which prevents replica-
tion.2 In our experience, the details of these rules sometimes
lead to dramatic differences in performance. Thus, their pa-
per is a relevant point of comparison regarding the use of
MLNs, but does not establish the relative performance of
MLNs vs. competing techniques for CC.

3. METHODS

3.1 Data Generation
We used the following standard data sets (see Table 2):

• Cora (see Sen et al. [19]): A collection of machine
learning papers categorized into seven classes.

• CiteSeer (see Sen et al. [19]): A collection of research
papers drawn from the CiteSeer collection.

• WebKB (see Neville and Jensen [15]): A collection of
web pages from four computer science departments.

• Synthetic: We generate synthetic data using Sen et
al.’s [19] graph generator. Similar to their defaults, we
use a link density of 0.2. A key parameter is the degree
of homophily (dh), which indicates how likely a node
is to link to another node with the same label. Similar
to Sen et al., we use a default of dh = 0.7 but also
consider higher and lower values.

The real datasets are all textual. For these datasets, each
non-relational feature (attribute) represents the presence or

1They do evaluate one relational-only algorithm, DRN, but
this is not a collective algorithm.
2In a private communication, the first author of [2] stated
that creating MLN files that worked well on the datasets
had been very challenging, but that he no longer had access
to the files and thus could not describe them.

Characteristics Cora CiteSeer WebKB Syn.

Total nodes 2708 3312 1541 n.a.
Avg. # nodes per test set 400 400 385 250
Avg. links per node 2.7 2.7 6 1.7
Class labels 7 6 6 5
Non-rel. features avail. 1433 3703 100 10
Non-rel. features used 10–100 10–100 10–100 10
Number of folds 5 5 4 10

Table 2: Data sets summary.

absence of a word in the corresponding document. Our ver-
sion of WebKB has 100 words available. For Cora and Cite-
Seer, we used information gain to select the 100 highest-
scoring words, based on McDowell et al. [12], which reported
that using more did not improve performance. To simulate
situations where more or less non-relational information is
available, we vary the actual number of attributes used from
10 to 100 (choosing randomly from the available 100).

For the synthetic data, ten binary attributes are generated
using the technique described by McDowell et al. [11]. This
model has a parameter ap (attribute predictiveness) that
ranges from 0.0 to 1.0; it indicates how strongly predictive
the attributes are of the class label. We evaluate ap using
the values 0.2, 0.4, 0.6, and 0.8.

Each dataset has links between the nodes. We evaluate
two variants of WebKB: one using the regular links (WebKB-
direct) and one using only the “co-citation” links (WebKB-
co). A “co-link” exists between two nodes when some other
node links to both of them; prior work has found these links
to be more informative than regular links for WebKB [11].

In many real-world test graphs, there is some fraction of
the nodes whose labels are already known, and these labels
can significantly assist the inference process. We call this
the “labeled proportion” (lp) of the graph, and randomly
select 0%, 10%, or 50% of the nodes in each test set to be
known. We focus particularly on the lp = 10% case, which
is a “sparsely labeled task” that is common in real data [3].

3.2 MLN Comparison
MLN experiments utilized the Alchemy toolkit [6]. We re-

port results using both discriminative learning (using diago-
nal Newton) and generative learning (using pseudo-likelihood),
using default settings. For discriminative learning, the class



label predicate was specified as non-evidence. For generative
learning, no non-evidence predicates were specified.

We performed inference, using the default settings, with
four prominent algorithms available in Alchemy: belief prop-
agation (BP), Markov chain Monte Carlo (MCMC), MC-
SAT, and MaxWalkSAT (“MAP”) (see Section 2.2). Note
that MAP seeks the most likely assignment of labels for
the entire graph, rather than the most likely assignment for
each node. It is thus unsurprising that we find that it it
fares poorly when we measure per-node accuracy in Sec-
tion 4. We include it for completeness and because Huynh
and Mooney [4] find that this type of inference can still yield
good accuracy in some cases. Our inclusion of the other
three algorithms was based on prior work (see Table 1).

For each attribute j we created a MLN rule like
attr_j(o, +v) => class(o, +c)

which relates the value v of the jth attribute for object o and
the class label c of that object. The plus signs cause Alchemy
to learn a different weight for every sensible combination
of the values of v and c. To perform CC, we also need
rules relating the labels of objects that are linked together;
Section 4.2 describes how such rules were used.

3.3 Baseline Algorithms
We compare MLNs against two CC algorithms that were

previously found [11] to have the most reliable performance,
Cautious ICA (ICAC) [14, 12] and Gibbs sampling [5], and
also against a simpler CC algorithm that has been frequently
studied, ICA [19]. These three algorithms use both at-
tributes and relational features. They employ a naive Bayes
classifier with “multiset” relational features as the local clas-
sifier, a combination that was previously found to yield very
strong results [11]. Note that the baseline “Gibbs” is essen-
tially the same as “MCMC” used for the MLNs, except that
MCMC uses the MLN model to produce label predictions
instead of the naive Bayes classifier used by Gibbs.

For perspective on the accuracy results, we also evalu-
ate three simple baselines. AO (attribute-only) is the naive
Bayes classifier described above, but where only the at-
tribute information is used. We also consider two relational-
only classifiers: wvRN [10] and MRW [8]. wvRN is a stan-
dard baseline for evaluating CC that repeatedly computes
label estimates based on the labels of all linked neighbors.
MRW is a recently proposed algorithm that estimates labels
based on repeated random graph walks starting from labeled
nodes. Both algorithms may perform very well if a graph
exhibits high homophily and has a large enough value of lp.

3.4 Test Procedure
We conducted an n-fold cross-validation study for each

tested algorithm, and report the average classification accu-
racy across the test sets. For WebKB, we treated each of
the four schools as a separate fold. For Cora and CiteSeer,
we created five disjoint test sets by using “similarity-driven
snowball sampling” [11]. For all 3 real datasets we tested on
one graph and trained on the union of the others.

For the synthetic data, we performed 10 separate trials.
For each trial we generated three graphs and used two for
training and one for testing.

4. RESULTS
This section describes our experimental results. Configur-

ing the MLNs to obtain results that were competitive with

the non-MLN baselines turned out to be a non-trivial task.
For simplicity, Section 4.1 first describes our primary results
which compare well-configured MLNs against each other and
against the non-MLN baselines. Next, Section 4.2 discusses
the specifics of the MLNs used and the lessons we learned
that were necessary to obtain good accuracy with MLNs.

4.1 Primary Evaluation on MLNs
Table 3 shows accuracy results for the various datasets

for the case where lp = 10% (see Section 3.1). For instance,
Table 3 (part A) shows that MCSAT with discriminative
learning (i.e., MCSAT-d) achieved an accuracy of 76.6% for
Cora when using 50 attributes, and an accuracy of 70.1%
when averaged over trials with 10, 20, 50, and 100 attributes.
Below we highlight some key results from this table. We first
evaluate the relative performance of the MLN algorithms to
each other, and then compare to other algorithms.

Result 1: Discriminatively learned MLNs generally
outperformed generatively learned MLNs. When com-
paring the best discriminative results vs. the best genera-
tive results, discriminative learning almost always was best,
ranging from a gain of about 1% for Citeseer to a gain of
about 14% for WebKB-co. In contrast, Dhurandhar and Do-
bra [2] report that, for the datasets they considered, accura-
cies were “qualitatively the same” for both types of learning.
We find instead that prior work (e.g., [20, 9, 4]) was cor-
rect to focus exclusively on discriminative learning, at least
for CC, since it generally has better performance. In some
cases, however, we found that generative learning was supe-
rior. For instance, for the synthetic data where the degree of
homophily is very high (Table 3 part G), the discriminative
learner appears to have great difficulty learning appropriate
weights. In particular, with discriminative learning, perfor-
mance for every inference algorithm decreases as dh increases
from 0.7 to 0.9 (e.g., from 65.6% to 48.1% for MCSAT-d).
This is the opposite of the expected trend and the trend
demonstrated by the baseline algorithms and most of the
generative MLN results. This exception to the general rule
suggests that more work may be needed to improve discrim-
inative learning in the presence of very strong correlations,
even when an algorithm like MCSAT, which is supposed to
deal well with such correlations, is used for inference.

Result 2: The best MLN performance was almost
always achieved by MCSAT or MCMC. Of the seven
datasets shown in Table 3, MCMC and MCSAT each had
the best average performance of the MLNs in three cases. In
the one remaining case (the previously mentioned synthetic
data where dh = 0.9), BP with generative learning (BP-g)
performs best, closely followed by MCMC-g, but MCSAT-
d and MCSAT-g both perform very poorly (e.g., at best
56.1% for MCSAT vs. 83.3 % for MCMC-g). This poor
behavior of MCSAT is surprising, since MCSAT was specif-
ically designed to modify MCMC so that it better handled
near-deterministic dependencies [16], as represented by the
high homophily here. MCSAT has generally been presumed
to be the superior inference algorithm, and is the default al-
gorithm used by Alchemy. However, Table 1 shows that no
other work has actually compared MCMC and MCSAT for
CC. Our results show that both algorithms should be con-
sidered, and more work is needed to better determine when
each algorithm is likely to be superior to the other.

Result 3: MLNs can perform effective collective clas-
sification, consistently outperforming attribute-only



Baseline Algorithms (non-MLN) MLNs
Attrs. Relat. only Attrs. + Relat. Discriminative learning Generative learning

only (AO) wvRN MRW ICA ICAC Gibbs BP MCSAT MCMC MAP BP MCSAT MCMC MAP
blww blww blww blww blww blww blww blww blww blww blww blww blww blww blww

A.) Cora
10 attrs. 42.7 64.2 66.1 48.5 63.8 60.6 46.8 57.8 52.2 33.5 50.9 57.6 49.9 41.4
20 attrs. 51.4 64.2 66.6 61.0 71.9 72.7 68.2 66.4 69.5 48.3 60.4 62.5 60.3 45.5
50 attrs. 63.4 64.2 66.4 74.7 77.9 78.2 75.4 76.6 75.1 64.6 71.7 69.3 71.8 56.3
100 attrs. 73.5 64.2 66.2 81.0 80.2 80.4 78.6 79.8 78.8 69.9 77.5 73.7 77.3 66.8
Average 57.7 64.2 66.4 66.3 73.5 73.0 67.3 70.1 68.9 54.1 65.1 65.8 64.8 52.5

B.) Citeseer
10 attrs. 34.4 65.0 62.7 39.0 62.4 56.5 57.1 59.5 53.4 40.4 48.1 56.9 49.4 37.5
20 attrs. 44.6 65.0 63.1 50.5 66.1 64.9 62.4 61.7 59.5 49.5 55.1 62.9 56.6 47.8
50 attrs. 60.9 65.0 62.8 68.1 71.8 71.4 68.6 69.8 68.6 60.5 66.2 67.2 66.4 57.2
100 attrs. 70.6 65.0 62.5 74.4 75.1 74.7 73.3 74.2 73.5 69.0 73.3 73.7 73.4 64.1
Average 52.6 65.0 62.8 58.0 68.9 66.9 65.4 66.3 63.7 54.9 60.7 65.2 61.4 51.6

C.) WebKB-direct (direct links only)
10 attrs. 42.9 38.5 48.3 43.1 53.4 38.9 53.6 49.0 55.5 22.5 41.0 39.5 41.5 25.0
20 attrs. 47.1 38.5 48.1 47.4 51.9 53.0 56.7 53.6 57.7 27.0 53.3 42.5 54.7 25.8
50 attrs. 52.1 38.5 48.6 55.2 58.7 52.9 62.9 63.0 63.9 25.9 58.6 45.6 59.8 27.2
100 attrs. 55.3 38.5 48.3 57.9 61.4 57.4 57.3 67.7 68.0 23.8 62.1 44.4 63.5 27.8
Average 49.3 38.5 48.3 50.9 56.4 50.6 57.6 58.3 61.3 24.8 53.7 43.0 54.8 26.4

D.) WebKB-co (co-citation links only)
10 attrs. 42.9 47.0 69.7 40.6 60.3 28.0 40.3 48.4 55.7 53.7 29.8 39.0 29.6 43.8
20 attrs. 47.1 47.0 69.1 56.2 64.9 29.1 41.4 34.5 56.4 54.5 31.3 40.0 38.8 43.3
50 attrs. 52.1 47.0 67.9 60.7 71.5 28.8 56.9 62.5 62.4 61.5 35.9 45.5 54.3 45.9
100 attrs. 55.3 47.0 68.6 52.2 74.6 29.3 42.2 61.3 57.6 38.0 38.3 42.7 55.7 60.5
Average 49.3 47.0 68.8 52.4 67.8 28.8 45.2 51.7 58.0 51.9 33.8 41.8 44.6 48.4

E.) Synthetic (dh = 0.5)
ap = 0.2 36.4 39.1 43.1 38.2 47.2 48.3 45.7 49.6 46.5 37.8 44.4 48.1 45.5 40.1
ap = 0.4 48.6 39.1 43.0 53.1 62.7 62.3 59.2 62.9 59.7 50.7 56.9 58.3 58.7 50.1
ap = 0.6 61.2 39.1 43.2 67.2 71.1 72.0 70.0 71.5 70.7 58.7 69.6 68.5 70.7 58.6
ap = 0.8 72.7 39.1 42.6 78.9 80.5 81.3 80.7 79.7 80.8 65.9 80.1 77.2 80.6 65.1
Average 54.8 39.1 43.0 59.4 65.4 66.0 63.9 65.9 64.4 53.3 62.8 63.0 63.9 53.5

F.) Synthetic (dh = 0.7)
ap = 0.2 35.7 58.4 59.9 43.7 62.9 62.2 44.7 49.6 43.6 37.3 51.4 51.3 51.7 45.7
ap = 0.4 48.7 58.4 59.9 61.1 71.3 76.1 67.8 60.9 67.7 49.2 66.5 63.3 68.1 56.6
ap = 0.6 61.6 58.4 59.5 76.1 82.5 83.4 81.5 73.4 82.6 60.8 78.4 68.0 78.9 65.6
ap = 0.8 72.9 58.4 59.9 85.0 88.1 88.3 87.3 78.4 87.8 71.4 86.4 73.0 86.6 71.2
Average 54.7 58.4 59.8 66.5 76.2 77.5 70.3 65.6 70.4 54.7 70.7 63.9 71.3 59.7

G.) Synthetic (dh = 0.9)
ap = 0.2 37.0 80.5 83.3 48.2 76.3 79.1 41.4 35.2 36.3 37.5 67.7 49.9 65.6 53.4
ap = 0.4 50.0 80.5 84.0 66.4 86.7 88.9 53.2 39.5 44.8 44.0 83.4 51.1 81.5 63.6
ap = 0.6 62.7 80.5 83.9 82.4 91.9 92.9 71.0 47.2 66.4 56.9 91.2 59.6 90.4 70.9
ap = 0.8 73.6 80.5 84.0 91.8 95.1 95.1 93.2 70.4 94.2 76.7 95.5 64.1 95.9 79.0
Average 55.8 80.5 83.8 72.2 87.5 89.0 64.7 48.1 60.4 53.8 84.4 56.1 83.3 66.7

Table 3: Accuracy results with the “labeled fraction” (lp)=10%. “dh” is the degree of homophily in the data. Values

shown in bold are the maximum for that row for either the left side (non-MLNs) or right side (MLNs) of the table.

or relational-only baselines. For instance, Table 3 shows
that the best MLN algorithm always outperformed attribute-
only classification (AO). In addition, the best MLN algo-
rithm generally outperformed the best relational-only algo-
rithm (MRW), provided that a reasonable number of at-
tributes (at least 20) were available. For instance, MRW
achieved an accuracy of only 66.4% on Cora compared to
an average of 76.6% with MCSAT-d. This performance ad-
vantage of the MLNs is precisely what we would hope for,
since the MLNs use sophisticated inference and more in-
formation than either the relational-only or attribute-only
baselines. However, actual results demonstrating that MLNs
could perform effective CC, yielding better accuracies than
such baselines, has not previously been reported (Section 2.3
describes the one limited exception). Moreover, actually
achieving these sensible results for MLNs was non-trivial,
as discussed in Section 4.2.

Result 4: The best MLN results exceeded the accu-
racy of simple non-MLN algorithms, but lagged that
of the best non-MLN algorithms. Figures 1-4 compare
the accuracy of the best MLN algorithms, MCSAT-d and
MCMC-d, against two standard CC algorithms (ICAC and
ICA) and two simpler baselines (MRW and AO). In these
figures (and the remainder of this paper), we focus on four
representative datasets. For instance, Figures 1 and 2 show
results for Cora and for the synthetic data with dh = 0.7.
In these figures, the accuracy of the best MLN algorithm
is almost always less than or equal to that of ICAC (which
has very strong overall performance) but greater than the
accuracy of the simpler, less robust ICA. For instance, with
20 attributes on Cora, MCMC-d had an accuracy of 69.5%,
compared to 71.9% for ICAC and 61.0% for ICA. The trend
also holds for the synthetic data, even with very high ho-
mophily (Table 3 part G), provided that generative train-
ing is used as previously discussed for this case. For both
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Figure 1: Cora (lp = 10%)
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Figure 2: Synthetic data (dh = 0.7, lp = 10%)
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Figure 3: WebKB (direct links, lp = 10%)
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Figure 4: WebKB (co-links, lp = 10%)

kinds of data, the magnitude of these differences generally
decreases as the number of attributes or attribute strength
increases, as would be expected [11].

However, the results with WebKB-direct (Figure 3) pro-
vide one interesting exception to this trend. Here MCMC
beats ICAC by 2-7% and BP and MCSAT also outperform
ICAC on average. These results are likely due to the more
complex linking patterns of this dataset. For instance, nodes
labeled “Professor” tend to link directly to nodes labeled
“Student” rather than to other nodes labeled “Professor”
(which is the pattern that would be created by simpler “ho-
mophilic” linking as present in datasets like Cora and Cite-
seer). However, the co-citation links of WebKB have much
higher homophily (dh = roughly 0.88, according to McDow-
ell et al. [11]). Thus, the results for WebKB-co in Figure 4
show relative MLN performance much more like Cora and
Citeseer than like WebKB-direct, although some of the al-
gorithms have more erratic overall behavior.

Sensitivity of results: Table 4 shows that the four results
discussed above for lp = 10% generally hold for lp = 0% or
lp = 50% as well. In particular, the performance of the
best MLN algorithms remains between that of ICAC and
ICA, and discriminatively-trained MCSAT and MCMC are
generally the best MLN algorithms. As expected, the util-
ity of relational-only algorithms increases with higher lp.
These findings also provide further support for the claim
that MRW tends to outperform wvRN when lp is low, as
first proposed by Lin and Cohen [8].

We also considered whether the MLNs needed more train-
ing data to perform well. Results (not shown) on the syn-

thetic data showed that quadrupling the size of the training
data usually boosted generative accuracy by 0-2%, but ac-
tually harmed discriminative accuracy. Thus, more training
data alone is unlikely to enable MLNs to match the accuracy
of other CC algorithms for this kind of data, and overfitting
may be a problem with the discriminative learning.

Execution time: Our implementations are not all opti-
mized for speed, but we can discuss approximate values. For
example, on Cora with fifty attributes, discriminative MLN
learning took about 10 minutes, while generative learning
took 3 minutes. In contrast, the classifier used by ICAC

and Gibbs can be learned in a single pass over the data,
and thus required about 10 seconds for learning. For in-
ference, the MLNs required 30 seconds to 5 minutes, with
only MCSAT sometimes needing more than 2 minutes, while
the non-MLNs needed about 10 seconds (for ICAC) and 5
minutes (for Gibbs). Thus, MLN time is usually dominated
by learning, which is about one or two orders of magnitude
slower than the learning for the non-MLN algorithms, with
discriminative MLN learning being the slowest.

4.2 Lessons Learned and Ablation Studies
The previous section described how MLNs were able to

perform effective CC, outperforming relational-only algo-
rithms like MRW and simple CC algorithms like ICA. Given
the power of MLNs, we expected a priori for this to be an
easy result to obtain. In practice, it took many hours of ex-
perimentation to obtain MLN results that were competitive
with algorithms like ICA, and the results still lagged that
of algorithms like ICAC . This section describes our lessons



Baseline Algorithms (non-MLN) MLNs
Attrs. Relat. only Attrs. + Relat. Discriminative learning Generative learning

only (AO) wvRN MRW ICA ICAC Gibbs BP MCSAT MCMC MAP BP MCSAT MCMC MAP
blww blww blww blww blww blww blww blww blww blww blww blww blww blww blww

A.) Cora
lp = 0% 57.5 n.a. n.a. 64.1 67.2 67.6 65.4 64.7 65.9 52.2 63.9 61.7 64.2 49.3
lp = 10% 57.7 64.2 66.4 66.3 73.5 73.0 67.3 70.1 68.9 54.1 65.1 65.8 64.8 52.5
lp = 50% 57.6 79.0 76.6 78.5 81.0 81.0 73.7 79.9 77.4 61.8 62.9 78.3 63.5 64.0

B.) WebKB-direct (direct links only)
lp = 0% 49.6 n.a. n.a. 50.3 54.3 46.8 60.4 57.4 62.1 25.7 54.1 43.7 55.6 26.9
lp = 10% 49.3 38.5 48.3 50.9 56.4 50.6 57.6 58.3 61.3 24.8 53.7 43.0 54.8 26.4
lp = 50% 50.5 29.0 31.7 56.7 58.1 56.4 61.6 59.0 62.0 27.3 53.8 44.3 54.2 28.0

C.) WebKB-co (co-citation links only)
lp = 0% 49.6 n.a. n.a. 51.2 42.7 29.6 42.9 46.4 52.5 43.5 35.9 39.0 38.7 31.3
lp = 10% 49.3 47.0 68.8 52.4 67.8 28.8 45.2 51.7 58.0 51.9 33.8 41.8 44.6 48.4
lp = 50% 50.5 72.9 70.3 77.5 81.1 58.9 53.3 70.5 66.9 59.8 38.2 63.5 57.8 68.3

D.) Synthetic (dh = 0.7)
lp = 0% 54.9 n.a. n.a. 62.4 68.3 71.7 69.7 59.7 67.8 51.4 63.9 57.6 65.4 55.4
lp = 10% 54.7 58.4 59.8 66.5 76.2 77.5 70.3 65.6 70.4 54.7 70.7 63.9 71.3 59.7
lp = 50% 54.8 77.1 75.8 80.3 84.2 84.5 71.5 76.1 76.8 63.4 81.7 75.5 82.4 69.9

Table 4: Accuracy results as the labeled proportion (lp) varies, for four representative datasets. Each value is averaged

over trials with 10, 20, 50, and 100 attributes (for real data) and with ap=0.2, 0.4, 0.6, and 0.8 (for synthetic). As with

Table 3, bold values show per-row maximums. Note that relational-only algorithsm need lp > 0% for sensible results.

MCSAT-d inference MCMC-d inference
Cora Syn. Web-dir. Web-co Average Cora Syn. Web-dir. Web-co Average

A.) c,c link rule 62.1 60.9 46.3 41.5 52.7 60.8 67.7 46.1 56.0 57.7
B.) +c,+c link rule 41.3 57.0 49.5 39.0 46.7 36.1 61.4 49.8 53.9 50.3
C.) +c1,+c2 link rule 15.4 25.3 51.3 19.0 27.7 16.9 24.4 56.6 37.8 33.9
D.) Learn w/o mutex; infer w/ mutex 62.1 60.9 51.3 41.5 53.9 41.0 47.2 45.8 56.4 47.6
E.) Learn & infer w/o mutex. 60.1 59.8 53.8 47.6 55.3 60.8 67.7 56.6 56.0 60.3
F.) Learn & infer w/ mutex. 49.8 65.6 51.6 21.0 47.0 35.6 48.5 42.3 41.0 41.8
G.) Learn w/ DN alg. 62.1 60.9 51.3 41.5 53.9 60.8 67.7 56.6 56.0 60.3
H.) Learn w/ PSCG alg. 61.5 59.0 46.7 42.8 52.5 61.3 68.6 53.2 56.3 59.8
I.) Learn w/ VP alg. 39.1 44.0 48.7 46.0 44.4 39.2 46.7 48.2 44.8 44.7

blww blww blww blww blww blww blww blww blww blww blww

Table 5: Results of different learning and inference variants for Cora, synthetic data (with dh = 0.7 and ap = 0.4),

WebKB-direct, and WebKB-co; all with lp = 10%. For the real data, results are averaged over runs with 10 and 20

attributes. Results with Citeseer showed very similar trends to those shown with Cora. Within each vertical group

of three, the emphasized value indicates the default setting that was used for that algorithm/dataset for all other

experiments in this paper; note that unlike the other tables, this bold value is not necessarily a maximal value.

learned and gives more details on how the MLNs were used.
We do this to enable replication, to assist others that wish
to use MLNs, and to demonstrate some of the complexity
that using MLNs entails. Some of these lessons learned were
already known but not clearly stated in the literature, while
others are, to the best our knowledge, original observations.

To demonstrate the performance impact of these lessons
learned, Table 5 compares the performance of different vari-
ations of the MLN rules or MLN algorithms used, for the
two best MLN algorithms on the representative datasets.
Note that in the results reported elsewhere in this paper,
the settings used for the learning procedure and for the
MLN link rules varied based on which dataset and/or al-
gorithm was being used (details are given below). Thus, to
facilitate proper comparison, Table 5 highlights in bold the
accuracy value corresponding to these default settings for
each dataset/algorithm pair. For instance, we used a de-
fault MLN link rule called c,c for Cora but called +c1,+c2

for WebKB-direct; hence, the value in row A is highlighted
for Cora but in row C for WebKB-direct.

Choice of MLN rules: Picking appropriate link-based
MLN rules is essential. Ideally, we would use a rule like

class(o1, +c1) ^ LinkTo(o1,o2) => class(o2, +c2)

to handle an arbitrary link from object o1 to object o2.
Here the plus sign indicates that different weights should
be learned for every sensible combination of the values for
variables c1 and c2 (e.g., 25 different weights if there are five
possible class labels). This +c1,+c2 rule potentially captures
rich linking patterns, such as those previously described for
WebKB-direct. Alternatively, the simpler rule

class(o1, +c) ^ LinkTo(o1,o2) => class(o2, +c)

indicates that only 5 weights should be learned, one for each
class label. This +c,+c rule only captures homophilic de-
pendencies, where objects with the same label link to each
other, but allows for the strength of the homophily to vary
between different labels. We found, however, that both of
these rules were often too challenging for any of the MLN
algorithms to effectively learn weights for, leading to poor
accuracy. Instead, we found that that the rule that per-
formed best for most datasets was the simplest rule

class(o1, c) ^ LinkTo(o1,o2) => class(o2, c)

which learns only one weight that is shared across all labels.
Based on our initial observations of these problems, we

chose to use the simplest c,c rule for all datasets except
WebKB-direct. For the latter dataset, we used the most
complex rule, +c1,+c2, because this dataset is known to



have more complex linking pattern, and prior work had used
this same rule for WebKB [9, 4]. Rows A, B, and C of
Table 5 demonstrate that, in most cases, these choices ap-
pear to have been about optimal. In general, using more
complex rules leads to decreased accuracy (e.g., decreasing
from 62.1% to 41.3% to 15.4% for Cora with MCSAT). For
WebKB-direct, however, the most complex rule leads to the
best performance. This is somewhat sensible, due to the
link patterns discussed above, but still requires future work
to determine why learning was successful for this complex
rule for WebKB-direct but not for the other datasets.

Mutual exclusion: Many learning algorithms automati-
cally enforce a mutual exclusion principle, where each ob-
ject has only one true, correct label. In Alchemy, this is not
automatically true, but the following syntax

class(o, c!)

can be used as a shorthand to indicate that, for every ob-
ject o, class(o, c) should be true for exactly one value
of the class label c. This syntax is used both to concisely
represent the mutual exclusion constraint (henceforth, the
“mutex”) and internally to avoid degenerate inference prob-
lems that would otherwise arise from such hard constraints
(particularly for algorithms based on MCMC). However, we
found that using the mutex usually yielded poor accuracies,
as shown by row F of Table 5. For generative learning, the
poor accuracies were due to the failure of the numerical opti-
mizer L-BFGS-B on most datasets. We found that removing
the mutex improved the accuracies dramatically for genera-
tive learning, and noticeably for discriminative learning (see
row E).3 (The synthetic data shown here was an exception;
it performed better with the mutex included, but this was
not consistent across the other synthetic variants shown in
Table 3.) Since the problem seemed to involve learning, we
also considered a variant that learned without the mutex
but then added the mutex for inference (see row D). In pre-
liminary experiments, this variant seemed to perform best
for every algorithm except MCMC. Thus, our default for all
other experiments in this paper was to learn without the mu-
tex, then perform inference without the mutex for MCMC
(like row E) but with the mutex for the other algorithms (like
row D). For MCSAT, the results in Table 5 actually show
slightly better average accuracy using the technique of row
E for some real datasets, suggesting that our initial choice
may have been slightly sub-optimal, at least for MCSAT.

Choice of learning algorithm: We considered three promi-
nent discriminative learning algorithms: voted perceptron
(VP), preconditioned scaled conjugate gradient (PSCG), and
diagonal Newton (DN). VP was the first discriminative al-
gorithm for MLNs [20], while PSCG and DN were proposed
later by Lowd and Domingos [9]. Because Lowd and Domin-
gos found PSCG to perform best, it has been the primary
algorithm used by later work and is the default learning
algorithm used by Alchemy. In preliminary experiments,
however, we found that DN performed slightly better than
PSCG, and so we used DN as the default discriminative
learning algorithm. Table 5 shows that DN (row G) did
perform slightly better on average than PSCG (row H), and
substantially better than VP (row I).

3The problems with learning while using the mutex may be
a bug in Alchemy (Hoifung Poon, personal communication).
In any case, it illustrates both the promise of MLNs to ex-
press complex relationships and the challenge of obtaining
good results in the context of this complexity.

Unit clauses: We found that learning good MLNs was also
affected by the inclusion of appropriate rules such as

class(o,+c)

attr_1(o,+v)

which are known as “unit clauses.” The weights learned for
these rules capture general prior information, such as the
a priori probability that, for an arbitrary object o, class

will have value Student or attr_1 will have the value true.
Such unit clauses have obvious corollaries in other proba-
bilistic formalisms, and are mentioned in some prior work
with MLNs [17, 16, 4]. Indeed, the Alchemy tutorial4 (Sec-
tion 5.1) states that they are added automatically during
learning. However, we found that the unit clauses that
were automatically added by Alchemy were not equivalent
to those described above. In addition, adding these unit
clauses manually increased accuracy by 0-12% for genera-
tive learning and had smaller, mixed effects for discrimina-
tive learning. We included these unit clauses by default.

4.3 Limitations
Except for WebKB-direct, we studied datasets that mostly

exhibit fairly simple patterns of homophily. This is similar
to prior studies of CC, but may not be the most favorable
setting for MLNs. Future work should perform similar com-
parisons on a wider range of data with complex relationships.

As with other work on CC [4, 1, 2], we did not attempt
to use cross-validation to select an appropriate learning rate
(which affects step size) for the discriminative algorithms, as
done by Lowd and Domingos [9]; conceivably this or related
tuning could further improve performance. We note, how-
ever, that the current version of Alchemy ignores manually-
specified learning rates, and instead has been carefully tuned
to independently select a step size.

In addition, we did not attempt to encode any additional
domain knowledge in the MLNs beyond the obvious rules for
text classification and collective classification; adding such
domain knowledge via automated MLN structure learning
or manually could possibly improve accuracy, especially for
more complex domains. We also did not attempt to manu-
ally adjust the learned MLN weights or to provide human-
specified starting weights; anecdotally, such techniques can
sometimes improve performance and may be appropriate if
a particular classification task is important and will be re-
peated frequently on different test sets.

5. CONCLUSION
MLNs are a powerful formalism that have been success-

fully used for many tasks, and can express the probabilistic
rules needed for many more. In this paper, we focused on
one particular application, object-based collective classifica-
tion, where MLNs were expected to do well. Indeed, a few
previously published papers had shown that MLNs could
perform such CC and obtain reasonable-looking results, but
they had not been adequately compared with existing state-
of-the-art CC techniques. We thus evaluated MLNs on a
range of real and synthetic data, using the most prominent
learning and inference algorithms from prior work.

Overall, our results suggest that the additional complex-
ity (and execution time) of MLNs may not be worthwhile
for CC when the data exhibits relatively simple patterns of

4http://alchemy.cs.washington.edu/tutorial/



homophily (which is a common real-world phenomena). In-
deed, the MLN-based algorithms generally lagged the accu-
racy of previously studied CC techniques such as ICAC and
Gibbs, though they outperformed the simpler ICA. These
results imply that, in terms of accuracy, the MLNs tend to
behave in-between the “cautious algorithms” described by
McDowell et al. [11] (represented by ICAC and Gibbs) and
the “non-cautious algorithms” (represented by ICA), at least
for the experimental conditions we considered here. This is
somewhat surprising, since the MLN algorithms perform in-
ference as sophisticated as any of the cautious algorithms
described by McDowell et al., and suggests that the prob-
lem may lie more with learning than with inference.

On the other hand, for the one dataset with the most com-
plex linking patterns (WebKB-direct), the MLN algorithms
performed very well: both MCMC and MCSAT with dis-
criminative learning outperformed all baseline algorithms,
regardless of the fraction of known labels in the test set. This
performance required that the MLNs use the most complex
linking rule (+c1,+c2), which performed very poorly for all
of the other datasets. Perhaps MLNs are most useful when
the data is most complex? Unfortunately, further results
(not shown) show that the difficulties we described in Sec-
tion 4.2 with getting MLNs to perform well can arise even
with WebKB. In particular, starting from a baseline with
direct links, we tried learning models that included rules
for the direct links and rules for the co-citation links. The
non-MLN algorithms used the extra information to improve
(e.g., from 52.7% to 69.5% for ICAC), but the best MLN
algorithm (MCMC) actually lost accuracy (from 56.6% to
45.0%). Thus, given data with complex links, MLNs may
sometimes outperform other techniques, but at other times
may struggle with learning based on a complex rule set.

All of these observations suggest that MLN learning re-
mains a challenging problem, at least for CC and likely for
other domains as well. Future work should further consider
the impact of training set size on MLN learning, explore the
effects of MLN structure learning, and evaluate other recent
weight learning algorithms (e.g., [4]) for MLNs.
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