
SI485i : NLP

Set 3

Language Models

Fall 2012 : Chambers

Language Modeling

• Which sentence is most likely (most probable)?

I saw this dog running across the street.

Saw dog this I running across street the.

Why? You have a language model in your head.

P(“I saw this”) >> P(“saw dog this”)

Language Modeling

• Compute P(w1,w2,w3,w4,w5…wn)

• the probability of a sequence

• Compute P(w5 | w1,w2,w3,w4,w5)

• the probability of a word given some previous words

• The model that computes P(W) is the language model.

• A better term for this would be “The Grammar”

• But “Language model” or LM is standard

LMs: “fill in the blank”

• Think of this as a “fill in the blank” problem.

• P(wn | w1, w2, …, wn-1)

“He picked up the bat and hit the _____”

Ball? Poetry?

P(ball | he, picked, up, the, bat, and, hit, the) = ???

P(poetry | he, picked, up, the, bat, and, hit, the) = ???

How do we count words?

“They picnicked by the pool then lay back on the grass and looked

at the stars”

• 16 tokens

• 14 types

• The Brown Corpus (1992): a big corpus of English text

• 583 million wordform tokens

• 293,181 wordform types

• N = number of tokens

• V = vocabulary = number of types

• General wisdom: V > O(sqrt(N))

Computing P(W)

• How to compute this joint probability:

• P(“the”,”other”,”day”,”I”,”was”,”walking”,”along”,”and”,”saw”,”a

”,”lizard”)

• Rely on the Chain Rule of Probability

The Chain Rule of Probability

• Recall the definition of conditional probabilities

• Rewriting:

• More generally

• P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• P(x1,x2,x3,…xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

)(

),(
)|(

BP

BAP
BAP 

)()|(),(BPBAPBAP 

The Chain Rule Applied to joint

probability of words in sentence

• P(“the big red dog was”) = ???

P(the)*P(big|the)*P(red|the big)*

P(dog|the big red)*P(was|the big red dog) = ???

Very easy estimate:

P(the | its water is so transparent that) =

 C(its water is so transparent that the) /

 C(its water is so transparent that)

• How to estimate?

• P(the | its water is so transparent that)

Unfortunately

• There are a lot of possible sentences

• We’ll never be able to get enough data to compute the

statistics for those long prefixes

P(lizard|the,other,day,I,was,walking,along,and,saw,a)

Markov Assumption

• Make a simplifying assumption

• P(lizard|the,other,day,I,was,walking,along,and,saw,a) =

P(lizard|a)

• Or maybe

• P(lizard|the,other,day,I,was,walking,along,and,saw,a) =

P(lizard|saw,a)

So for each component in the product replace with
the approximation (assuming a prefix of N)

 Bigram version



P(wn |w1
n1)  P(wn |wnN1

n1)

Markov Assumption



P(wn |w1
n1)  P(wn |wn1)

N-gram Terminology

• Unigrams: single words

• Bigrams: pairs of words

• Trigrams: three word phrases

• 4-grams, 5-grams, 6-grams, etc.

“I saw a lizard yesterday”

Unigrams

I

saw

a

lizard

yesterday

</s>

Bigrams

<s> I

I saw

saw a

a lizard

lizard yesterday

yesterday </s>

Trigrams

<s> <s> I

<s> I saw

I saw a

saw a lizard

a lizard yesterday

lizard yesterday </s>

Estimating bigram probabilities

• The Maximum Likelihood Estimate



P(wi |wi1) 
count(wi1,wi)

count(wi1)

Bigram language model: what counts do I

have to keep track of??

An example

• <s> I am Sam </s>

• <s> Sam I am </s>

• <s> I do not like green eggs and ham </s>

• This is the Maximum Likelihood Estimate, because it is the one
which maximizes P(Training set | Model)

Maximum Likelihood Estimates

• The MLE of a parameter in a model M from a training set T

• …is the estimate that maximizes the likelihood of the training set T

given the model M

• Suppose the word “Chinese” occurs 400 times in a corpus

• What is the probability that a random word from another text will

be “Chinese”?

• MLE estimate is 400/1000000 = .004

• This may be a bad estimate for some other corpus

• But it is the estimate that makes it most likely that “Chinese” will

occur 400 times in a million word corpus.

Example: Berkeley Restaurant Project

• can you tell me about any good cantonese

restaurants close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are

available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day

Raw bigram counts

• Out of 9222 sentences

Raw bigram probabilities

• Normalize by unigram counts:

• Result:

Bigram estimates of sentence probabilities

• P(<s> I want english food </s>) =

p(I | <s>) * p(want | I) * p(english | want) *

p(food | english) * p(</s> | food)

= .24 x .33 x .0011 x 0.5 x 0.68

=.000031

Unknown words

• Closed Vocabulary Task
• We know all the words in advanced

• Vocabulary V is fixed

• Open Vocabulary Task
• You typically don’t know the vocabulary

• Out Of Vocabulary = OOV words

Unknown words: Fixed lexicon solution

• Create a fixed lexicon L of size V

• Create an unknown word token <UNK>

• Training
• At text normalization phase, any training word not in L

changed to <UNK>

• Train its probabilities like a normal word

• At decoding time
• Use <UNK> probabilities for any word not in training

Unknown words: A Simplistic Approach

• Count all tokens in your training set.

• Create an “unknown” token <UNK>

• Assign probability P(<UNK>) = 1 / (N+1)

• All other tokens receive P(word) = C(word) / (N+1)

• During testing, any new word not in the vocabulary
receives P(<UNK>).

Evaluate

• I counted a bunch of words. But is my language

model any good?

1. Auto-generate sentences

2. Perplexity

3. Word-Error Rate

The Shannon Visualization Method

• Generate random sentences:

• Choose a random bigram “<s> w” according to its probability

• Now choose a random bigram “w x” according to its probability

• And so on until we randomly choose “</s>”

• Then string the words together

• <s> I

 I want

 want to

 to eat

 eat Chinese

 Chinese food

 food </s>

Evaluation

• We learned probabilities from a training set.

• Look at the model’s performance on some new data
• This is a test set. A dataset different than our training set

• Then we need an evaluation metric to tell us how well
our model is doing on the test set.

• One such metric is perplexity (to be introduced
below)

Perplexity

• Perplexity is the probability of the test set

(assigned by the language model),

normalized by the number of words:

• Chain rule:

• For bigrams:

Minimizing perplexity is the same as maximizing probability
The best language model is one that best predicts an
unseen test set

Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

• Begin the lab! Make bigram and trigram models!

