S1485i1 : NLP

Set 3
Language Models

Fall 2012 : Chambers
D

Language Modeling

« Which sentence is most likely (most probable)?

| saw this dog running across the street.
Saw dog this | running across street the.

Why? You have a language model in your head.

P(“l saw this”) >> P(“saw dog this”)

Language Modeling

Compute P(w1,w2,w3,w4,w5...wn)
* the probability of a sequence
Compute P(w5 | wl,w2,w3,w4,w5)
« the probability of a word given some previous words

The model that computes P(W) is the language model.
A better term for this would be “The Grammar”
But “Language model” or LM is standard

LMs: “fill in the blank”

« Think of this as a *fill in the blank™ problem.
« P(wn|w1l,w2,...,wn-1)

7

“He picked up the bat and hit the

Ball? Poetry?

P(ball | he, picked, up, the, bat, and, hit, the) = 2??
P(poetry | he, picked, up, the, bat, and, hit, the) = 2??

How do we count words?

“They picnicked by the pool then lay back on the grass and looked
at the stars”

« 16 tokens
« 14 types

« The Brown Corpus (1992): a big corpus of English text
« 583 million wordform tokens
« 293,181 wordform types

* N = number of tokens
« V =vocabulary = number of types
« General wisdom: V > O(sqrt(N))

Computing P(W)

« How to compute this joint probability:

® P(“the”’”Other”,”day”,”I”,”Was”’”Walking”,”along”,”and”,”SaW”,”a
"lizard”)

* Rely on the Chain Rule of Probability

The Chain Rule of Probability

» Recall the definition of conditional probabilities

+ Rewriting: P(A[B) = PF(,'?I’B?)

P(A,B)=P(A|B)P(B)

* More generally
- P(A,B,C,D) = P(A)P(BIA)P(C|A,B)P(DIA,B,C)
o P(X{,X5,X3,...X,) = P(X)P(X5|X)P(X5]X1,X5). - . P(X,[X1- - -X1)

The Chain Rule Applied to joint
probability of words In sentence

P(w]) = P(Wl)P(WZ‘W])P(W3‘W%)...P(WH‘WT_I)

1
= [TPOwelwi™)
k=1

- P("the big red dog was”) = 7?7

P(the)*P(big|the)*P(red|the big)*
P(dog|the big red)*P(was|the big red dog) = ???

Very easy estimate:

- How to estimate?
- P(the | its water is so transparent that)

P(the | its water Is so transparent that) =
C(its water is so transparent that the) /
C(its water is so transparent that)

Unfortunately

« There are a lot of possible sentences

- WEe'll never be able to get enough data to compute the
statistics for those long prefixes

P(lizard|the,other,day,l,was,walking,along,and,saw,a)

Markov Assumption

» Make a simplifying assumption
+ P(lizard|the,other,day,|,was,walking,along,and,saw,a) =
P(lizard|a)

« Or maybe

. P(lizard|the,other,day,l,was,walking,along,and,saw,a) =
P(lizard|saw,a)

Markov Assumption

So for each component in the product replace with
the approximation (assuming a prefix of N)

P(wn |w) P(wr ‘W N+

Bigram version

P(w, [w'™) = P(w, |w,)

N-gram Terminology

Unigrams: single words
Bigrams: pairs of words
Trigrams: three word phrases
4-grams, 5-grams, 6-grams, etc.

Unigrams
I
saw
a
lizard

yesterday
</[s>

“| saw a lizard yesterday”

Bigrams Trigrams
<s> | <S> <S> |
| saw <s> | saw
saw a | saw a
a lizard saw a lizard
lizard yesterday a lizard yesterday

yesterday </s> lizard yesterday </s>

Estimating bigram probabilities

« The Maximum Likelihood Estimate

—1sW;)

count(w
P(Wi ‘Wi—l) =

count(w,_,)

Bigram language model: what counts do |
have to keep track of??

An example

 <s>|am Sam </s>
 <s>Sam | am </s>
« <s>|do not like green eggs and ham </s>

P(1|<s>)=%=.66 P(Sam|<s>)=7=.33 Plam|I)=3=.33
P(</s>|Sam)=%=0.5 P(<s>|Sam)=5=0.5 P(Sam|am)=3=.5
P(do|I)=%=23
n—1
C(Wy_Ny1Wn)
n—1
C(WH—N—I—I)
« This is the Maximum Likelihood Estimate, because it is the one
which maximizes P(Training set | Model)

Maximum Likelihood Estimates

The MLE of a parameter in a model M from a training set T

 ...is the estimate that maximizes the likelihood of the training set T
given the model M

e Suppose the word “Chinese” occurs 400 times in a corpus

- What is the probability that a random word from another text will
be “Chinese™?
* MLE estimate is 400/1000000 = .004
« This may be a bad estimate for some other corpus

« But itis the estimate that makes it most likely that “Chinese” will
occur 400 times in a million word corpus.

Example: Berkeley Restaurant Project

« can you tell me about any good cantonese
restaurants close by

* mid priced thai food is what i'm looking for
* tell me about chez panisse

e can you give me a listing of the kinds of food that are
available

* i'm looking for a good place to eat breakfast
« when is caffe venezia open during the day

Raw bigram counts

 Qut of 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

» Normalize by unigram counts:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
* Result:
1 want | to eat chinese | food lunch | spend

1 0.002 03310 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 | 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 (0 0.021 0.0027 [0.056 | 0O
chinese || 0.0063 | O 0 0 0 0.52 0.0063 | 0
food 0.014 0 0014 (O 0.00092 | 0.0037 | 0O 0
lunch 0.0059 |0 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 |0 0 0 0 0

Bigram estimates of sentence probabillities

« P(<s> | want english food </s>) =

p(l'| <s>) * p(want | I) * p(english | want) *
p(food | english) * p(</s> | food)

= .24 x .33 x.0011 x0.5x0.68

=.000031

Unknown words

» Closed Vocabulary Task
« We know all the words in advanced
« Vocabulary V is fixed

« Open Vocabulary Task
* You typically don’t know the vocabulary
« Out Of Vocabulary = OOV words

Unknown words: Fixed lexicon solution

Create a fixed lexicon L of size V
Create an unknown word token <UNK>

Training
At text normalization phase, any training word not in L
changed to <UNK>

- Train its probabilities like a normal word

At decoding time
« Use <UNK> probabilities for any word not in training

Unknown words: A Simplistic Approach

Count all tokens in your training set.
» Create an “unknown” token <UNK>

 Assign probability P(UNK>) =1/ (N+1)
 All other tokens receive P(word) = C(word) / (N+1)

 During testing, any new word not in the vocabulary
receives P(UNK>).

Evaluate

| counted a bunch of words. But is my language
model any good?

1. Auto-generate sentences

2. Perplexity
3. Word-Error Rate

The Shannon Visualization Method

- Generate random sentences:
« Choose a random bigram “<s> w” according to its probability
* Now choose a random bigram “w x” according to its probability

« And so on until we randomly choose “</s>"

- Then string the words together
e <s>1

I want

want to

to eat
eat Chinese
Chinese food
food </s>

Unigram

e To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have

e Every enter now severally so, let

e Hill he late speaks; or! a more to leg less first you enter

e Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

Bigram

e What means, sir. I confess she? then all sorts, he 1s trim, captain.

eWhy dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry.
Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

eEnter Menenius, if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, if renown made it empty.

e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of parting, as they
say, 'tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

e Will you not tell me who I am?

e It cannot be but so.

e Indeed the short and the long. Marry, 'tis a noble Lepidus.

Evaluation

« We learned probabilities from a training set.

» Look at the model’'s performance on some new data
« This is a test set. A dataset different than our training set

« Then we need an evaluation metric to tell us how well
our model is doing on the test set.

« One such metricis perplexity (to be introduced
below)

Perplexity

Perplexity is the probability of the test set

(assigned by the language model), PP(W) = P(wiwa...wy)™ N
normalized by the number of words: 1

. N

B \/P(Wle o WN
Chain rule: PP(W) — 7 1

\ Py P(wilwi...wi_1)
For bigrams: ol 1
' PP(W) = ¥
() \ ;I‘__‘II:P(WI|WI1)

Minimizing perplexity is the same as maximizing probability

= The best language model is one that best predicts an
unseen test set

Lower perplexity = better model

- Training 38 million words, test 1.5 million words, WSJ

N-gram Order || Unigram | Bigram | Trigram
Perplexity 962 170 109

« Begin the lab! Make bigram and trigram models!

