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Language Modeling 

• Which sentence is most likely (most probable)? 

 

I saw this dog running across the street. 

Saw dog this I running across street the. 

 

Why? You have a language model in your head. 

 

P( “I saw this” ) >> P(“saw dog this”) 



Language Modeling 

• Compute P(w1,w2,w3,w4,w5…wn) 

• the probability of a sequence 

• Compute P(w5 | w1,w2,w3,w4,w5) 

• the probability of a word given some previous words 

 

• The model that computes P(W) is the language model. 

• A better term for this would be “The Grammar” 

• But “Language model” or LM is standard 



LMs: “fill in the blank” 

• Think of this as a “fill in the blank” problem. 

• P( wn | w1, w2, …, wn-1 ) 

 

“He picked up the bat and hit the _____” 

Ball? Poetry? 

 

P( ball | he, picked, up, the, bat, and, hit, the ) = ??? 

P( poetry | he, picked, up, the, bat, and, hit, the ) = ??? 

 



How do we count words? 

“They picnicked by the pool then lay back on the grass and looked 

at the stars” 

• 16 tokens 

• 14 types 

 

• The Brown Corpus (1992): a big corpus of English text 

• 583 million wordform tokens 

• 293,181 wordform types 

 

• N = number of tokens 

• V = vocabulary = number of types 

• General wisdom: V > O(sqrt(N)) 



Computing P(W) 

• How to compute this joint probability: 

• P(“the”,”other”,”day”,”I”,”was”,”walking”,”along”,”and”,”saw”,”a

”,”lizard”) 

 

• Rely on the Chain Rule of Probability 



The Chain Rule of Probability 

• Recall the definition of conditional probabilities 

 

• Rewriting: 

 

 

 

• More generally 

• P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C) 

• P(x1,x2,x3,…xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1) 
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The Chain Rule Applied to joint 

probability of words in sentence 

 

 

 

 

• P(“the big red dog was”) = ??? 

P(the)*P(big|the)*P(red|the big)* 

P(dog|the big red)*P(was|the big red dog) = ??? 



Very easy estimate: 

 

P(the | its water is so transparent that) = 

 C(its water is so transparent that the) /  

 C(its water is so transparent that) 

 

• How to estimate? 

• P(the | its water is so transparent that) 



Unfortunately 

• There are a lot of possible sentences 

 

• We’ll never be able to get enough data to compute the 

statistics for those long prefixes 

 

P(lizard|the,other,day,I,was,walking,along,and,saw,a) 

 



Markov Assumption 

• Make a simplifying assumption 

• P(lizard|the,other,day,I,was,walking,along,and,saw,a) = 

P(lizard|a) 

 

• Or maybe 

• P(lizard|the,other,day,I,was,walking,along,and,saw,a) = 

P(lizard|saw,a) 

 

 



So for each component in the product replace with 
the approximation (assuming a prefix of N) 

 

 

 

 Bigram version 

 



P(wn |w1
n1)  P(wn |wnN1

n1 )

Markov Assumption 



P(wn |w1
n1)  P(wn |wn1)



N-gram Terminology 

• Unigrams: single words 

• Bigrams: pairs of words 

• Trigrams: three word phrases 

• 4-grams, 5-grams, 6-grams, etc. 

“I saw a lizard yesterday” 

Unigrams 

I 

saw 

a 

lizard 

yesterday 

</s> 

Bigrams 

<s> I 

I saw 

saw a 

a lizard 

lizard yesterday 

yesterday </s> 

Trigrams 

<s> <s> I 

<s> I saw 

I saw a 

saw a lizard 

a lizard yesterday 

lizard yesterday </s> 



Estimating bigram probabilities 

• The Maximum Likelihood Estimate 



P(wi |wi1) 
count(wi1,wi)

count(wi1)

Bigram language model: what counts do I 

have to keep track of?? 



An example 

• <s> I am Sam </s> 

• <s> Sam I am </s> 

• <s> I do not like green eggs and ham </s> 

 

 

 

 

 

 

 

 

• This is the Maximum Likelihood Estimate, because it is the one 
which maximizes P(Training set | Model) 



Maximum Likelihood Estimates 

• The MLE of a parameter in a model M from a training set T 

• …is the estimate that maximizes the likelihood of the training set T 

given the model M 

 

• Suppose the word “Chinese” occurs 400 times in a corpus 

• What is the probability that a random word from another text will 

be “Chinese”? 

• MLE estimate is 400/1000000 = .004 

• This may be a bad estimate for some other corpus 

• But it is the estimate that makes it most likely that “Chinese” will 

occur 400 times in a million word corpus. 



Example: Berkeley Restaurant Project 

• can you tell me about any good cantonese 

restaurants close by 

• mid priced thai food is what i’m looking for 

• tell me about chez panisse 

• can you give me a listing of the kinds of food that are 

available 

• i’m looking for a good place to eat breakfast 

• when is caffe venezia open during the day 

 



Raw bigram counts 

• Out of 9222 sentences 



Raw bigram probabilities 

• Normalize by unigram counts: 

 

• Result: 



Bigram estimates of sentence probabilities 

• P(<s> I want english food </s>) = 

   

p(I | <s>)  * p(want | I) * p(english | want)  *  

p(food | english) * p(</s> | food) 

   

= .24 x .33 x .0011 x 0.5 x 0.68 

   

=.000031 



Unknown words 

• Closed Vocabulary Task 
• We know all the words in advanced 

• Vocabulary V is fixed 

 

• Open Vocabulary Task 
• You typically don’t know the vocabulary 

• Out Of Vocabulary = OOV words 



Unknown words: Fixed lexicon solution 

• Create a fixed lexicon L of size V 

• Create an unknown word token <UNK> 

 

• Training  
• At text normalization phase, any training word not in L 

changed to  <UNK> 

• Train its probabilities like a normal word 

• At decoding time 
• Use <UNK> probabilities for any word not in training 



Unknown words: A Simplistic Approach 

• Count all tokens in your training set.  

• Create an “unknown” token <UNK> 

 

• Assign probability P(<UNK>) = 1 / (N+1) 

• All other tokens receive P(word) = C(word) / (N+1) 

 

• During testing, any new word not in the vocabulary 
receives P(<UNK>). 

 



Evaluate 

• I counted a bunch of words. But is my language 

model any good? 

 

1. Auto-generate sentences 

2. Perplexity 

3. Word-Error Rate 



The Shannon Visualization Method 

• Generate random sentences: 

• Choose a random bigram “<s> w” according to its probability 

• Now choose a random bigram “w x” according to its probability 

• And so on until we randomly choose “</s>” 

• Then string the words together 

• <s> I 

           I want 

       want to 

              to eat 

               eat Chinese 

         Chinese food 

                     food  </s> 

 



 



Evaluation 

• We learned probabilities from a training set. 

• Look at the model’s performance on some new data 
• This is a test set. A dataset different than our training set 

 

• Then we need an evaluation metric to tell us how well 
our model is doing on the test set. 

• One such metric is  perplexity (to be introduced 
below) 



Perplexity 

• Perplexity is the probability of the test set 

(assigned by the language model), 

normalized by the number of words: 

 

 

 

• Chain rule: 

 

 

• For bigrams: 

 

Minimizing perplexity is the same as maximizing probability 
The best language model is one that best predicts an 
unseen test set 



Lower perplexity = better model 

 

• Training 38 million words, test 1.5 million words, WSJ 



• Begin the lab! Make bigram and trigram models! 


