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Review: evaluating n-gram models 

• Best evaluation for an N-gram 
• Put model A in a speech recognizer 

• Run recognition, get word error rate (WER) for A 

• Put model B in speech recognition, get word error 
rate for B 

• Compare WER for A and B 

• In-vivo evaluation 



Difficulty of in-vivo evaluations 

• In-vivo evaluation 
• Very time-consuming 

 

• Instead: perplexity 



Perplexity 

• Perplexity is the probability of the test set 

(assigned by the language model), 

normalized by the number of words: 

 

 

 

• Chain rule: 

 

 

• For bigrams: 

 

Minimizing perplexity is the same as maximizing probability 
The best language model is one that best predicts an 
unseen test set 



Lesson 1: the perils of overfitting 

• N-grams only work well for word prediction if the test 

corpus looks like the training corpus 

• In real life, it often doesn’t 

• We need to train robust models, adapt to test set, etc 

 



Lesson 2: zeros or not? 

• Zipf’s Law: 
• A small number of events occur with high frequency 

• A large number of events occur with low frequency 

 

• Resulting Problem: 
• You might have to wait an arbitrarily long time to get valid 

statistics on low frequency events 

• Our estimates are sparse! no counts at all for the vast bulk of 
things we want to estimate! 

 

• Solution: 
• Estimate the likelihood of unseen N-grams 



Smoothing is like Robin Hood: 

Steal from the rich, give to the poor (probability mass) 

Slide from Dan Klein 



Laplace smoothing 

• Also called add-one smoothing 

• Just add one to all the counts! 

 

• MLE estimate: 

 

• Laplace estimate: 

 

• Reconstructed counts: 

 



Laplace smoothed bigram counts 

 



Laplace-smoothed bigrams 

 



Reconstituted counts 

 



Note big change to counts 

• C(count to) went from 608 to 238! 

• P(to|want) from .66 to .26! 

• Discount d= c*/c 

• d for “chinese food” =.10!!! A 10x reduction 

• So in general, Laplace is a blunt instrument 

• Could use more fine-grained method (add-k) 

 

• Laplace smoothing not often used for N-grams, as we have 

much better methods 

• Despite its flaws Laplace (add-k) is however still used to smooth 

other probabilistic models in NLP, especially 

• For pilot studies 

• in domains where the number of zeros isn’t so huge. 



Exercise 

Hey, I just met you, And this is crazy, 

But here's my number, So call me, maybe? 
 

It's hard to look right, At you baby, 

But here's my number, So call me, maybe? 

 

• Using unigrams and Laplace smoothing (+1) 

• Calculate P(“call me possibly”) 

 

• Now instead of k=1, set k=0.01 

• Calculate P(“call me possibly”) 



Better discounting algorithms 

• Intuition: use the count of things we’ve seen once to 

help estimate the count of things we’ve never seen 

 

• Intuition in many smoothing algorithms: 

• Good-Turing 

• Kneser-Ney 

• Witten-Bell 



Good-Turing: Josh Goodman intuition 

• Imagine you are fishing 

• 8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass 

• You catch: 

• 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish 

• How likely is the next species new (say, catfish or bass)? 

• 3/18 

• And how likely is it that the next species is another trout? 

• Must be less than 1/18 



Good-Turing Intuition 

• Notation: Nx is the frequency-of-frequency-x 

• So N10=1, N1=3, etc 

• To estimate total number of unseen species 

• Use number of species (words) we’ve seen once 

• c0
* =c1      p0 = N1/N p0=N1/N=3/18 

 

 

 

• All other estimates are adjusted (down) to give 

probabilities for unseen 

 c*(eel) = c*(1) = (1+1) 1/ 3 / N = 2/3 



 



Bigram frequencies of frequencies 

and GT re-estimates 



Complications 

• In practice, assume large counts (c>k for some k) are reliable: 

 

 

• That complicates c*, making it: 

 

 

 

 

 

• Also: we assume singleton counts c=1 are unreliable, so treat N-grams 

with count of 1 as if they were count=0 

• Also, need the Nk to be non-zero, so we need to smooth (interpolate) 

the Nk counts before computing c* from them 



GT smoothed bigram probs 

 



Backoff and Interpolation 

• Don’t try to account for unseen n-grams, just backoff 

to a simpler model until you’ve seen it. 

 

• Start with estimating the trigram: P(z | x, y)  

• but C(x,y,z) is zero! 

• Backoff and use info from the bigram: P(z | y) 

• but C(y,z) is zero! 

• Backoff to the unigram: P(z) 

 

• How to combine the trigram/bigram/unigram info? 



Backoff versus interpolation 

• Backoff: use trigram if you have it, otherwise bigram, 

otherwise unigram 

 

• Interpolation: always mix all three 



Interpolation 

• Simple interpolation 

 

 

 

• Lambdas conditional on context: 



How to set the lambdas? 

• Use a held-out corpus 

• Choose lambdas which maximize the probability of 

some held-out data 

• I.e. fix the N-gram probabilities 

• Then search for lambda values 

• That when plugged into previous equation 

• Give largest probability for held-out set 



Katz Backoff 

• Use the trigram probabilty if the trigram was observed: 

• P(dog | the, black)  if  C(“the black dog”) > 0 

 

• “Backoff” to the bigram if it was unobserved: 

• P(dog | black) if C(“black dog”) > 0  

 

• “Backoff” again to unigram if necessary: 

• P(dog) 

 



Katz Backoff 

• Gotcha: You can’t just backoff to the shorter n-gram. 

• Why not? It is no longer a probability distribution. The 

entire model must sum to one. 

• The individual trigram and bigram distributions are valid, but 

we can’t just combine them. 

 

• Each distribution now needs a factor. See the book 

for details. 

• P(dog|the,black) = alpha(dog,black) * P(dog | black) 


