
SI485i : NLP

Set 8

PCFGs and the CKY Algorithm

PCFGs

• We saw how CFGs can model English (sort of)

• Probabilistic CFGs put weights on the production

rules

• NP -> DET NN with probability 0.34

• NP -> NN NN with probability 0.16

2

PCFGs

• We still parse sentences and come up with a

syntactic derivation tree

• But now we can talk about how confident the tree is

• P(tree) !

3

Buffalo Example

• What is the probability of this tree?

• It’s the product of all the inner trees, e.g., P(S->NP VP)

4

PCFG Formalized

• G = (T, N, S, R, P)

• T is set of terminals

• N is set of nonterminals

• For NLP, we usually distinguish out a set P ⊂ N of preterminals,

which always rewrite as terminals

• S is the start symbol (one of the nonterminals)

• R is rules/productions of the form X → γ, where X is a

nonterminal and γ is a sequence of terminals and nonterminals

• P(R) gives the probability of each rule.

• ∀𝑋 ∈ 𝑁, 𝑃 𝑋 → 𝛾𝑋→𝛾𝜖𝑅 = 1

• A grammar G generates a language model L.

• 𝑃(𝛾)𝛾𝜖𝑇∗ = 1

5

Some slides adapted from Chris Manning

Some notation

• w1n = w1 … wn = the word sequence from 1 to n

• wab = the subsequence wa … wb

• We’ll write P(Ni → ζj) to mean P(Ni → ζj | Ni)

• Take note, this is a conditional probability. For instance, the

sum of all rules headed by an NP must sum to 1!

• We’ll want to calculate the best tree T

• maxT P(T ⇒* wab)

6

Trees and Probabilities

• P(t) -- The probability of tree is the product of the

probabilities of the rules used to generate it.

• P(w1n) -- The probability of the string is the sum of

the probabilities of all possible trees that have the

string as their yield

• P(w1n) = Σj P(w1n, tj) where tj is a parse of w1n

• = Σj P(tj)

7

Example PCFG

8

9

10

P(tree) computation

11

Time to Parse

• Let’s parse!!

• Almost ready…

• Trees must be in Chomsky Normal Form first.

12

Chomsky Normal Form

• All rules are Z -> X Y or Z -> w

• Transforming a grammar to CNF does not change its

weak generative capacity.

• Remove all unary rules and empties

• Transform n-ary rules: VP->V NP PP becomes

• VP -> V @VP-V and @VP-V -> NP PP

• Why do we do this? Parsing is easier now.

13

Converting into CNF

14

The CKY Algorithm

• Cocke-Kasami-Younger (CKY)

15

Dynamic

Programming

Is back!

The CKY Algorithm

16

NP->NN NNS 0.13

p = 0.13 x .0023 x .0014

p = 1.87 x 10^-7

NP->NNP NNS 0.056

p = 0.056 x .001 x .0014

p = 7.84 x 10^-8

The CKY Algorithm

• What is the runtime? O(??)

• Note that each cell must

check all pairs of children

below it.

• Binarizing the CFG rules is a

must. The complexity

explodes if you do not.

17

18

19

20

21

22

Evaluating CKY

• How do we know if our parser works?

• Count the number of correct labels in your table...the

label and the span it dominates

• [label, start, finish]

• Most trees have an error or two!

• Count how many spans are correct, wrong, and

compute a Precision/Recall ratio.

23

Probabilities?

• Where do the probabilities come from?

• P(NP -> DT NN) = ???

• Penn Treebank: a bunch of newspaper articles

whose sentences have been manually annotated with

full parse trees

• P(NP -> DT NN) = C(NP -> DT NN) / C(NP)

24

