
SI485i : NLP 

Set 8 

PCFGs and the CKY Algorithm 



PCFGs 

• We saw how CFGs can model English (sort of) 

• Probabilistic CFGs put weights on the production 

rules 

 

• NP -> DET  NN   with probability 0.34 

• NP -> NN NN      with probability 0.16 
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PCFGs 

• We still parse sentences and come up with a 

syntactic derivation tree 

• But now we can talk about how confident the tree is 

• P(tree) ! 
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Buffalo Example 

• What is the probability of this tree? 

• It’s the product of all the inner trees, e.g., P(S->NP VP) 
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PCFG Formalized 

• G = (T, N, S, R, P) 

• T is set of terminals 

• N is set of nonterminals 

• For NLP, we usually distinguish out a set P ⊂ N of preterminals, 

which always rewrite as terminals 

• S is the start symbol (one of the nonterminals) 

• R is rules/productions of the form X → γ, where X is a 

nonterminal and γ is a sequence of terminals and nonterminals 

• P(R) gives the probability of each rule. 

• ∀𝑋 ∈ 𝑁,  𝑃 𝑋 → 𝛾𝑋→𝛾𝜖𝑅 = 1 

• A grammar G generates a language model L. 

•  𝑃(𝛾)𝛾𝜖𝑇∗ = 1 
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Some slides adapted from Chris Manning 



Some notation 

• w1n = w1 … wn = the word sequence from 1 to n 

• wab = the subsequence wa … wb 

 

• We’ll write P(Ni → ζj) to mean P(Ni → ζj | Ni ) 

• Take note, this is a conditional probability. For instance, the 

sum of all rules headed by an NP must sum to 1! 

• We’ll want to calculate the best tree T 

• maxT P(T ⇒* wab) 
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Trees and Probabilities 

• P(t) -- The probability of tree is the product of the 

probabilities of the rules used to generate it. 

• P(w1n) -- The probability of the string is the sum of 

the probabilities of all possible trees that have the 

string as their yield 

• P(w1n) = Σj P(w1n, tj) where tj is a parse of w1n 

• = Σj P(tj) 
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Example PCFG 
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P(tree) computation 
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Time to Parse 

• Let’s parse!! 

• Almost ready… 

• Trees must be in Chomsky Normal Form first. 
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Chomsky Normal Form 

• All rules are Z -> X Y or Z -> w 

• Transforming a grammar to CNF does not change its 

weak generative capacity. 

• Remove all unary rules and empties 

• Transform n-ary rules: VP->V NP PP becomes  

• VP -> V @VP-V and @VP-V -> NP PP 

 

• Why do we do this? Parsing is easier now. 
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Converting into CNF 
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The CKY Algorithm 

• Cocke-Kasami-Younger (CKY) 
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Dynamic 

Programming 

Is back! 



The CKY Algorithm 

16 

NP->NN NNS 0.13 

p = 0.13 x .0023 x .0014 

p = 1.87 x 10^-7 

NP->NNP NNS 0.056 

p = 0.056 x .001 x .0014 

p = 7.84 x 10^-8 



The CKY Algorithm 

• What is the runtime?  O( ?? ) 

• Note that each cell must 

check all pairs of children 

below it. 

 

• Binarizing the CFG rules is a 

must. The complexity 

explodes if you do not. 
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Evaluating CKY 

• How do we know if our parser works? 

 

• Count the number of correct labels in your table...the 

label and the span it dominates 

• [ label, start, finish ] 

 

• Most trees have an error or two! 

 

• Count how many spans are correct, wrong, and 

compute a Precision/Recall ratio. 
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Probabilities? 

• Where do the probabilities come from? 

• P( NP -> DT NN ) = ??? 

 

• Penn Treebank: a bunch of newspaper articles 

whose sentences have been manually annotated with 

full parse trees 

 

• P( NP -> DT NN ) = C( NP -> DT NN ) / C( NP ) 
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