
INDUCING EVENT SCHEMAS AND THEIR PARTICIPANTS

FROM UNLABELED TEXT

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Nathanael William Chambers

May 2011

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/qk051hh1569

© 2011 by Nathanael William Chambers. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/qk051hh1569

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Daniel Jurafsky, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Andrew Ng

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

The majority of information on the Internet is expressed in written text. Understand-

ing and extracting this information is crucial to building intelligent systems that can

organize this knowledge, but most algorithms focus on learning atomic facts and re-

lations. For instance, we can reliably extract facts like “Stanford is a University”

and “Professors teach Science” by observing redundant word patterns across a cor-

pus. However, these facts do not capture richer knowledge like the way detonating a

bomb is related to destroying a building, or that the perpetrator who was convicted

must have been arrested. A structured model of these events and entities is needed

to understand language across many genres, including news, blogs, and even social

media.

This dissertation describes a new approach to knowledge acquisition and extrac-

tion that learns rich structures of events (e.g., plant, detonate, destroy) and partic-

ipants (e.g., suspect, target, victim) over a large corpus of news articles, beginning

from scratch and without human involvement. Early models in Natural Language

Processing (NLP) relied on similar high-level representations like scripts (structured

representations of events, their causal relationships, and their participants) and frames

to drive interpretation of syntax and word use. Scripts, in particular, were central

to research in the 1970s and 1980s for many applications. However, scripts were

hand-coded and therefore unable to generalize to new domains. Modern statistical

approaches and advances in NLP now enable new representations and large-scale

learning over many domains.

This dissertation begins by describing a new model of events and entities called

Narrative Event Schemas. A Narrative Event Schema is a collection of events that

iv

occur together in the real world, linked by the typical entities involved. I describe

the representation itself, followed by a statistical learning algorithm that observes

chains of entities repeatedly connecting the same sets of events within documents.

The learning process extracts thousands of verbs within schemas from 14 years of

newspaper data. I present novel contributions in the field of temporal ordering to

build classifiers that order the events and infer likely schema orderings. I then present

several new evaluations for the extracted knowledge.

Finally, this dissertation applies Narrative Event Schemas to the field of Informa-

tion Extraction, learning templates of events with sets of semantic roles. A template

defines a specific type of event (e.g., a bombing) with a set of semantic roles (or

slots) for the typical entities involved in such an event (e.g., perpetrator, target, in-

strument). Most Information Extraction approaches assume foreknowledge of the

domain’s templates, but I instead start from scratch and learn schemas as templates,

and then extract the entities from text as in a standard extraction task. My algorithm

is the first to learn templates without human guidance, and its results approach those

of supervised algorithms.

v

Acknowledgments

This dissertation exists largely thanks to my advisor, Dan Jurafsky. I learned more

from Dan than simply how to “do research”, but also how to communicate well,

respect work from all universities, and find the positive side of negative results. I

thank him for his guidance and support. I also thank the Stanford NLP group for

rich conversations and a productive research environment, and to Chris Manning

for his constant assistance and diligence in providing for the group. I particularly

acknowledge collaborations both large and small from Marie-Catherine de Marneffe,

Bill MacCartney, Dan Ramage, Steven Bethard, Heeyoung Lee, Andrey Gusev, Eric

Yeh, Jenny Finkel, Mihai Surdeanu, David McClosky, and Ramesh Nallapati.

I also thank Andrew Ng and his Machine Learning course in which my first idea

for this dissertation began, and thanks to Shan Wang for joining me in its first step.

This dissertation would not have started if not for the years of support from

James Allen at the University of Rochester and IHMC. I am similarly in debt to my

high school Computer Science teacher, Hal Honig. I credit where I am today to the

mentoring and initial interest they both showed in me. They are engaged, caring

educators, and the accomplishment that this dissertation represents is theirs as well.

Finally, my family is an unending source of support. To my parents, thank you

for a 38 year example of what love looks like. To my brother, thank you for making

me compete for everything in life. To my wife, Amy, words are too ambiguous to

describe the unambiguous encouragement and unfailing support you give to me. I

often wonder how many of these ideas would not be here without your feigned interest

in them. To Eli, always expect great things. I thought of you while I wrote each of

the following chapters.

vi

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Learning Narrative Event Structure 3

1.1.1 Contributions . 4

1.2 Learning the Temporal Ordering of Events 6

1.2.1 Contributions . 7

1.3 Learning Events for Information Extraction 8

1.3.1 Contributions . 9

1.4 Learning Knowledge Without Supervision 10

1.4.1 Contributions . 12

1.5 Applications of Event Models . 13

1.6 Layout of the Dissertation . 16

2 Learning Narrative Event Chains 17

2.1 Comparison to Previous Work . 19

2.2 The Narrative Chain Model . 21

2.2.1 Definition . 21

2.2.2 The Protagonist . 22

2.2.3 Partial Ordering . 24

2.3 Learning Narrative Relations . 24

2.3.1 Evaluation Metric: Narrative Cloze 25

vii

2.3.2 Narrative Cloze Experiment 27

2.4 Discrete Narrative Event Chains . 29

2.5 Discussion . 31

3 Learning Narrative Schemas 35

3.1 Narrative Schemas . 38

3.1.1 Typed Narrative Chains . 38

3.1.2 Learning Argument Types . 39

3.1.3 Event Slot Similarity with Arguments 40

3.1.4 Narrative Schema: Multiple Chains 41

3.2 Sample Narrative Schemas . 43

3.3 Evaluation: Frames and Roles . 46

3.4 Evaluation: Coverage . 51

3.4.1 Event Coverage . 51

3.4.2 Results . 53

3.5 Evaluation: Cloze . 53

3.5.1 Narrative Cloze . 54

3.5.2 Training and Test Data . 54

3.5.3 Typed Chains . 54

3.5.4 Narrative Schema . 55

3.5.5 Typed Narrative Schema . 55

3.6 Discussion . 55

4 Learning to Order Events 59

4.1 Previous Work . 60

4.2 Pairwise Classification . 62

4.2.1 Data: The Timebank Corpus 63

4.2.2 Stage One: Learning Event Attributes 63

4.2.3 Stage Two: Event-Event Features 66

4.2.4 Evaluation and Results . 68

4.2.5 Discussion . 69

4.2.6 Pairwise Events Conclusion 70

viii

4.3 Jointly Combining Implicit Constraints 70

4.3.1 The Global Model . 71

4.3.2 A Global Model With Time 78

4.3.3 Final Experiment with Unknowns 82

5 Ordering Event Schemas 87

5.1 Related Work . 88

5.2 Training a Temporal Classifier . 89

5.3 Temporal Classifier in Narrative Chains 90

5.4 Temporal Evaluation . 93

5.5 Results . 94

5.6 Error Analysis . 95

5.7 Discussion . 99

6 Learning Events for Information Extraction 102

6.1 Previous Work . 104

6.2 The MUC-4 Corpus . 106

6.3 A Narrative Approach to Extraction 108

6.4 Learning Templates from Raw Text 110

6.4.1 Clustering Events to Learn Templates 110

6.4.2 Information Retrieval for Templates 112

6.4.3 Inducing Semantic Roles (Slots) 113

6.4.4 Template Evaluation . 117

6.5 Information Extraction: Slot Filling 120

6.5.1 Document Classification . 121

6.5.2 Entity Extraction . 122

6.6 Standard Evaluation . 123

6.7 Specific Evaluation . 125

6.8 Discussion . 126

7 Conclusions 129

7.1 Contributions . 129

ix

7.2 Future Work . 131

x

List of Tables

3.1 Five of the top fifty scored Narrative Schemas. Events and arguments

in italics were marked misaligned by FrameNet definitions. * indicates

verbs not in FrameNet. - indicates verb senses not in FameNet. . . . 45

4.1 Features selected for learning each temporal attribute. POS-2 is two

tokens before the event. 65

4.2 Accuracy of the Stage One classifiers. 65

4.3 Incremental accuracy by adding features. 68

4.4 Top 5 features as added in feature selection w/ Naive Bayes, with their

percentage improvement. 69

4.5 The features to learn temporal relations between two events. Asterisks

(*) indicate features that are duplicated, one for each of the two events. 72

4.6 Two sets of confidence scores. The first set chooses before for all three

labels, and the second chooses after. Other lower-scoring valid relation

sets also exist, such as before, unknown, and before. 73

4.7 The number of event-event relations after transitive closure. 75

4.8 Using the base Timebank annotated tags for testing, accuracy on be-

fore/after tags in the two models. 76

4.9 The number of event-event before and after relations after transitive

closure on each dataset. 81

4.10 Using the base Timebank annotated tags for testing, the increase in

accuracy on before/after tags. 81

xi

4.11 Overall accuracy when training with different percentages of unknown

relations included. 13% of unknowns is about equal to the number of

befores. 84

4.12 Precision and Recall for the base pairwise decisions and the global

constraints with integrated time information. 85

5.1 Results for choosing the correct ordered chain. At least 10 indicates

that there were at least 10 pairs of ordered events in the chain. 95

6.1 Coreference Vectors for the subjects of kidnap and release. The syn-

tactic functions are counts of how many times each syntactic function

contained an argument that coreferred with the main verb’s subject

(e.g., kidnap or release). 115

6.2 Selectional Preference vectors for the subjects of kidnap and release. . 116

6.3 Document classification results on test. 122

6.4 MUC-4 extraction, ignoring template type. 124

6.5 Performance of the individual templates. The Attack column compares

both of my 1 vs 5 best templates. 125

6.6 Performance of each template type, but only evaluated on the docu-

ments that are labeled with that template type. All others are removed

from testing. The parentheses indicate F1 score gain over evaluating

on all test documents (Table 6.5). 125

xii

List of Figures

1.1 A narrative schema: a typical output from my learning system. The

variable notation ‘A search B’ indicates the syntactic subject and ob-

ject positions that the variable fills. For example, A is the subject of

the verb ’search’, and B is the object. 3

1.2 The partial ordering for a set of learned events. 7

1.3 A template representing a Bombing Event in a newspaper article. . . 9

2.1 Two example narrative event chains. Each is a sequence of events and

a parameterized entity that fills specific syntactic functions for each

verb. The circles to the left of verbs represent the subject, and the

right represents the object. Edges between circles indicate the same

entity is constrained to fill those particular syntactic functions. 18

2.2 Comparing two representations of a sentence’s structure: a phrase

structure tree and a typed dependency graph. 22

2.3 Three narrative events and the six most likely events to include in the

same chain. 26

2.4 One of the 69 test documents, containing 10 narrative events. The

protagonist is President Bush. 28

2.5 Results with varying sizes of training data. Year 2003 is not explic-

itly shown because it has an unusually small number of documents

compared to other years. 30

2.6 An automatically learned Prosecution Chain. Arrows indicate the be-

fore relation. 32

2.7 An Employment Chain. Dotted lines indicate incorrect before relations. 33

xiii

3.1 A narrative event chain and two as of yet unconnected events. Circles

to the left of the verbs represent the syntactic subjects of the verbs,

and the right represents objects. Edges indicate constraints between

the syntactic functions that the entity must fill. 37

3.2 A typed narrative chain. The four top arguments are given. The

ordering O is not shown. 40

3.3 Merging typed chains into a single unordered Narrative Schema. . . . 42

3.4 Graphical view of an unordered schema automatically built starting

from the verb ‘arrest’. A β value that encouraged splitting was used for

this example. I ultimately set β = 0.2 by optimizing cloze performance

on the development dataset. 44

3.5 Graphical view of an unordered schema automatically built from the

verb ‘convict’. Each node shape is a chain in the schema. 46

3.6 Narrative schemas: examples were hand selected from the database to

illustrate the diversity of learned narratives. 47

3.7 Narrative schemas: examples were hand selected from the database to

illustrate the diversity of learned narratives. 48

3.8 Results on the narrative cloze test with varying sizes of training data.

Both narrative chains and narrative schemas are compared with their

untyped and typed versions. 56

4.1 Annotated relations in document wsj 0551. 77

4.2 The straightforward procedure that compares two time intervals. . . . 80

4.3 Before and after time-time links with closure. 83

5.1 Four passages from the NYT section of the Gigaword Corpus contain-

ing arrest and plead. The temporal classifier classifies each passage

independently, determining if each pair is in a before or other relation.

The second example illustrates a difficult case involving multiple arrest

events. 91

xiv

5.2 Before and after counts between pairs of events in the criminal domain:

counts of classification decision over the NYT portion of the Gigaword

Corpus. 92

5.3 A narrative chain and its fully reversed partial ordering. 94

5.4 Passages from the NYT where acquit was classified as before convict.

All three are correct classifications involving different trial periods.

Two of the three are hypothetical convictions described with modalities

occurring in the future. 97

5.5 Passages from the NYT where acquit was classified as before convict.

These examples illustrate that sentence-internal ordering of past tense

verbs favors before relations. 98

5.6 Examples of text and the gold labeled BEFORE relations in the Time-

bank Corpus for the event retire. 99

5.7 Examples of obituaries where the retire event is incorrectly classified

as after the die event. 100

6.1 A template from the MUC-4 corpus. 107

6.2 A portion of a MUC-4 document with no templates to extract. 108

6.3 The 4 clusters mapped to MUC-4 templates. 112

6.4 Three learned example templates representing three of the original

MUC-3 hand-coded templates. 118

6.5 Two learned example templates that were not hand-created in the

MUC-3 corpus. All knowledge except the template/role names (e.g.,

‘Victim’) is learned. 119

6.6 Slots in the hand-crafted MUC-4 templates. 119

xv

Chapter 1

Introduction

The early years of Natural Language Processing (NLP) took a “top-down” approach

to language understanding by using high-level representations like scripts (structured

representations of events, their causal relationships, and their participants) and frames

to drive interpretation of syntax and word use. Scripts, in particular, were central

to research in the 1970s and 1980s for proposed tasks such as summarization, coref-

erence resolution and question answering. For example, Schank and Abelson (1977)

proposed that understanding text about restaurants requires characteristic knowledge

about a Restaurant Script. The Restaurant Script included a stereotypical restau-

rant’s participants (Customer, Waiter, Cook, Tables, etc.), the events constituting a

visit to a restaurant (entering, sitting down, asking for menus, etc.), and the various

preconditions, ordering, and results of each of the typical actions that occur. They

argued that knowledge structures such as these provide a language understanding

and reasoning system (including the human mind) with rich information about many

aspects of meaning.

However, the problem with scripts and similar common-sense knowledge struc-

tures was that the need for hand construction, specificity, and domain dependence

prevented robust and flexible language understanding. The many diverse and varied

situations in the world cannot realistically be hand coded for every language applica-

tion and domain. For example, the Restaurant Script cannot assist the understanding

situations like corporate acquisitions and football games. The development of scripts

1

CHAPTER 1. INTRODUCTION 2

proved too time intensive and too brittle when changing contexts.

In contrast, modern work on language understanding offers statistical techniques

to learn diverse knowledge automatically from free text. Machine learning typically

focuses on shallower representations of meaning than scripts. Semantic roles, for

instance, express at least one aspect of the semantics of events and have proved

amenable to supervised learning from annotated corpora like PropBank (Palmer et al.,

2005) and Framenet (Baker et al., 1998). Creating these supervised corpora is an ex-

pensive and difficult multi-year effort, requiring complex decisions about the exact set

of roles to be learned. While these supervised approaches are thus more robust than

scripts, they also share similar difficulties in regards to the amount of human effort

and annotations that are required. Even unsupervised attempts to learn semantic

roles often require a pre-defined set of roles (Grenager and Manning, 2006a) or a

hand-labeled seed corpus (Swier and Stevenson, 2004a; He and Gildea, 2006a). Fur-

ther, their shallow nature does not capture important interactions between entities

and events that are needed for full document understanding.

This dissertation describes how to integrate the strengths of hand-created event

representations with those of today’s learning algorithms for shallow semantics. I

present the first approach to learning rich common-sense knowledge about events in

the world in the form of narrative event schemas, but without pre-defined frames,

roles, or tagged corpora. The learning algorithm induces both event structures and

the roles of their participants from millions of unlabeled newspaper articles. I in-

troduce a new indicator of similarity, the protagonist, and show how discourse-level

connections between predicates can direct the learning process. Further, I describe

a method of temporal reasoning that learns to order the learned events, providing

a new approach to temporal reasoning that is central to theories of causation and

inference. I conclude by showing how this learning approach can be applied to a

common information extraction application in which all previous work has depended

on hand-coded definitions of event structure. This algorithm is the first to perform

structured extraction without knowing the event structure in advance, and I present

results that approach the performance of these knowledge-dependent algorithms.

CHAPTER 1. INTRODUCTION 3

A search B
A arrest B

D convict B
B plead C

D acquit B
D sentence B

A = Police
B = Suspect
C = Plea
D = Jury

Events Roles

Figure 1.1: A narrative schema: a typical output from my learning system. The
variable notation ‘A search B’ indicates the syntactic subject and object positions
that the variable fills. For example, A is the subject of the verb ’search’, and B is the
object.

1.1 Learning Narrative Event Structure

The central focus of this dissertation is learning stereotypical sets of events and entities

that define common-sense situations in the world. Figure 1.1 graphically illustrates

one such Narrative Event Schema about a criminal prosecution, to be defined more

formally later. This example was learned completely automatically from a corpus of

newspaper articles. A narrative event schema is a set of related events (left), a set of

participants (right), and constraints on the syntactic positions that the participants

fill (variables on left with the verbs, indicating their subject and object positions).

All three aspects of a schema are jointly learned from unlabeled text, including the

ordering of the events. The six events on the left follow four participants on the right

through a set of events that constitute a narrative.

Robustly learning these schemas could assist a variety of NLP applications, most

significantly in applications that require a document-level understanding of event de-

scriptions as they unfold across sentence boundaries, and the roles that entities play

in the overall narrative. The document summarization task, for example, condenses

a document by identifying which sentences describe the story’s main events. Identify-

ing those events and filtering out tangential knowledge is one of the key challenges of

summarization. Learning sets of related events across a diverse array of topics, such

as those in narrative event schemas, could assist in identifying the main events and

CHAPTER 1. INTRODUCTION 4

robustly solving this task. Similarly, question answering and information extraction

applications require algorithms that can identify the central entities and what roles

they play in a document (e.g., the perpetrator and victim of a crime). Such algo-

rithms need to be seeded with knowledge about how different entity types interact

with different events. Discovering and learning this knowledge is a central challenge

to solving both applications. Finally, event prediction and anomaly detection need

knowledge of stereotypical sets of events in the world in order to differentiate between

expected and unexpected occurrences. Narrative schemas provide the representation

to address all of these tasks, and this dissertation describes how to learn and extract

such structured schemas from unlabeled newspaper articles.

1.1.1 Contributions

My work on narrative schemas makes several key contributions to the fields of event

semantics and representation, learning events without human supervision, and se-

mantic role modeling.

The main contribution is the narrative event schema representation itself. As

opposed to my joint model of both events and entities, previous work on modeling

events and topics focused on bag-of-words models (e.g., arrest, raid, and capture) to

characterize a domain. This includes work in the areas of topic modeling (Blei et al.,

2003; Lin and Hovy, 2000) and event clustering (Bejan, 2008), as well as approaches

that focus on the text order itself to model event sequences (Fujiki et al., 2003;

Manshadi et al., 2008; Gordon, 2010). Most of these approaches only learn bags of

event words. My contribution to this area is to learn entities with the events, and

to define their functions within the event words. Preliminary work in learning richer

structure includes toy domains (Mooney and DeJong, 1985) and synonymous relations

(Brody, 2007). This dissertation is the first to use modern statistical techniques to

learn rich narrative structure, jointly learning the events, their key participants, and

the roles of the participants without human supervision from open-domain text. The

narrative schema is thus a new knowledge representation, bridging the early interest

in Schankian scripts to today’s statistical learning techniques. Recent work since the

CHAPTER 1. INTRODUCTION 5

initial publication of this representation shows usefulness in other areas as well, such

as story analysis and generation (McIntyre and Lapata, 2009).

Another important contribution is the protagonist-based learning algorithm and

its applications to the broader field of word similarity and distributional learning.

Word similarity judgments are important to a wide range of NLP applications, in-

cluding search, parsing, machine translation, and lexical semantics. Most approaches

to measuring similarity rely on modeling the context in which words typically appear.

Broadly, this is accomplished by counting words that tend to occur with each target

word. Two words are judged to be similar if similar words occur in both contexts. My

contribution to the field is a new discourse-level approach that looks at the interac-

tions between words, using discourse-level relations, rather than bag-of-word contexts.

My algorithm focuses on entity mentions in text and uses repeated mentions of the

same entity to identify related events. For instance, the phrases ‘Bruce pushed the

man’ and ‘the man fell down’ convey implicit knowledge about the world, namely,

that push and fall down are related. We know this because the man appears with

both verbs. We can thus loosely conclude that the two events occur together in the

real world. The man plays the role of the protagonist in this narrative, and two verbs

are deemed similar if they occur together in documents with the same entity. This is

a significant departure from current similarity measures in that I use discourse-level

information to decide relatedness. Chapter 2 describes the algorithm in detail.

The final contribution of narrative schemas is a new perspective on semantic role

labeling. As described above, the protagonist learns to connect verbs like push and

fall, but it also learns a more specific connection: the object of pushed (the patient)

is the same entity as the subject of falls (the theme). Traditionally, these individual

verb positions are called semantic roles, defining the function (e.g., patient) that

an argument (e.g., the man) fills for a verb (e.g., push). Several corpora exist for

semantic roles (Palmer et al., 2005; Baker et al., 1998), and lots of work focuses on

learning to label syntactic arguments with their roles (Gildea and Jurafsky, 2002;

Grenager and Manning, 2006a). My work on narrative schemas does not learn these

verb-specific roles, but rather the broader situation-specific roles. In a narrative about

criminal activity, the man is not the patient or theme of the overall activity as it is

CHAPTER 1. INTRODUCTION 6

of individual verbs, but instead fills a broader victim role across all verbs. These

broader roles are useful for applications like information extraction, as is described

in chapter 6. Recent work since the publication of the protagonist has even showed

that verb-specific semantic roles can benefit from this broader view (Gerber and Chai,

2010). Defining situation-level semantic roles is a largely unexplored area in NLP,

and my work presents one possible method of learning and representing them.

Narrative event schemas thus offer contributions in three main areas: jointly rep-

resenting and learning events and entities, a protagonist-based approach to word

similarity, and a situation-level view of semantic roles.

1.2 Learning the Temporal Ordering of Events

After learning a representation of events and entities, the next task is to impose a real-

world ordering over the events. The goal is to learn that events like arrest occur before

convict. Figure 1.2 graphically illustrates the structure of a narrative event schema

before and after such a learned ordering is applied. This criminal prosecution ordering

was fully learned from a corpus of newspaper articles. In order to learn this ordering, I

use the Timebank Corpus to train supervised learning models that classify temporal

relations between events (e.g., before, simultaneous, includes, etc.). A significant

aspect of this dissertation presents two approaches to recovering the temporal order

of events, both a pairwise local model (independent local decisions), and a global

model that enforces consistency over transitivity relations. These advances in time

classification are then applied to learn and impose a partial ordering over narrative

event schemas.

Being able to temporally order events is a necessary component for complete doc-

ument understanding. In fact, extracting the temporal information in text descrip-

tions of events has been of interest since the early days of natural language processing.

Prediction and inference tasks, such as inferring other events likely to occur after an

observed sequence of events, cannot be solved without a model of time. Lately, it has

seen renewed interest as question answering, information extraction and summariza-

tion applications find it critical in order to proceed beyond surface understanding.

CHAPTER 1. INTRODUCTION 7

A search B
A arrest B

D convict B
B plead C

D acquit B
D sentence B

A search B
A arrest B

D convict B

B plead C

D acquit B

D sentence B

Figure 1.2: The partial ordering for a set of learned events.

Research in causation is also very important to deep reasoning systems that rely on

logical inference and more strict measures of entailment. While my goal is not to

explicitly learn causation, learning event orderings could be used to approximate and

assist in decisions of causation.

1.2.1 Contributions

This dissertation makes two main contributions to the field of temporal reasoning and

learning event orders: (1) a new state-of-the-art pairwise classifier, and (2) the first

global model to enforce ordering consistency.

The first contribution is the improvement of supervised learning models to classify

pairs of events (e.g., is arrest before or after convict?). The creation of the Timebank

Corpus (Pustejovsky et al., 2003) facilitated the development of supervised learning

techniques for event ordering applications. Timebank labels event words and temporal

relations between pairs of events that reflect their real-world order. Early research

on Timebank focused on the event-event ordering task, but used gold information

in the annotated corpus as features (e.g., verb tense, aspect, polarity) (Mani et al.,

2007). My work was the first to solve the task completely automatically, predicting

attributes like tense and aspect, rather than using gold labels. I also expanded the

feature set to use deeper syntax and discourse connections to produce a state-of-

the-art classifier. Since then, the TempEval contests (Verhagen et al., 2007, 2009)

have encouraged continued work in the area. Most approaches still focus on pairwise

event-event decisions (Hagege and Tannier, 2007; Bethard and Martin, 2007; Cheng

CHAPTER 1. INTRODUCTION 8

et al., 2007). One drawback of these models is that they often make local decisions

that are globally inconsistent.

My second contribution to the field addresses this inconsistency in pairwise clas-

sifiers. I developed the first global framework for event-event ordering that informs

local decisions (e.g., A before B) with document-level constraints (e.g., transitivity

rules). I use two types of implicit global constraints: transitivity (A before B and B

before C implies A before C) and time expression normalization (e.g., last month is

before yesterday). I show how these constraints can be used to create a more densely-

connected network of events, and how global consistency is enforced by incorporating

these constraints into an integer linear programming framework. My approach builds

on related work in paragraph ordering from Bramsen et al. (2006). I present results in

chapter 4 on two event ordering tasks that show significant increases over a pairwise

model. Since then, others have developed complementary global models based on my

approach (Yoshikawa et al., 2009).

1.3 Learning Events for Information Extraction

Information Extraction (IE) refers to a range of applications that attempt to iden-

tify (and extract) information in text. Most algorithms focus on extracting binary

relations and atomic facts, such as authors and book titles, capitals and countries, ac-

tors and birthdays, etc. Both supervised and unsupervised learning algorithms have

proved capable of extracting these types of relations. This dissertation, however, fo-

cuses on a more structured type of extraction often called template-based extraction.

Template-based IE attempts to capture an entire situation’s context, rather than

disconnected facts and relations. For example, figure 1.3 shows a bombing template

that defines several entity types, including a perpetrator, target, victim, and an instru-

ment. For any given document, can we identify its overall theme, extract its central

entities, and identify the template roles the entities play in it? Template-based IE

is concerned with filling in the values of these roles from a document. I learned this

example’s template structure from raw unlabeled text.

Information extraction algorithms are important to improving many user-end

CHAPTER 1. INTRODUCTION 9

tasks such as search and retrieval, database population, and language understand-

ing. Search and retrieval are the most obvious applications. Whereas most cur-

rent retrieval applications rely on returning entire documents, IE is relevant to more

fine-grained search like snippet generation and question answering applications. In

contrast, database population applications map textual descriptions into queriable

databases that can be more easily organized and searched. For instance, extracting

business names and phone numbers from webpages into a database provides a more

accessible interface to this knowledge. Finally, template-based IE shows promise for

many areas of language understanding. Identifying the template roles of entities can

assist summarization, multi-document clustering, and related document understand-

ing applications.

1.3.1 Contributions

This dissertation is the first approach to template-based IE that automatically learns

template structure from unlabeled data before extracting its answers. Standard algo-

rithms for template-based IE require predefined template schemas (Chinchor et al.,

1993; Rau et al., 1992), and often labeled data (Freitag, 1998; Chieu et al., 2003;

Bunescu and Mooney, 2004; Patwardhan and Riloff, 2009), to learn to extract their

slot fillers (e.g., an embassy is the Target of a Bombing template). My approach begins

without labeled data and without the template schemas, effectively not knowing what

type of events are described in the text. By instead learning script-like knowledge

automatically, I remove the knowledge requirement and perform extraction without

knowing the structure in advance. My algorithm instead learns automatically from

Instantiated Bombing Template

Perpetrator: ‘The Farabundo Marti Liberation Front’
Target: ‘Mayor’s Office’
Victims: ‘the gate guard’
Instrument: ‘ten sticks of dynamite’

Figure 1.3: A template representing a Bombing Event in a newspaper article.

CHAPTER 1. INTRODUCTION 10

raw text, learning template schemas as sets of linked events (e.g., bombings include

detonate, set off, and destroy events) associated with semantic roles (e.g., bombings

include perpetrators and victims). Once induced, I extract role fillers from specific

documents using learned syntactic patterns. Most recently, unsupervised IE algo-

rithms focus on learning binary relations for atomic fact extraction (Banko et al.,

2007b; Carlson et al., 2010b,a; Huang and Riloff, 2010; Durme and Pasca, 2008a),

but my work is unique in focusing on full templates with their interconnected enti-

ties and events. See the next section for more on this distinction. I evaluate on a

common extraction dataset and show that I induce template structure very similar to

hand-created gold structure, and I extract role fillers with performance approaching

algorithms requiring knowledge of the templates.

1.4 Learning Knowledge Without Supervision

The learning algorithms in this dissertation are mostly unsupervised, requiring no

human annotators, sorting of text, and no seeds from which to bootstrap schemas1.

Unsupervised and semi-supervised knowledge extraction has received new attention

in recent years, and this dissertation is no exception to the trend. Learning from raw

text carries the benefit of removing dependencies on human annotators, and allowing

a system to immediately learn within new domains and languages. Unsupervised

knowledge acquisition typically falls into one of three types of target knowledge: (1)

ontology induction, (2) attribute extraction, and (3) fact extraction and relation

learning. I briefly describe each here, and then present the contributions of this

dissertation.

Ontology induction extracts is-a relations from text to build a hierarchy of types

(e.g., cat is-a mammal). Traditionally, seed-based learning is used to begin with a

few hand-built patterns (e.g., X is a type of Y, and then bootstrap to identify new

text patterns for the relation. A few examples of paths through an automatically

1To be clear, I do rely on NLP tools that are supervised, such as an English parser and a named
entity recognizer. These are trained on English syntax and named entity labels. I thus do not claim
to be fully unsupervised.

CHAPTER 1. INTRODUCTION 11

learned ontology are shown here.

• dog is-a mammal is-a animal is-a living-thing

• car is-a vehicle is-a transport is-a object

• microsoft is-a company is-a organization

A range of semi-supervised bootstrapping, as well as unsupervised approaches, have

been used to learn ontologies (Hearst, 1992; Durme and Pasca, 2008a; Poon and

Domingos, 2010). Most recently, this is now coupled with attribute extraction to

improve performance of concept clustering and the richness of extracted knowledge.

Attribute extraction focuses on learning common attributes of objects. The target

objects range from people and animals to consumer products like ipods and cameras.

The following are learned examples from Pasca (2008).

• sea creatures have habitats, reproduction, and food chains

• painters have artwork, self portraits, and biographies

• physicists have inventions, biographies, and techniques

Pasca (2008) and others use seed-based and weakly supervised approaches to jointly

learn these concept attributes and ontology structure (Pasca, 2008; Reisinger and

Pasca, 2009). The result is an ontology of concepts and hierarchical attributes. At-

tribute learning has been applied to different types of data, ranging from web query

logs (Pasca and Durme, 2007; Durme and Pasca, 2008b), open-domain text (Yoshi-

naga and Torisawa, 2007), and Wikipedia articles (Suchanek et al., 2007; Wu and

Weld, 2008).

Finally, fact and relation extraction focuses on extracting true statements about

the world. These are typically in the form of relation triples: A relation B. Examples

from the Open IE work of Banko et al. (2007b) and Banko (2009) are given here:

• Napoleon married Josephine

• Einstein born in Ulm

• oranges contain Vitamin C

• XYZ Corp. acquired Go Inc.

CHAPTER 1. INTRODUCTION 12

Open IE is largely unsupervised, and can be viewed as learning relations that are true

about the world from a large corpus of text. It is important to note that the system

does not seek to understand any given document, but depends on redundancy across

thousands of documents to extract relations. The system learns synonymous patterns

(e.g., become member of, enter, and join), as well as classes of similar concepts (e.g.,

company, business, inc., organization) by observing patterns with the same argument

types. Approaches vary in their use of (or lack of) seed examples, domain text, and

target knowledge (Kok and Domingos, 2008; Carlson et al., 2010b,a; Huang and Riloff,

2010).

1.4.1 Contributions

This dissertation learns a complimentary, but different type of knowledge from the

above work on relation learning. The type of knowledge represented by concept

ontologies and their attributes is not addressed in this dissertation. The knowledge

output by systems like Open IE (Banko et al., 2007b) and the Never-Ending Language

Learning architecture of (Carlson et al., 2010a) are lists of independent relations. The

schemas in this dissertation represent sets of dependent relations and entities in spe-

cific roles. This dissertation is thus unique in learning relations across relations, or

imposing a structure over otherwise independent relations. My relations are inten-

tionally focused on a narrative semantics, capturing relations that represent events

occuring together in the world.

One key difference in my algorithm is that I do not capture specific facts, like

napoleon married josephine, but instead capture general events/relations like People

marry People. Factoid learning systems could also learn People marry People, but

they do not connect marry to other related events, such as pregnant, loves, and buys

a house. This level of semantics and richer connections between entities and events

has not been addressed in current relation learning systems.

Finally, this dissertation also differs by performing a document extraction task

that other relation learning systems cannot perform. As I discussed above, relation

learning learns things that are true, but does not understand any particular single

CHAPTER 1. INTRODUCTION 13

document. They are essentially large-scale fact finders. For instance, Open IE only

extracts facts and patterns that are seen repeated over many documents. Chapter 6

presents an information extraction task that requires knowing and extracting both

the perpetrator and target of a crime from a single document, perhaps each only

mentioned once in the corpus. Further, independent relations cannot make connec-

tions across events to link perpetrators, victims, targets, and other entities. Schemas,

on the other hand, do represent these entities in one structure. Narrative schemas

offer a joint model of events and entities that help us perform this level of document

understanding and extraction.

1.5 Applications of Event Models

Just as scripts motivated many natural language applications in their time, narrative

schemas have similar connections to the problems addressed in many modern applica-

tions of language understanding systems. The type of application that is best suited

for knowledge about entities and events is that which deals with an entire document’s

context. Sentence-based and lower-level language tasks, like parsing and named entity

recognition, have less of a need for this type of knowledge as they typically focus on a

more limited context that doesn’t rise to the level of events. This section briefly looks

at the higher-level applications in which narrative schemas and similar event-based

models may assist.

Summarization: Summarization is the task of condensing a document into a shorter

form while maintaining the key ideas and facts contained therein. The vast major-

ity of work in this field is extractive summarization: identify the most important

sentences and concatenate them into a summary. This is often conducted with mul-

tiple news stories about the same situation, and redundancy across the documents

is used as an indicator of importance. Other features like position in the document

are important, but redundancy remains the most critical. Narrative schemas could

provide a crucial bit of semantic information by identifying which event words are

CHAPTER 1. INTRODUCTION 14

most probable in a previously learned scenario, thus providing a new piece of informa-

tion that is otherwise unavailable to current approaches. Several approaches suggest

such knowledge may have merit. For instance, focusing on key entity mentions and

coreference chains can better guide sentence selection (Azzam et al., 1999; Bergler

et al., 2003). Most notably for this dissertation, Filatova and Hatzivassiloglou (2004)

showed that focusing on event words is often more useful than the entire sentence’s

context. Models, such as narrative schemas, that include both events and entities

may further inform the task.

Coreference Resolution: Coreference resolution is the linking of entity mentions

that refer to the same entity. For instance, Nate Chambers and Chambers both refer

to myself, as well as the pronouns he and him in the correct context. The task

requires linking these mentions throughout a document. New models of a document’s

events and how its participants interact have obvious applications to this task. Bean

and Riloff (2004) applied a preliminary idea related to schemas, called caseframes,

to coreference resolution. They counted pairs of verbs whose arguments were exact

string matches (e.g. Reid ran and found Reid) in a domain-specific corpus, and used

those observed pairs to generalize that two argument positions were related (e.g. the

subject of ran and the object of found). They showed a relative improvement in

coreference performance. This result suggests that narrative schemas, which encode

entire sets of events, may provide added benefit.

Event Reasoning and Inference: Logical inference and deeper reasoning require

temporal and causal relations to identify semantic connections between a document’s

sentences. Early work on Schankian scripts frequently referenced Reasoning and

Inference as the driving motivation for their work. Even today, most work on models

of events and common-sense knowledge make reference to reasoning systems as a

possible application. Event structures like narrative schemas lend themselves quite

naturally to inference because they explicitly define an event ordering. This ordering

can explicitly or implicitly be used to infer missing or future events. Paul et al.

(2009) has recently used coreference patterns to learn reciprocal relationships. For

CHAPTER 1. INTRODUCTION 15

instance, a user reading a document that contains the events arrest and sentence

may wish to infer what other events had occurred. A narrative schema that contains

the event chain, arrest - plead - convict - sentence, can infer that convict and plead

likely occurred as well. These types of inferences are most helpful in deep reasoning

systems that need to understand events beyond the surface information described by

a document. Schemas are not the complete solution, but are a step toward learning

these important relations.

Question Answering: Question Answering systems seek specific responses that

address a targeted query in the form of a question. As opposed to information retrieval

where the goal is a list of ranked documents that are relevant to a query, question

answering systems return short strings that answer the query’s question. For example,

Who is the suspect in yesterday’s embassy bombing?, might return a single answer,

John Doe. Most algorithms rely on reformulating the question into a statement, and

then search a large corpus for text that matches the statement (e.g., John Doe is the

suspect of the bombing). Unfortunately, the answer is often not explicitly given in such

a straightforward reformulation. Narrative schemas could help solve this problem

through its representation of entities and their roles in events. By representing a

suspect with a series of events, schemas describe alternate ways that language might

describe the suspect beyond the question’s particular word choices.

Information Extraction: Information Extraction (IE) is the task of extracting

particular pieces of knowledge from text. This includes large-scale web search where

the information is described in an as yet unknown document, or more specific search

where the search is within a specific document from which the information must be

extracted. Many IE applications begin with the desired type of information (e.g.,

the capitals of U.S. states), and the task is to extract a database of results (e.g.,

Richmond/Virginia, Annapolis/Maryland, Springfield/Illinois, etc.). However, recent

work focuses on learning what type of information exists in the world, and automat-

ically creates knowledge bases of unknown facts. As described above in Section 1.3,

narrative schemas offer a novel approach to representing events and situations in the

CHAPTER 1. INTRODUCTION 16

real world, and further, to assist in their extraction from written language.

This dissertation focuses on the last application, Information Extraction, in Sec-

tion 6 to evaluate and ultimately show the utility of learning narrative schemas from

open-domain, unannotated text.

1.6 Layout of the Dissertation

This dissertation begins by describing how to learn unordered Narrative Schemas

from large amounts of text, followed by my advances in the supervised learning of

temporal relations between events, an implementation of ordered Narrative Schemas,

and finally concluding with a template-based information extraction application.

Chapter 2 lays the underlying framework for learning Narrative Schemas. It intro-

duces the protagonist as the key intuition to discovering event relations, and shows

how to learn Narrative Chains, sets of related events connected by a single entity.

Chapter 3 then expands this narrative chain framework and describes a new learning

algorithm that leverages the protagonist to jointly learn events and all participat-

ing entities. My contributions to event representations, the novel learning algorithm

based on a protagonist, and semantic roles for narratives are found in these two

chapters.

Chapter 4 shifts gears and focuses on the event ordering task. This chapter de-

scribes my novel supervised learning approach to ordering events, as well as my con-

tribution of maintaining global consistency across time relations within an Integer

Linear Programming framework. Chapter 5 then describes how to use a supervised

classifier to order generalized learned narrative event schemas.

Finally, chapter 6 describes my contribution to template-based information extrac-

tion: it is the first approach to automatically learn templates on a common evaluation

dataset, and then compares my extraction performance against supervised learning

systems on the same task. I show that I can extract with performance approaching

the results of other approaches that assumed full knowledge of the domain and access

to gold-labeled data.

Chapter 2

Learning Narrative Event Chains

The central focus of this dissertation is learning narrative event schemas to repre-

sent common situations by jointly modeling events and entities, and the constraints

between them. However, before I learn entire schemas from raw text, this chapter in-

troduces a partial representation of events called narrative event chains (or narrative

chains) that will form the groundwork for learning complete schemas. A narrative

chain is a simplification of narrative schemas that follows a single entity independent

of other entities that are involved in the events. This single entity, called the pro-

tagonist, forms the basis of the narrative learning process. Rather than learning all

entities together, a chain learns one entity and its sequence of related events. This

chapter formalizes the narrative chain, describes its protagonist-based learning algo-

rithm, and evaluates its learned knowledge on an event prediction task. The following

chapter will then expand this learning process to learn full narrative schemas.

Narrative chains are partially ordered sets of events centered around a common

entity, called the protagonist. As described in Chapter 1, they are related to the

structured sequences of participants and events that have been called scripts (Schank

and Abelson, 1977) or Fillmorean frames. However, chains instead focus on a single

participant in each event sequence. This participant and its events can be filled

in and instantiated for a particular document to draw inferences. Such inferences

are important to many applications, including but not limited to, summarization,

information extraction, and coreference resolution.

17

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 18

accused

claimed

dismissed

argued

joined

served

resigned

oversaw

Figure 2.1: Two example narrative event chains. Each is a sequence of events and a
parameterized entity that fills specific syntactic functions for each verb. The circles
to the left of verbs represent the subject, and the right represents the object. Edges
between circles indicate the same entity is constrained to fill those particular syntactic
functions.

Consider the two distinct narrative chains in figure 2.1. It would be useful for

question answering or textual entailment to know that ‘someone denied’ is also a

likely event in the left chain, while ‘someone replaces’ temporally follows the right.

Narrative chains (such as Firing of Employee or Executive Resigns) offer the structure

and power to directly infer these new subevents by providing critical background

knowledge. In part due to its complexity, automatic induction of event models such

as these has not been addressed since the early non-statistical work of Mooney and

DeJong (1985).

The first step to narrative induction is an entity-based approach to learning re-

lated events that follow a protagonist. Using a protagonist to direct the learning

process is one of the main contributions of this dissertation. The model is inspired by

Centering (Grosz et al., 1995) and other entity-based models of coherence (Barzilay

and Lapata, 2005). As a narrative progresses through a series of events, each event

is characterized by the grammatical role played by the protagonist, and by the pro-

tagonist’s shared connection to surrounding events. My algorithm is an unsupervised

distributional learning approach that uses coreferring entity mentions as evidence of

a narrative relation between two events. I use the New York Times section of the

Gigaword Corpus, Third Edition (Graff, 2002) for learning, observing coreferring en-

tity mentions within one millions newspaper articles. The result is a large, diverse

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 19

set of narrative chains that represent a wide range of domains. I also show, using

a new evaluation task called narrative cloze, that the protagonist-based learning

approach leads to better induction than a verb-only distributional approach.

After learning a chain of events, the next step is to order the events. Chapter 5

describes how to apply work in the area of temporal classification to create partial

orders of the learned events. Finally, I conclude this chapter by showing how the space

of narrative events can be clustered and pruned to create discrete sets of narrative

chains.

2.1 Comparison to Previous Work

Topic signatures and topic models are common ways to model word usage within

a particular topic or situation. As opposed to chains, they don’t contain structure,

but are based on bag-of-words representations. Topic signatures are extracted from

hand-sorted (by topic) sets of documents using log-likelihood ratios (Lin and Hovy,

2000). The likelihood ratio is used to determine if two words occurred more often than

chance within a set of documents. Topic models, such as Latent Dirichlet Allocation,

are probabilistic models that treat documents as mixtures of topics. They learn

topics as discrete distributions (multinomials) over words (Blei et al., 2003). Both

approaches can capture event words and some narrative relations, but they lack any

representation of entity and event interactions. As will be seen, my results illustrate

the amount of noise present when you ignore entities and rely purely on co-occurrence

information.

Mooney and DeJong (1985) is one of the earliest works on learning Schankian

scripts from text examples. They used a small set of simplified English sentences that

describe stories to learn generalized schemas with the goal of a question-answering

system based on this knowledge. More recently, Bean and Riloff (2004) proposed

the use of caseframe networks as a kind of contextual role knoweldge for anaphora

resolution. A caseframe is a verb and a semantic role (e.g., <patient> kidnapped).

Caseframe networks are relations between caseframes that may represent synonymy

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 20

(<patient> kidnapped and <patient> abducted) or related events (<patient> kid-

napped and <patient> released). Bean and Riloff learn these networks from two

topic-specific texts and apply them to the problem of anaphora resolution. My work

can be seen as an attempt to generalize the intuition of caseframes (finding an entire

set of events rather than just pairs of related caseframes) and apply it to a different

task (finding a coherent structured narrative in non-topic-specific text).

Brody (2007) also proposed an approach similar to caseframe networks that dis-

covers high-level relatedness between verbs by grouping verbs that share the same

lexical items in subject/object positions. He calls these shared arguments anchors.

He learned pairs of related verbs, similar to the results with caseframes. A human

evaluation of these pairs shows an improvement over baseline. This and previous

caseframe work lend credence to learning relations from verbs with common argu-

ments.

I also draw intuition from lexical chains (Morris and Hirst, 1991; Barzilay and

Elhadad, 1997), indicators of text coherence from word overlap/similarity. They found

that repeated word usage correlates to overall text coherence. Barzilay and Lapata

(2005) use a similar technique to improve coherence in a summarization application.

My use of a repeated protagonist across verb arguments can be viewed as a type of

lexical chain. To the best of my knowledge, this approach is the first to apply these

assumptions to acquire explicit knowledge from text, rather than simply model text

coherence.

Work on semantic similarity learning such as Chklovski and Pantel (2004) also

automatically learns relations between verbs. They used hand-coded query patterns

like “X and then Y” to retrieve matches from a search engine, and collected pairs of

words that filled the pattern’s parameters. My work does not rely on specific patterns

or hand-coded knowledge, but I utilize their mutual information distributional scoring

metric between verbs. I also differ with my use of a protagonist as the indicator of

relatedness, and I learn richer structure by learning how entities interact with my

learned events.

Fujiki et al. (2003) investigated script acquisition on a limited domain by ex-

tracting the 41 most frequent pairs of events from the first paragraph of newspaper

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 21

articles, using the assumption that the paragraph’s textual order follows temporal

order. Manshadi et al. (2008) and Gordon (2010) built n-gram models of verb-object

pairs from “story genre” blogs as a way of modeling event sequences. They show

performance of 64.7% in predicting a document’s event order, but the connection

between blog order and real-world order has not yet been studied. Bejan (2008) also

modeled event scenarios by utilizing Latent Dirichlet Allocation to cluster event words

in the Timebank Corpus (Pustejovsky et al., 2003). Finally, Bejan (2009) looked into

semantic roles of events, using supervised learning of specific verbs based on labeled

FrameNet data.

In contrast to all previous work on modeling events, I learn event structures for

thousands of events, jointly induce the structures, and learn who and how the partic-

ipants are involved. Further, my learning algorithm does not depend on annotated

corpora, simplified text, or other human intervention.

Since initial publication of my results, Regneri et al. (2010) looked into crowd-

sourcing schema creation, and Kasch and Oates (2010) showed how web queries can

alternatively inform schema learning.

2.2 The Narrative Chain Model

2.2.1 Definition

This model is inspired by Centering (Grosz et al., 1995) and other entity-based models

of coherence (Barzilay and Lapata, 2005) in which an entity is in focus through

a sequence of sentences. I use this same intuition to induce narrative chains. I

assume that although a narrative has several participants, there is a central actor

who characterizes a narrative chain: the protagonist. Narrative chains are thus

structured by the protagonist’s grammatical roles in the events.

The task, therefore, is to learn events that constitute narrative chains. Formally,

a narrative chain is a partially ordered set of narrative events that share a com-

mon actor. A narrative event is a tuple of an event (most simply a verb) and its

participants, represented as typed dependencies. Typed dependencies represent the

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 22

My dog likes eating fruit

nsubjposs xcomp dobj

My dog likes eating fruit

VBZ

VP

VBG NN

NP

VP

S

VP

S

NP

Typed DependenciesPhrase Structure

Figure 2.2: Comparing two representations of a sentence’s structure: a phrase struc-
ture tree and a typed dependency graph.

grammatical relationships between tokens in a sentence (e.g., the dog is the subject

of barks). This is in contrast to the syntactic phrase structure representation of sen-

tences. Figure 2.2 graphically compares the two representations. Typed dependencies

naturally fit event structures that are more concerned with higher level relations (e.g.,

subjects, objects) rather than lower level phrase structure (e.g., VP – VB NP). Since

I am focusing on a single actor in this study, a narrative event is thus a tuple of the

event and the typed dependency of the protagonist: 〈event, dependency〉. An ordered

narrative chain is a set of narrative events {e1, e2, ..., en}, where n is the size of the

chain, and a relation B(ei, ej) that is true if narrative event ei occurs strictly before

ej in time. I will address the question of time in chapter 5.

2.2.2 The Protagonist

The notion of a protagonist motivates my approach to narrative learning. I make the

following assumption of narrative coherence to drive the learning process.

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 23

Narrative Coherence Assumption

Verbs that share coreferring arguments within a document are semantically

connected by virtue of narrative discourse structure.

A single document may contain more than one narrative (or topic), but the narrative

coherence assumption states that a series of argument-sharing verbs is more likely to

participate in a narrative chain than those not sharing. In addition, this narrative

approach captures grammatical constraints on narrative coherence. Simple distri-

butional learning might discover that the verb push is related to the verb fall, but

narrative learning can capture additional facts about the participants, specifically,

that the object or patient of the push is the subject or agent of the fall.

Each focused protagonist chain offers one perspective on a narrative, similar to

the multiple perspectives on a commercial transaction event offered by buy and sell.

The following passage from a newspaper article illustrates how a protagonist connects

related events.

The oil stopped gushing from BPs ruptured well in the Gulf of Mex-

ico when it was capped on July 15 and engineers have since been working

to permanently plug it. The damaged Macondo well has spewed about

4.9m barrels of oil into the gulf after an explosion on April 20 aboard the

Deepwater Horizon rig which killed 11 people. BP said on Monday that

its costs for stopping and cleaning up the spill had risen to $6.1bn.

In bold font are four entity mentions (BP’s ruptured well, it, it, damaged Ma-

condo well) of the protagonist in this paragraph, linked through coreference resolu-

tion. These four entity mentions connect four different event words (gushing, capped,

plug, and spewed). All four events are highly related to each other, and the protago-

nist automatically connects them for the learning algorithm. Other less-related events

(e.g., working, said, and risen) are not connected. Previous work that relies on simple

co-occurence statistics cannot differentiate between these two sets as the protagonist

does. The next sections more formally describe and evaluate this intuition.

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 24

2.2.3 Partial Ordering

An ordered narrative chain, by definition, includes a partial ordering of events. Early

work on scripts included ordering constraints with more complex preconditions and

side effects on the sequence of events. This chapter presents work toward a partial

ordering and leaves logical constraints, such as preconditions and causation, as future

work. Chapter 5 focuses on how temporal learning of this partial ordering can be

accomplished.

2.3 Learning Narrative Relations

My model learns basic information about a narrative chain: the protagonist and the

constituent subevents, although not their ordering. For this I need a metric for the

relation between an event and a narrative chain.

Pairwise relations between events are first extracted unsupervised. A distribu-

tional score based on how often two events share grammatical arguments (using

pointwise mutual information) is used to create this pairwise relation. Finally, a

global narrative score is built such that all events in the chain provide feedback on

the event in question (whether for inclusion or for decisions of inference).

Given a list of observed verb/dependency counts, I approximate the pointwise

mutual information (PMI) by:

pmi(〈w, d〉 , 〈v, g〉)) = log
P (〈w, d〉 , 〈v, g〉)
P (〈w, d〉)P (〈v, g〉)

(2.1)

where 〈w, d〉 is the verb/dependency pair w and d (e.g., 〈push, subject〉). The nu-

merator is defined by:

P (〈w, d〉 , 〈v, g〉) =
C(〈w, d〉 , 〈v, g〉)∑

x,y

∑
d,f C(〈x, d〉 , 〈y, f〉)

(2.2)

where C(〈x, d〉 , 〈y, f〉) is the number of times the two events 〈x, d〉 and 〈y, f〉 had

a coreferring entity filling the values of the dependencies d and f . I also adopt the

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 25

‘discount score’ from Pantel and Ravichandran (2004) to penalize low occuring words.

pmid(〈w, d〉 , 〈v, g〉) = pmi(〈w, d〉 , 〈v, g〉) (2.3)

∗ C(〈x,d〉,〈y,f〉)
C(〈x,d〉,〈y,f〉)+1

∗ min(C(〈x,d〉),C(〈y,f〉))
min(C(〈x,d〉),C(〈y,f〉))+1

Given the debate over appropriate metrics for distributional learning, I also ex-

perimented with the t-test. My experiments found that PMI outperforms the t-test

on this task by itself and when interpolated together using various mixture weights.

Once pairwise relation scores are calculated, a global narrative score can then be

built such that all events provide feedback on the event in question. For instance,

given all narrative events from a chain in a document, I can find the next most likely

event to occur by maximizing the chain’s score with each possible event.

chainscore(C, 〈w, d〉) =
∑
〈v,g〉∈C

pmi(〈w, d〉 , 〈v, g〉) (2.4)

max
j:0<j<m

chainscore(C, ej) (2.5)

where C is the chain of events and ej is the jth event in the training corpus of m

observed events. A ranked list of guesses can be built from this max and I hypothesize

that the more events in the chain, the more informed the ranked output. An example

of a chain with three events and the top six ranked guesses is given in figure 2.3.

2.3.1 Evaluation Metric: Narrative Cloze

The cloze task (Taylor, 1953) is used to evaluate a system (or human) for language

proficiency by removing a random word from a sentence and having the system at-

tempt to fill in the blank (e.g., I forgot to the waitress for the good service).

Depending on the type of word removed, the test can evaluate syntactic knowledge

as well as semantic. Deyes (1984) proposed an extended task, discourse cloze, to

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 26

Known events:
〈pleaded, subject〉, 〈admits, subject〉, 〈convicted, object〉

Likely Events:

〈sentenced, object〉 0.89 〈indicted, object〉 0.74
〈paroled, object〉 0.76 〈fined, object〉 0.73
〈fired, object〉 0.75 〈denied, subject〉 0.73

Figure 2.3: Three narrative events and the six most likely events to include in the
same chain.

evaluate discourse knowledge (removing phrases that are recoverable from knowledge

of discourse relations like contrast and consequence).

I present a new cloze task that requires narrative knowledge to solve, the narra-

tive cloze. The narrative cloze is a sequence of narrative events in a document from

which one event has been removed. The task is to predict the missing verb and typed

dependency. Take this example text about American football with McCann as the

protagonist:

1. McCann threw two interceptions early.

2. Toledo pulled McCann aside and told him he’d start.

3. McCann quickly completed his first two passes.

These clauses are represented in the narrative model as the following five events:

〈threw, subject〉, 〈pulled, object〉, 〈told, object〉, 〈start, subject〉,
〈completed, subject〉.

These verb/dependency events make up a narrative cloze model. The model allows

us to remove 〈threw, subject〉 and use the remaining four events to rank this missing

event. Removing a single such pair to be filled in automatically allows us to evaluate

a system’s knowledge of narrative relations and coherence. I do not claim this cloze

task to be solvable even by humans, but rather assert it as a comparative measure to

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 27

evaluate narrative knowledge. Further, this task is particularly attractive for narra-

tive chains because it aligns with one of the original ideas behind Schankian scripts,

namely that scripts help humans ‘fill in the blanks’ when language is underspecified.

2.3.2 Narrative Cloze Experiment

I use years 1994-2004 (1,007,227 documents) of the New York Times section of the

Gigaword Corpus, Third Edition (Graff, 2002) for training. The document count does

not include duplicate news stories. I found up to 18% of the corpus are duplications,

mostly AP reprints. I automatically found these by matching the first two paragraphs

of each document, removing exact matches. I parse the text into typed dependency

graphs with the Stanford Parser (de Marneffe et al., 2006)1, recording all verbs with

subject, object, or prepositional typed dependencies. I use the OpenNLP2 coreference

engine to resolve the entity mentions. For each document, the verb pairs that share

coreferring entities are recorded with their dependency types. Particles are included

with the verb.

I used 10 news stories from the 1994 section of the corpus for development. The

stories were hand chosen to represent a range of topics such as business, sports, pol-

itics, and obituaries. I used 69 news stories from the 2001 (year selected randomly)

section of the corpus for testing (also removed from training). The test set docu-

ments were randomly chosen and not preselected for a range of topics. From each

document, the entity involved in the most events was selected as the protagonist. For

this evaluation, I only look at verbs. All verb clauses involving the protagonist are

manually extracted and translated into the narrative events (verb,dependency). Ex-

ceptions that are not included are verbs in headlines, quotations (typically not part

of a narrative), “be” properties (e.g., john is happy), modifying verbs (e.g., hurried

to leave, only leave is used), and multiple instances of one event.

The original test set included 100 documents, but those without a narrative chain

at least five events in length were removed, leaving 69 documents. Most of the removed

documents were not stories, but genres such as interviews and cooking recipes. An

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://opennlp.sourceforge.net

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 28

New York Times Editorial

〈occupied, subject〉 〈brought, subject〉 〈rejecting, subject〉
〈projects, subject〉 〈met, subject〉 〈appeared, subject〉
〈offered, subject〉 〈voted, pp for〉 〈offer, subject〉
〈thinks, subject〉

Figure 2.4: One of the 69 test documents, containing 10 narrative events. The pro-
tagonist is President Bush.

example of an extracted chain is shown in figure 2.4.

I evalute with Narrative Cloze using leave-one-out cross validation, removing one

event and using the rest to generate a ranked list of guesses. The test dataset produces

740 cloze tests (69 narratives with 740 events). After the model generates its ranked

guesses, the position of the correct event is averaged over all 740 tests for the final

score. I penalize unseen events by setting their ranked position to the length of

the guess list (ranging from 2k to 15k). This harshly penalizes the missed guess by

considering its rank as the end of the guess list.

Figure 2.3 is an example of a ranked guess list for a short chain of three events.

If the original document contained 〈fired, object〉, this cloze test would score 3.

Baseline

I want to measure the utility of the protagonist and the narrative coherence assump-

tion, so the baseline learns relatedness strictly based upon verb co-occurence. The

PMI is then defined as between all occurrences of two verbs in the same document.

This baseline evaluation is verb only, as dependencies require a protagonist to fill

them.

After initial evaluations, the baseline was performing very poorly due to the huge

amount of data involved in counting all possible verb pairs (using a protagonist vastly

reduces the number). I experimented with various count cutoffs to remove rare oc-

curring pairs of verbs. The final results use a baseline where all pairs occurring less

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 29

than 10 times in the training data are removed.

Since the verb-only baseline does not use typed dependencies, my narrative model

cannot directly compare to this abstracted approach. I thus modified the narrative

model to ignore typed dependencies, but still only count event pairs with shared argu-

ments. Thus, I calculate the PMI across verbs that share arguments. This approach

is called the Protagonist approach in the Results. The full narrative model with

the protagonist that includes the grammatical dependencies is called Typed Deps.

Results

Experiments with varying sizes of training data are presented in figure 2.5. Each

ranked list of candidate verbs for the missing event in the Baseline and Protagonist

approaches contained approximately nine thousand candidates. Of the 740 cloze

tests, 714 of the removed events were present in their respective list of guesses. This

is encouraging as only 3.5% of the events are unseen (or do not meet cutoff thresholds).

When all training data is used (1994-2004), the average ranked position is 1826 for

Baseline and 1160 for Protagonist (1 being most confident). The Baseline performs

better at first (years 1994-5), but as more data is seen, the Baseline worsens while the

Protagonist improves. This verb-only protagonist model shows a 36.5% improvement

over the baseline trained on all years. Results from the full Typed Deps model, not

comparable to the baseline, parallel the Protagonist results, improving as more data

is seen (the average ranked position is 1908 with all of the training data; the Typed

Deps line has lower overall scores because the number of possible 〈verb, dependency〉
events is much higher than verb-only). I also ran the experiment without OpenNLP

coreference, and instead used exact and substring matching for coreference resolution.

This showed a 5.7% absolute decrease in the verb-only results. These results show

that a protagonist greatly assists in narrative judgements.

2.4 Discrete Narrative Event Chains

Up to this point, I have learned narrative relations across all possible events and their

arguments. However, the discrete partitioned lists of events for which Schank scripts

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 30

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
0

2

4

6

8

10

12

14

16

18

20

Training Data from 1994−X

R
an

ke
d

Po
si

tio
n

%

Narrative Cloze Test

 Baseline
 Protagonist
 Typed Deps

Figure 2.5: Results with varying sizes of training data. Year 2003 is not explicitly
shown because it has an unusually small number of documents compared to other
years.

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 31

are most famous have not yet been constructed.

I intentionally did not set out to reproduce explicit self-contained scripts in the

sense that the Restaurant Script is complete and cannot include other events. The

name narrative was chosen to imply a likely set of events that is common in spoken

and written retelling of world events. Discrete sets have the drawback of shutting out

unseen and unlikely events from consideration. It is advantageous to consider a space

of possible narrative events and the ordering within, not a closed list.

However, it is worthwhile to construct discrete narrative chains, if only to see

whether the combination of event learning and ordering produce script-like structures.

This is easily achievable by using the PMI scores from section 2.3 in an agglomerative

clustering algorithm, and then applying the ordering algorithm that is described in

chapter 5 to produce a directed graph.

Figures 2.6 and 2.7 show two learned chains after clustering and ordering. Each

arrow indicates a before relation. Duplicate arrows implied by rules of transitivity are

removed. Figure 2.6 is remarkably accurate, and figure 2.7 addresses one of the chains

from this chapter’s introduction, the employment narrative. The core employment

events are accurate, but clustering included life events (born, died, graduated) from

obituaries of which some temporal information is incorrect. As Chapter 5 will address,

my supervised temporal corpus does not include obituaries, thus I suffer from sparsity

in training data.

2.5 Discussion

I have shown that it is possible to learn unordered narrative event chains without

human intervention from raw text. Not only do the learned narrative relations show

improvements over a baseline, but narrative chains offer hope for many other areas of

NLP. Inference, coherence in summarization and generation, slot filling for question

answering, and frame induction are all potential areas.

The main contribution of this chapter is the use of the protagonist to guide the

learning process. The protagonist acts as a hook to extract a list of related events from

each document, effectively learning a new measure of event similarity, the narrative

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 32

Figure 2.6: An automatically learned Prosecution Chain. Arrows indicate the before
relation.

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 33

Figure 2.7: An Employment Chain. Dotted lines indicate incorrect before relations.

CHAPTER 2. LEARNING NARRATIVE EVENT CHAINS 34

relation. The 37% improvement over a verb-only baseline shows that pure distri-

butional approaches based on bags-of-words are not as effective. The protagonist

is a discourse-level relation that has not been explored in previous word similarity

work and has implications for a range of NLP applications that rely on similarity

judgements.

Second, the narrative chain representation is a significant contribution to knowl-

edge representations for NLP. I showed how the event space of narrative relations can

be clustered to create discrete sets of narrative event chains. While it is unclear if

these are better than an unconstrained distribution of events, they do offer insight

into the quality of narratives. This is the first work to learn both entities and events

in a script-like representation. Large-scale learning of these chains show promise to

inform more advanced NLP applications that require deeper reasoning. Chapter 6

describes in detail one such application: information extraction.

Finally, an important area not yet discussed is the possibility of using narrative

chains for semantic role learning. A narrative chain can be viewed as defining the

semantic roles of a chain of events, constraining it against roles of the other events in

the chain. An argument’s class can then be defined as the set of narrative arguments

in which it appears. I will define and expand on this idea in the next chapter.

This initial narrative chain model provides an important first step toward learning

the rich causal, temporal and inferential structure of narrative schemas, and more

broadly, of scripts and frames. The next chapter shows how to learn such a model:

the narrative schema.

Chapter 3

Learning Narrative Schemas

This chapter extends the narrative event chain representation to include all partic-

ipants in its set of events, rather than a single participant. Narrative event chains

from the previous chapter relied on the intuition that in a coherent text, any two

events that are about the same participants are likely to be part of the same story or

narrative. The model learned simple aspects of narrative structure (narrative chains)

by extracting events that share a single participant, the protagonist. This chapter

now extends this approach to represent sets of situation-specific events and multiple

participants not unlike scripts, caseframes (Bean and Riloff, 2004), and FrameNet

frames (Baker et al., 1998).

The core representation of this chapter and that which is used in the rest of

the dissertation is the narrative schema: coherent sequences or sets of events (ar-

rested(police,suspect), convicted(judge, suspect)) whose arguments are filled

with participant semantic roles defined over words (Judge = {judge, jury, court},
Police = {police, agent, authorities}). This chapter will describe an algorithm to

merge verbs in distinct narrative chains into an improved single narrative schema,

while the shared arguments across verbs provide rich information for inducing se-

mantic roles. As with narrative event chains, my approach does not use supervised

techniques, hand-built knowledge, or predefined classes of events or roles. The un-

supervised learning algorithm still observes coreferring arguments in chains of verbs,

but learning will now take into account all such coreferring entities, rather than a

35

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 36

single protagonist, to now learn both rich narrative event structure and argument

roles. By jointly addressing both tasks, I improve on the previous chapter’s results

and induce richer frame-specific semantic roles for all entities and events.

The narrative event chain representation has two major limitations that this chap-

ter addresses. First, the model only represents one participant (the protagonist). Rep-

resenting the other entities involved in all event slots in the narrative could potentially

provide valuable information. Second, the model does not express any information

about the protagonist, such as its type or role. Role information (such as knowing

whether a filler is a location, a person, a particular class of people, or even an inan-

imate object) could crucially inform learning and inference. I discuss both of these

contributions here.

The Case for Joint Chains

The second problem with narrative chains is that they make judgments only between

protagonist arguments, one slot per event. All entities and slots in the space of events

should be jointly considered when making event relatedness decisions.

As an illustration, consider the verb arrest. Which verb is more related, convict or

capture? A narrative chain might only look at the objects of these verbs and choose

the one with the highest score, usually choosing convict. But in this case the subjects

offer additional information; the subject of arrest (police) is different from that of

convict (judge). A more informed decision prefers capture because both the objects

(suspect) and subjects (police) are identical. This joint reasoning is absent from the

narrative chain model.

The Case for Argument Types

Narrative event chains do not specify what type of argument fills the role of pro-

tagonist. Chain learning and clustering is based only on the frequency with which

two verbs share arguments, ignoring any features of the arguments themselves. Let

figure 3.1 serve as an example of an actual chain from an article in my training data.

Given this chain of five events, I want to choose other events most likely to occur in

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 37

hunt

use

accuse

suspect

search

fly

charge
?

Figure 3.1: A narrative event chain and two as of yet unconnected events. Circles
to the left of the verbs represent the syntactic subjects of the verbs, and the right
represents objects. Edges indicate constraints between the syntactic functions that
the entity must fill.

this scenario.

One of the top scoring event slots is (fly X). Narrative chains incorrectly favor

(fly X) because it is observed during training with all five event slots, although not

frequently with any one of them. An event slot like (charge X) is much more plausible,

but is unfortunately scored lower by the model.

Representing the types of the arguments can help solve this problem. Few types

of arguments are shared between the chain and (fly X). However, (charge X) shares

many arguments with (accuse X), (search X) and (suspect X) (e.g., criminal and

suspect). Even more telling is that these arguments are jointly shared (the same or

coreferent) across all three events. Chains represent coherent scenarios, not just a set

of independent pairs, so I want to model argument overlap across all pairs.

The Case for Semantic Roles

The task of semantic role learning and labeling is to identify classes of entities that

fill predicate slots; semantic roles seem like they’d be a good model for the kind of

argument types we’d like to learn for narratives. Most work on semantic role labeling,

however, is supervised, using Propbank (Palmer et al., 2005), FrameNet (Baker et al.,

1998) or VerbNet (Kipper et al., 2000) as gold standard roles and training data. More

recent learning work has applied bootstrapping approaches (Swier and Stevenson,

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 38

2004a; He and Gildea, 2006a), but these still rely on a hand labeled seed corpus

as well as a pre-defined set of roles. Grenager and Manning (2006a) use the EM

algorithm to learn PropBank roles from unlabeled data, and unlike bootstrapping,

they don’t need a labeled corpus from which to start. However, they do require a

predefined set of roles (arg0, arg1, etc.) to define the domain of their probabilistic

model.

Green and Dorr (2005) use WordNet’s graph structure to cluster its verbs into

FrameNet frames, using glosses to name potential slots. I differ in that I attempt to

learn frame-like narrative structure from untagged newspaper text. Most similar to

us, Alishahi and Stevenson (2007) learn verb specific semantic profiles of arguments

using WordNet classes to define the roles. I learn situation-specific classes of roles

shared by multiple verbs.

Thus, two open goals in role learning include (1) unsupervised learning and (2)

learning the roles themselves rather than relying on pre-defined role classes. As just

described, narrative chains offer an unsupervised approach to event learning (goal 1),

but lack semantic role knowledge (goal 2). The following sections describe a model

that addresses both goals.

3.1 Narrative Schemas

The next sections introduce typed narrative chains and chain merging, extensions that

allow us to jointly learn argument roles with event structure.

3.1.1 Typed Narrative Chains

The first step in describing a narrative schema is to extend the definition of a nar-

rative chain to include argument types. I now constrain the protagonist to be of a

certain type or role. A Typed Narrative Chain is a partially ordered set of event

slots that share an argument, but now the shared argument is a role defined by being

a member of a set of types R. These types can be lexical units (such as observed

head words), noun clusters, or other semantic representations. I use head words in

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 39

the examples below, but I also evaluate with argument clustering by mapping head

words to member clusters created with the CBC clustering algorithm (Pantel and

Lin, 2002).

I define a typed narrative chain as a tuple (L, P,O) with L and O the set of event

slots and partial ordering as before. Let P be a set of argument types (head words)

representing a single role. An example is given here:

L = {(hunt X), (X use), (suspect X), (accuse X), (search X)}
P = {person, government, company, criminal, ...}
O = {(use, hunt), (suspect, search), (suspect, accuse) ... }

3.1.2 Learning Argument Types

As mentioned above, narrative chains are learned by parsing the text, resolving coref-

erence, and extracting chains of events that share participants. In my new model,

argument types are learned simultaneously with narrative chains by finding salient

words that represent coreferential arguments. I record counts of arguments that are

observed with each pair of event slots, build the referential set for each word from its

coreference chain, and then represent each observed argument by the most frequent

head word in its referential set (ignoring pronouns and mapping entity mentions with

person pronouns to a constant PERSON identifier). As an example, the following

contains four worker mentions:

But for a growing proportion of U.S. workers, the troubles really set in

when they apply for unemployment benefits. Many workers find their

benefits challenged.

The four bolded terms are coreferential and (hopefully) identified by coreference.

My algorithm chooses the head word of each phrase and ignores the pronouns. It then

chooses the most frequent head word as the most salient mention. In this example, the

most salient term is workers. If any pair of event slots share arguments from this set,

I count workers. In this example, the pair (X find) and (X apply) shares an argument

(they and workers). The pair ((X find),(X apply)) is counted once for narrative chain

induction, and ((X find), (X apply), workers) once for argument induction.

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 40

L = {X arrest, X charge, X raid, X seize, X confiscate, X detain, X deport }
P = {police, agent, authority, government}

Figure 3.2: A typed narrative chain. The four top arguments are given. The ordering
O is not shown.

Figure 3.2 shows the top occurring words across all event slot pairs in a criminal

scenario chain. This chain will be part of a larger narrative schema, described in

section 3.1.4.

3.1.3 Event Slot Similarity with Arguments

I now formalize event slot similarity with arguments. Narrative chains as defined

above in Chapter 2 score a new event slot 〈f, g〉 against a chain of size n by summing

over the scores between all pairs:

chainsim(C, 〈f, g〉) =
n∑

i=1

sim(〈ei, di〉 , 〈f, g〉) (3.1)

where C is a narrative chain, f is a verb with grammatical argument g, and sim(e, e′)

is the pointwise mutual information pmi(e, e′). Growing a chain by one adds the

highest scoring event.

I extend this function to include argument types by defining similarity in the

context of a specific argument a:

sim(〈e, d〉 , 〈e′, d′〉 , a) =

pmi(〈e, d〉 , 〈e′, d′〉) + λ log freq(〈e, d〉 , 〈e′, d′〉 , a)
(3.2)

where λ is a constant weighting factor and freq(b, b′, a) is the corpus count of a filling

the arguments of events b and b′. I performed a grid search to set λ = .08 to maximize

the results on the development set in the narrative cloze evaluation, discussed later.

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 41

I then score the entire chain for a particular argument:

score(C, a) =
n−1∑
i=1

n∑
j=i+1

sim(〈ei, di〉 , 〈ej, dj〉 , a) (3.3)

Using this chain score, I finally extend chainsim to score a new event slot based

on the argument that maximizes the entire chain’s score:

chainsim′(C, 〈f, g〉) =

max
a

(score(C, a) +
n∑

i=1

sim(〈ei, di〉 , 〈f, g〉 , a))
(3.4)

The argument is now directly influencing event slot similarity scores. I will use

this definition in the next section to build Narrative Schemas.

3.1.4 Narrative Schema: Multiple Chains

Whereas a narrative chain is a set of event slots, a Narrative Schema is a set of

typed narrative chains. A schema thus models all actors in a set of events. If (push

X) is in one chain, (Y push) is in another. This allows us to model a document’s

entire narrative, not just one main actor.

The Model

A narrative schema is defined as a 2-tuple N = (E,C) with E a set of events (here

defined as verbs) and C a set of typed chains over the event slots. I represent an event

as a verb v and its grammatical argument positions Dv ⊆ {subject, object, prep}.
Thus, each event slot 〈v, d〉 for all d ∈ Dv belongs to a chain c ∈ C in the schema.

Further, each c must be unique for each slot of a single verb. Using the criminal

prosecution domain as an example, a narrative schema in this domain is built as in

figure 3.3.

The three dotted boxes are graphical representations of the typed chains that are

combined in this schema. The first represents the event slots in which the criminal

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 42

police,
agent

criminal,
suspect

guilty,
innocent

judge,
jury

arrest

charge

convict
sentence

arrest

charge

convict

plead

sentence
police,agent judge,jury

arrest

charge

convict

plead

sentence

criminal,suspect

Figure 3.3: Merging typed chains into a single unordered Narrative Schema.

is involved, the second the police, and the third is a court or judge. Although my

representation uses a set of chains, it is equivalent to represent a schema as a constraint

satisfaction problem between 〈e, d〉 event slots. The next section describes how to

learn these schemas.

Learning Narrative Schemas

Previous work on narrative chains focused on relatedness scores between pairs of verb

arguments (event slots). The clustering step which built chains depended on these

pairwise scores. Narrative schemas use a generalization of the entire verb with all of

its arguments. A joint decision can be made such that a verb is added to a schema if

both its subject and object are assigned to chains in the schema with high confidence.

For instance, it may be the case that (Y pull over) scores well with the ‘police’

chain in figure 3.4. However, the object of (pull over A) is not present in any of the

other chains. Police pull over cars, but this schema does not have a chain involving

cars. In contrast, (Y search) scores well with the ‘police’ chain and (search X) scores

well in the ‘defendant’ chain too. Thus, I want to favor search instead of pull over

because the schema is already modeling both arguments.

This intuition leads us to my event relatedness function for the entire narrative

schema N , not just one chain. Instead of asking which event slot 〈v, d〉 is a best fit,

I ask if v is best by considering all slots at once:

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 43

narsim(N, v) =
∑
d∈Dv

max(β,max
c∈CN

chainsim′(c, 〈v, d〉)) (3.5)

where CN is the set of chains in the narrative N . If 〈v, d〉 does not have strong enough

similarity with any chain, it creates a new one with base score β. The β parameter

balances this decision of adding to an existing chain in N or creating a new one. Based

on experiments on the development set of the narrative cloze evaluation (upcoming

in Section 3.5), a β value that seemed to discourage creating new chains performed

the best. The value used for this section’s experiments is β = 0.2.

Building Schemas

I use equation 3.5 to build schemas from the set of events as opposed to the set of

event slots that I previously used to learn individual narrative chains. In Chapter 2,

narrative chains added the best verb-dependency pair 〈vj, gj〉 based on the following:

max
j:0<j<m

chainsim(c, 〈vj, gj〉) (3.6)

where m is the number of seen event slots in the corpus and 〈vj, gj〉 is the jth such

possible event slot. Schemas are now learned by adding events that maximize equation

3.5:

max
j:0<j<|v|

narsim(N, vj) (3.7)

where |v| is the number of observed verbs and vj is the jth such verb. Verbs are

incrementally added to a narrative schema by strength of similarity.

3.2 Sample Narrative Schemas

Figures 3.4 and 3.5 show two criminal schemas learned completely automatically

from the NYT portion of the Gigaword Corpus, Third Edition (Graff, 2002). I parse

the text into dependency graphs and resolve coreferences. The figures result from

learning over the event slot counts. In addition, table 3.1 shows five of the top fifty

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 44

arrest

charge

seize
confiscate

defendant, nichols,
smith, simpson

police, agent,
authorities, government

license

immigrant, reporter,
cavalo, migrant, aliendetain

deport

raid

Figure 3.4: Graphical view of an unordered schema automatically built starting from
the verb ‘arrest’. A β value that encouraged splitting was used for this example. I
ultimately set β = 0.2 by optimizing cloze performance on the development dataset.

scoring narrative schemas learned by my system. I artificially required the clustering

procedure to stop (and sometimes continue) at six events per schema. Six was chosen

as the size to enable us to compare to FrameNet in the next section; the mean number

of verbs in FrameNet frames is between five and six. I use the optimized β = 0.2 as

discussed above. I built a new schema starting from each verb that occurs in more

than 3000 and less than 50,000 documents in the NYT section. This amounted to

approximately 1800 verbs from which I show six varying domains captured in the top

20. Not surprisingly, most of these top schemas concern business, politics, crime, or

food.

To further illustrate the range of domains that this learning process captures, Fig-

ures 3.6 and 3.7 contain hand-selected schemas across a variety of domains. These are

some of the hundreds of schemas available online in my database of learned schemas1.

1http://cs.stanford.edu/people/nc/data/schemas/acl09/

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 45

A produce B
A sell B
A manufacture B
A *market B
A distribute B
A -develop B

A ∈ {company, inc, corp, microsoft,
iraq, co, unit, maker, ...}

B ∈ {drug, product, system, test,
software, funds, movie, ...}

B trade C
B fell C
A *quote B
B fall C
B -slip C
B rise C

A ∈ {}
B ∈ {dollar, share, index, mark, currency,

stock, yield, price, pound, ...}
C ∈ {friday, most, year, percent, thursday

monday, share, week, dollar, ...}

A own B
A *borrow B
A sell B
A buy back B
A buy B
A *repurchase B

A ∈ {company, investor, trader, corp,
enron, inc, government, bank, itt, ...}

B ∈ {share, stock, stocks, bond, company,
security, team, funds, house, ... }

A detain B
A confiscate B
A seize B
A raid B
A search B
A arrest B

A ∈ {police, agent, officer, authorities,
troops, official, investigator, ... }

B ∈ {suspect, government, journalist,
monday, member, citizen, client, ... }

A *uphold B
A *challenge B
A rule B
A enforce B
A *overturn B
A *strike down B

A ∈ {court, judge, justice, panel, osteen,
circuit, nicolau, sporkin, majority, ...}

B ∈ {law, ban, rule, constitutionality,
conviction, ruling, lawmaker, tax, ...}

Table 3.1: Five of the top fifty scored Narrative Schemas. Events and arguments
in italics were marked misaligned by FrameNet definitions. * indicates verbs not in
FrameNet. - indicates verb senses not in FameNet.

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 46

found
convict
acquit

defendant, nichols,
smith, simpson

jury, juror, court,
judge, tribunal, senate

sentence

deliberate
deadlocked

Figure 3.5: Graphical view of an unordered schema automatically built from the verb
‘convict’. Each node shape is a chain in the schema.

3.3 Evaluation: Frames and Roles

Most previous work on unsupervised semantic role labeling assumes that the set of

possible classes is very small (i.e, PropBank roles arg0 and arg1) and is known

in advance. By contrast, my approach induces sets of entities that appear in the

argument positions of verbs in a narrative schema. My model thus does not assume

the set of roles is known in advance, and it learns the roles at the same time as

clustering verbs into frame-like schemas. The resulting sets of entities (such as {police,

agent, authorities, government} or {court, judge, justice}) can be viewed as a kind

of schema-specific semantic role.

How can this unsupervised method of learning roles be evaluated? In Section 3.5

I evaluate the schemas together with their arguments in a cloze task. In this section

I perform a more qualitative evalation by comparing my schemas to FrameNet.

FrameNet (Baker et al., 1998) is a database of frames, structures that characterize

particular situations. A frame consists of a set of events (the verbs and nouns that

describe them) and a set of frame-specific semantic roles called frame elements that

can be arguments of the lexical units in the frame. FrameNet frames share com-

monalities with narrative schemas; both represent aspects of situations in the world,

and both link semantically related words into frame-like sets in which each predicate

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 47

Medical (Viral)
Events: infect transmit cause spread contract carry kill detect

Role 1:

{
transmit-o kill-s infect-s contract-o carry-o cause-s detect-o spread-s
virus disease bacteria cancer toxoplasma strain fire parasite

}
Role 2:

{
detect-s kill-o spread-o carry-s transmit-s infect-o contract-s cause-o
mosquito aids virus tick catastrophe disease aboard mite others

}
Financial
Verbs: cut raise reduce lower increase boost trim slash

Role 1:

{
raise-s cut-s increase-s reduce-s slash-s trim-s boost-s lower-s
company fed bank government rates bundesbank plan bill

}
Role 2:

{
slash-o trim-o boost-o lower-o raise-o reduce-o cut-o increase-o
rates rate price tax risk dividend stake estimate rating

}
Legal
Events: prohibit violate require allow bar forbid ban permit

Role 1:

{
violate-o forbid-s ban-s bar-s require-s allow-s prohibit-s permit-s
law bill rule amendment act treaty constitution laws policy

}
Role 2:

{
ban-o bar-o require-o permit-o forbid-o allow-o violate-s prohibit-o
company microsoft government iraq state use group banks student

}
Criminal
Events: arrest raid search detain found charge seize identify

Role 1:

{
detain-s found-s seize-s raid-s search-s charge-s identify-s arrest-s
police agent authorities officer official investigator fbi troops soldier

}
Role 2:

{
identify-o charge-o arrest-o raid-o seize-o detain-o found-o search-o
suspect police padilla officer yates driver government member citizen

}

Figure 3.6: Narrative schemas: examples were hand selected from the database to
illustrate the diversity of learned narratives.

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 48

Authorship
Events: publish sell write translate distribute edit produce read

Role 1:

{
translate-s produce-s sell-s write-s distribute-s publish-s read-s edit-s
company author group year microsoft magazine my time firm writer

}
Role 2:

{
produce-o edit-o sell-o translate-o publish-o read-o write-o distribute-o
book report novel article story letter magazine film letters movie show

}
Sports
Events: outscore outshot outrebounded beat score outplay trail tie

Role 1:

{
beat-s tie-s outplay-s score-s outrebounded-s outscore-s outshot-s trail-s
king maverick sonics ranger lakers bruin angel dodger mets yankee

}
Role 2:

{
beat-o tie-o score-o outrebounded-o outscore-o outshot-o outplay-o...
knicks king net maverick lakers state point patriot yankee jet celtic

}
Legislative
Events: veto pass oppose approve sign support require sponsor

Role 1:

{
sign-s oppose-s approve-s require-o veto-s sponsor-s support-s pass-s
clinton bill house bush president state congress voter governor group

}
Role 2:

{
sponsor-o require-s veto-o pass-o approve-o oppose-o support-o sign-o
bill legislation measure law amendment plan treaty agreement...

}
Culinary
Events: peel slice chop cook saute boil cut add

Role 1:

{
cut-s boil-s add-s slice-s peel-s saute-s cook-s chop-s
wash thinly heat plan company potato cool finn remove measure

}
Role 2:

{
peel-o slice-o boil-o add-o cook-o chop-o cut-o saute-o
potato onion tomato beet cucumber mushroom shrimp sample eggs steak

}
Figure 3.7: Narrative schemas: examples were hand selected from the database to
illustrate the diversity of learned narratives.

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 49

draws its argument roles from a frame-specific set. They differ in that schemas focus

on events in a narrative, while frames focus on events that share core participants.

Nonetheless, the fact that FrameNet defines frame-specific argument roles suggests

that comparing my schemas and roles to FrameNet would be elucidating.

I evaluate the top 50 learned narrative schemas, ordered as described in the previ-

ous section, and use FrameNet to perform qualitative evaluations on three aspects of

schema: verb groupings, linking structure (the mapping of each argument role to syn-

tactic subject or object), and the roles themselves (the set of entities that constitutes

the schema roles).

Verb groupings To compare a schema’s event selection to a frame’s lexical units,

I first map the top 50 schemas to the FrameNet frames that have the largest overlap

with each schema’s six verbs. I was able to map 34 of the 50 narratives to FrameNet

(for the remaining 16, no frame contained more than one of the six verbs). The

remaining 34 schemas contained 6 verbs each for a total of 204 verbs. 40 of these

verbs, however, did not occur in FrameNet, either at all, or with the correct sense. Of

the remaining 164 verb mappings, 103 (63%) occurred in the closest FrameNet frame

or in a frame one link away. 61 verbs (37%) thus occurred in a different frame than

the one chosen.

I examined the 37% of verbs that occurred in a different frame. Most occurred

in related frames, but did not have FrameNet links between them. For instance, one

schema includes the causal verb trade with unaccusative verbs of change like rise and

fall. FrameNet separates these classes of verbs into distinct frames, distinguishing

motion frames from caused-motion frames. Even though trade and rise are in dif-

ferent FrameNet frames, they do in fact have the narrative relation that my system

discovered. Of the 61 misaligned events, I judged all but one or two to be plausible

in a narrative sense. Thus although not exactly aligned with FrameNet’s notion of

event clusters, my induction algorithm seems to do very well.

Linking structure Next, I compare a schema’s linking structure, the grammatical

relation chosen for each verb event. I thus decide, e.g., if the object of the verb arrest

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 50

(arrest B) plays the same role as the object of detain (detain B), or if the subject of

detain (B detain) would have been more appropriate.

I evaluated the clustering decisions of the 34 schemas (204 verbs) that mapped

to frames. For each chain in a schema, I identified the frame element that could

correctly fill the most verb arguments in the chain. The remaining arguments were

considered incorrect. Because I assumed all verbs to be transitive, there were 408

possible arguments (subjects and objects) in the 34 schemas. Of these 408 arguments,

386 were correctly clustered together, achieving 94.6% accuracy.

The schema in table 3.1 with events detain, seize, arrest, etc. shows some of these

errors. The object of all of these verbs is an animate theme, but confiscate B and

raid B are incorrect; people cannot be confiscated/raided. They should have been

split into their own chain within the schema.

Argument Roles Finally, I evaluate the learned sets of entities that fill the ar-

gument slots. As with the above linking evaluation, I first identify the best frame

element for each argument. For example, the events in the first schema of table 3.1

map to the Manufacturing frame. Argument B was identified as the Product frame

element. I then evaluate the top 10 arguments in the argument set, judging whether

each is a reasonable filler of the role. In my example, drug and product are correct

Product arguments. An incorrect argument is test, as it was judged that a test is not

a product.

I evaluated all 50 schemas. The 34 mapped schemas used their assigned frames,

and I created frame element definitions for the remaining 16 that were consistent with

the syntactic positions. There were 869 guessed arguments (50 schemas, top 20 max

in 2 chains of each schema), and 659 were judged correct for a precision of 76%. This

number includes Person and Organization names as correct fillers.

Most of the errors appear to be from parsing mistakes. Several resulted from

confusing objects with adjuncts. Others misattached modifiers, such as including

most as an argument. The cooking schema appears to have attached verbal arguments

learned from instruction lists (wash, heat, boil). Two schemas require situations

as arguments, but the dependency graphs chose as arguments the subjects of the

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 51

embedded clauses, resulting in 20 incorrect arguments in these schemas.

3.4 Evaluation: Coverage

The previous FrameNet evaluation showed agreement between our learned schemas

and a human created database. However, a concern for any automatically acquired

knowledgebase of schemas is its relevance to and coverage over new data. We want to

measure the extent to which this dissertation’s narrative schema database can explain

the events described in newspaper articles.

3.4.1 Event Coverage

This evaluation measures the amount of overlap between the learned schemas and

the naturally occurring sets of events in documents. Newspaper articles describe

sequences of events and often contain several narrative schemas. Chapter 2 defined a

document’s central entity as the protagonist and manually labeled a set of documents

for the main narrative chain involving only that actor. While I evaluated those

narrative instances for an event prediction task, I now make use of the same data

to measure how much of the chain is covered by the full narrative schemas. My

learned database contains generalized schemas, and so I do not expect all chains to

be covered as documents describe very specific narrative instances, however, the goal

is to discover the extent of overlap with the database.

Data

I use the narrative chain test set as described in the cloze evaluation in chapter 2.

The test set includes 69 randomly selected documents from the 2001 NYT portion

of the Gigaword Corpus, Third Edition Graff (2002). The most repeated entity in

each document is labeled as the protagonist, and all verbs of which he/she is the

subject, object or preposition phrase are hand extracted to represent the narrative

chain (note that this is not a full schema since it extracts a single entity and only

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 52

the grammatical positions that it fills). Verbs with low IDF scores2 are ignored. This

data is also available online3.

Overlap Metric

A narrative chain is a set of connected events, so I want to measure the connectivity

between these same events and my learned schemas. An event in a narrative chain

is a predicate p (e.g., arrest) and a syntactic position d (e.g., subject or object). In

a test document, there are edges between all events involving the protagonist, so the

events are fully connected by definition.

In my learned schemas, an edge exists between two events if there exists some

narrative schema such that one of its roles contains both events. I define coverage as

a graph connectivity problem. Given a set of events from a document, how connected

is the set in my database of learned schemas?

There are several options for measuring connectivity in graph theory. I adopt the

largest connected component approach for this analysis. A connected component is

a subset of vertices such that a path exists between every vertex in the subset. For

each test document’s connected events (the narrative chain), I compute the largest

connected component in our database’s edges and return the number of vertices in

the component. For a test chain of length n, returning n indicates full coverage by the

database (there exists a schema such that all n events are members). Returning zero

means that none of the events in the test chain appear together in a single schema.

As a concrete example, consider a newspaper article describing someone who has

written and published a book, using verbs like write, edit, publish, distribute, and

sell. Considering the protagonist of such an article as the book being written, the

test set will include the narrative chain as follows: write-obj, edit-obj, publish-obj,

distribute-obj, sell-obj. These object positions are the nodes of the graph, and we

consider it fully connected. This evaluation finds the single narrative schema with

the largest connected component including these verbs. If there is a schema with four

of the five verbs connected by their objects, the score is 4/5 = 80%.

20.9 threshold, removing any below it
3http://cs.stanford.edu/people/nc/data/chains

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 53

3.4.2 Results

For each test document, the size of the largest connected component is computed and

the percentage of events covered by that component is returned. For instance, if a

document has 10 events in its narrative chain and the database contains a narrative

schema that includes 7 of the events, 70% is our coverage over that document. We

macro-average these percents across all 69 documents’ 740 events. The final percent

coverage for my learned schema database using the database with schemas of size 12

is 34.0%.

The database of narrative schemas thus connects approximately one out of every

three events in newspaper articles. In other words, one third of a document’s events

are part of a single self-contained narrative schema. Since schemas characterize gen-

eral sequences of events, it is expected that a significant portion of an article’s events

would occur outside a single schema, or the story would not be newsworthy for con-

veying new information. This suggests that over one third of a news story is about

common events, with the remaining two thirds containing new information in which

the reader may be interested. Chapter 2 found that only 3.5% of the events were

completely unconnected to other events in the space of seen event pairs. This further

suggests that the two thirds of news events are connected, but not prevelant enough to

draw generalizations in the form of a narrative schema and may be situation-specific.

How many of these can still be learned through further advances remains for future

work.

3.5 Evaluation: Cloze

The previous section compared my learned knowledge to current work in event and

role semantics. I now provide a more formal evaluation against untyped narrative

chains. The two main contributions of schemas are (1) adding typed arguments and

(2) considering joint chains in one model. I evaluate each using the narrative cloze

test as in Chapter 2.

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 54

3.5.1 Narrative Cloze

The cloze task (Taylor, 1953) evaluates human understanding of lexical units by

removing a random word from a sentence and asking the subject to guess what is

missing. The narrative cloze is a variation on this idea that removes an event slot

from a known narrative chain. Performance is measured by the position of the missing

event slot in a system’s ranked guess list. I presented this new evaluation framework

in detail in Section 2.3.1. As discussed earlier, this task is particularly attractive for

narrative schemas (and chains) because it aligns with one of the original ideas behind

Schankian scripts, namely that scripts help humans ‘fill in the blanks’ when language

is underspecified.

3.5.2 Training and Test Data

I count verb pairs and shared arguments over the NYT portion of the Gigaword

Corpus, Third Edition (years 1994-2004), approximately one million articles. I parse

the text into typed dependency graphs with the Stanford Parser (de Marneffe et al.,

2006), recording all verbs with subject, object, or prepositional typed dependencies.

Unlike in Section 2.3.1, I lemmatize verbs and argument head words. I use the

OpenNLP4 coreference engine to resolve entity mentions.

The test set is the same as in (Chambers and Jurafsky, 2008b). 100 random news

articles were selected from the 2001 NYT section of the Gigaword Corpus. Articles

that did not contain a protagonist with five or more events were ignored, leaving a

test set of 69 articles. I used a smaller development set of size 17 to tune parameters.

3.5.3 Typed Chains

The first evaluation compares untyped against typed narrative event chains. The

typed model uses equation 3.4 for chain clustering. The dotted line ‘Chain’ and solid

‘Typed Chain’ in figure 3.8 shows the average ranked position over the test set. The

untyped chains plateau and begin to worsen as the amount of training data increases,

4http://opennlp.sourceforge.net/

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 55

but the typed model is able to improve for some time after. I see a 6.9% gain at

2004 when both lines trend upwards.

3.5.4 Narrative Schema

The second evaluation compares the performance of the narrative schema model

against single narrative chains. I ignore argument types and use untyped chains

in both (using equation 1 instead of 4). The dotted line ‘Chain’ and solid ‘Schema’

show performance results in figure 3.8. Narrative Schemas have better ranked scores

in all data sizes and follow the previous experiment in improving results as more data

is added even though untyped chains trend upward. I see a 3.3% gain at 2004.

3.5.5 Typed Narrative Schema

The final evaluation combines schemas with argument types to measure overall gain.

I evaluated with both head words and CBC clusters as argument representations.

Not only do typed chains and schemas outperform untyped chains, combining the

two gives a further performance boost. Clustered arguments improve the results

further, helping with sparse argument counts (‘Typed Schema’ in figure 3.8 uses CBC

arguments). Overall, using all the data (by year 2004) shows a 10.1% improvement

over untyped narrative chains.

3.6 Discussion

The main contributions in this chapter are threefold: a joint model for all entities

in the schema, learning typed arguments (rather than just constraints between an

unknown protagonist), and a characterization of the semantic roles in a broader sit-

uation’s context. Further, this is the first fully automatic approach to learning such

structured knowledge about events and entities from raw text.

The significant improvement in the cloze evaluation shows that even though nar-

rative cloze does not evaluate argument types, jointly modeling the arguments with

events improves event clustering. Likewise, the FrameNet evaluation shows that

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 56

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
6.5

7

7.5

8

8.5

9

9.5

Training Data from 1994−X

R
an

ke
d

Po
si

tio
n

%

Narrative Cloze Test

 Chain
 Typed Chain
 Schema
 Typed Schema

Figure 3.8: Results on the narrative cloze test with varying sizes of training data.
Both narrative chains and narrative schemas are compared with their untyped and
typed versions.

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 57

learned schemas are precise as compared against human-created frames: over 94% ac-

curacy in syntax to role links, and 76% accuracy in selectional preferences. Likewise,

this FrameNet comparison suggests that modeling related events assists argument

learning, and vice versa. The tasks mutually inform each other.

Further, my new argument learning algorithm carries implications for semantic

role learning. Not only does it perform unsupervised induction of situation-specific

role classes, but the resulting roles and linking structures may also offer the possibil-

ity of (unsupervised) FrameNet-style semantic role labeling. Although this learned

representation is not the traditional verb-specific role labeling task, this latter finding

is one of the first attempts toward an unsupervised induction of situation-specific role

classes.

Finding the best argument representation is an important future direction. Nar-

rative schemas use a basic representation of noun clusters, or bag of words, observed

coreferring between the event pairs. The performance of these typed schemas in figure

3.8 showed that while the other non-typed approaches leveled off, the typed schemas

continually improved with more data. The exact balance between lexical units, clus-

ters, or more general (traditional) semantic roles remains to be solved, and may be

application specific.

This chapter’s learning algorithm contains several parameters that control schema

learning. The maximum size of the learned schemas is an important parameter,

although it is quite flexible and may vary based on the end application’s needs. The

β parameter is perhaps the most important as it controls when an argument starts

a new chain, or joins with an already established chain. I found that the cloze

evaluation performed best when β discouraged new chains. This is why most of the

learned schemas have only two chains, combining transitive verbs with the same two

arguments. A lower β creates diverse schemas with more chains, but at the expense

of the evaluations. Future work needs to study what types of situations are being

missed as a result, and how this affects end-user applications such as Information

Extraction (Chapter 6).

Finally, one property of narrative schemas not addressed in this chapter is the

ordering of events within schemas. I have shown how to induce event structure and

CHAPTER 3. LEARNING NARRATIVE SCHEMAS 58

argument roles, but leave ordering to be integrated separately via the supervised al-

gorithm in Chapter 4. Finally, as discussed in Chapter 1, a range of natural language

understanding applications can benefit from the rich inferential structures that nar-

rative schemas provide. Chapter 6, in particular, will perform a complete information

extraction task that applies learned narrative schemas to extract and understand the

information contained in newspaper articles.

Chapter 4

Learning to Order Events

Up to this point, I have described how to learn unordered narrative schemas from

raw text. This chapter now addresses the task of learning the event orderings within

the schemas. Knowing the order of events can enable many important NLP appli-

cations. For example, knowing that convictions occur after arrests enables systems

to reason over causation, infer future events, and recover a document’s original time-

line. However, in order to learn general event orders, I first need to learn to order

specific instances of events as they occur in documents. This chapter describes two

approaches to building supervised classifiers that can make such within-document

decisions. I will describe two significant contributions to the field of event ordering:

a state-of-the-art pairwise classifier for events, and the first global constraint model

over a document’s entire context.

The first significant contribution in this chapter is a fully automatic machine

learning architecture that learns temporal relations between pairs of events. The

first stage learns the temporal attributes of single event descriptions, such as tense,

grammatical aspect, and aspectual class. These imperfect guesses, combined with

other linguistic features, are then sent to a second stage that classifies the temporal

relationship between two events. I analyze my new features and present results on the

TimeBank Corpus that are 3% higher than previous work that used perfect human

tagged features. This was the first system to classify the order of event pairs without

gold features.

59

CHAPTER 4. LEARNING TO ORDER EVENTS 60

Second, this chapter describes the first global model that constrains a document’s

possible event orderings. Most work on event-event ordering has focused on improving

classifiers for pairwise decisions, ignoring obvious contradictions in the global space

of events when misclassifications occur. My global framework to repair these event

ordering mistakes was the first to be proposed for this task. This chapter addresses

three main factors involved in a global framework: the global optimization algorithm,

the constraints that are relevant to the task, and the level of connectedness across

pairwise decisions. I employ Integer Linear Programming to address the first factor,

drawing from related work in paragraph ordering (Bramsen et al., 2006). After find-

ing minimal gain with the initial model, I explore reasons for and solutions to the

remaining two factors through temporal reasoning and transitivity rule expansion.

This chapter thus accomplishes both aspects of learning event order: a local clas-

sifier for event-event pairs, and a global model that integrates the local classifier’s

scores to maintain consistency and maximize the document’s overall predictions. I

begin with a brief review of previous work, and then present the pairwise and global

models in order.

4.1 Previous Work

The creation of the Timebank Corpus (Pustejovsky et al., 2003) facilitated the de-

velopment of machine learning techniques for event ordering tasks, and provided a

common evaluation with which to compare. The corpus labels verbs and nouns as

events, and then annotates the time relations between event pairs (e.g., before, af-

ter, simultaneous, includes, etc.). Several research thrusts have since approached this

event-event ordering task with supervised learning. Mani et al. (2007) built a Max-

Ent classifier that assigns each pair of events one of six relations from an augmented

Timebank corpus. Their classifier relied on gold features from the corpus annotations,

including verb tense, aspect, modality, polarity and event class. Pairwise agreement

on tense and aspect are also included (e.g., do both events occur in the past?). In a

second study, they applied rules of temporal transitivity to greatly expand the corpus,

providing better results on this enlarged dataset.

CHAPTER 4. LEARNING TO ORDER EVENTS 61

The TempEval challenges (Verhagen et al., 2007, 2009) have also spurred increased

work in this area, focusing on learning the ordering between events, time expressions,

and the document timestamp. Approaches to solving the ordering task range from

rule-based systems (Hagege and Tannier, 2007; Puscasu, 2007), to feature-based su-

pervised classifiers (Min et al., 2007; Hepple et al., 2007; Bethard and Martin, 2007),

to an HMM model of the events as they occur in textual order (Cheng et al., 2007).

The contest uses two relations, before and after, in a semi-complete textual classi-

fication task with a new third relation to distinguish relations that can be labeled

with high confidence from those that are uncertain, called vague. The task was a

simplified classification task from Timebank in that only one verb, the main verb, of

each sentence was used. Thus, the task can be viewed as ordering the main events in

pairwise sentences rather than the entire document.

Bethard et al. (2007) took a large subset of Timebank and explored the event

space for event-event pairs occurring in verb-clause relationships. They hand-tagged

every pair of events in these relationships, forcing the annotators to use an overlap

label when no before/after relationship was clear. This differed from Timebank in

that Timebank annotators were never required to label any specific pairs. Timebank

also does not have a more general overlap relation. They built custom features and

achieved 89% accuracy for this subtask. I will look at both this smaller set of three

relations, and the full set of Timebank relations.

In contrast to work on the Timebank Corpus, Lapata and Lascarides (2006)

trained an event classifier for inter-sentential events. They built a corpus by sav-

ing sentences that contained two events, one of which is triggered by a key time word

(e.g., after and before). Their learner was based on syntax and clausal ordering fea-

tures. Boguraev and Ando (2005) evaluated machine learning on related tasks, but

not relevant to event-event classification.

My work is most similar to the supervised approaches on Timebank and TempEval

in that I learn relations between event pairs, but my work extends their results both

with new features and by using fully automatic linguistic features from raw text that

are not hand selected as gold values from an annotated corpus.

As the above work on ordering events has focused on local pairwise decisions,

CHAPTER 4. LEARNING TO ORDER EVENTS 62

these approaches ignored globally inconsistent labels. However, temporal ordering is

the type of domain in which global constraints should be relatively easy to represent

and reason over. Bramsen et al. (2006) proposed such a model to assist in ordering

paragraphs of text (not atomic events) in the medical domain. They found that

Integer Linear Programming (ILP) outperformed other methods. I build on this

work to predict globally consistent orderings. I explore how to use time expressions

to connect events that are otherwise disconnected in the document, and augment

the global graph of events to encourage the ILP algorithm to enforce consistency.

Since publication of this global model (Chambers and Jurafsky, 2008a), others have

developed complementary global models using markov logic based on my approach

(Yoshikawa et al., 2009).

This chapter thus solves the original Timebank task of predicting event-event pair

orders over all six relations (e.g., before, immediately before, includes, simultaneous,

begins, ends), being the first to do this without gold features. I then use the three

core relations of TempEval (before,after,vague) and build a new global architecture

that applies them to the full document ordering task. I extend this previous work by

describing the first temporal reasoning component and embedding it within a global

constraint model using ILP.

4.2 Pairwise Classification

Initial work on the Timebank Corpus revealed that the six-class classification of tem-

poral relations is very difficult, even for human annotators. The initial supervised

classification scores reported on Timebank achieved 62.5% accuracy when using gold-

standard features as marked by humans (Mani et al., 2006). I will describe an ap-

proach that uses features extracted automatically from the raw text that not only

duplicates this performance, but surpasses its absolute accuracy by 3%. I do so

through advanced linguistic features and a surprising finding that using automatic

rather than hand-labeled tense and aspect knowledge causes only a slight performance

degradation.

Section 4.2.2 describes the first stage of basic temporal extraction, followed by a

CHAPTER 4. LEARNING TO ORDER EVENTS 63

full description of the second stage in 4.2.3. The evaluation and results on Timebank

then follow in section 4.2.4.

4.2.1 Data: The Timebank Corpus

I use the Timebank Corpus (v1.1) for evaluation. The Timebank Corpus (Pustejovsky

et al., 2003) is a corpus of 186 newswire articles that are tagged for events, time

expressions, and relations between the events and times. There are 3345 individual

events that are further tagged for temporal information such as tense, modality and

grammatical aspect. Time expressions use the TimeML (Ingria and Pustejovsky,

2002) markup language. There are 6 main relations and their inverses in Timebank:

before, ibefore, includes, begins, ends and simultaneous. Simultaneous is the most

prevelant event-event relation in the corpus.

Solely for comparison with Mani et al. (2006), I also add their 73 document Opin-

ion Corpus to create a larger dataset called the OTC. I present both Timebank and

OTC results so future work can compare against either.

This chapter describes work that classifies the relations between events, making

use of relations between events and times, and between the times themselves to help

inform the decisions.

4.2.2 Stage One: Learning Event Attributes

The task in Stage One is to learn the five temporal attributes associated with events as

tagged in the Timebank Corpus. (1) Tense and (2) grammatical aspect are necessary

in any approach to temporal ordering as they define both temporal location and the

shape of the event. (3) Modality and (4) polarity indicate hypothetical or non-occuring

situations, and finally, (5) event class is the type of event (e.g., process, state, etc.).

The event class has 7 values in Timebank, but this supervised feature-based approach

is compatible with other class divisions as well. The range of values for each event

attribute is as follows, also found in Pustejovsky et al. (2003):

CHAPTER 4. LEARNING TO ORDER EVENTS 64

Feature Type Possible Values

tense none, present, past, future

aspect none, prog, perfect, prog perfect

class report, aspectual, state, I state

I action, perception, occurrence

modality none, to, should, would, could, can, might

polarity positive, negative

Let the following sentence serve as an example of an event and how its attributes

affect interpretation:

John had been living here for quite some time.

The event in this sentence is had been living, and its syntactic markers contain

important information about its position in time. The tense is past, the grammatical

aspect is perfect, and its event class is an occurrence. It has no modality or polarity.

The tense and aspect attributes describe the temporal shape of the event and can

help in reasoning about the relative position of multiple events (Moens and Steedman,

1988). For instance, if this example is followed by a present tense verb, I can conclude

that the living event occurred before it. A past perfect verb followed by a present

verb is a strong indicator that the first temporally occurred before the second, and

the next section will build a classifier to learn these clues.

Machine Learning Classification

I use a supervised learning approach to identify each of the five event attribute values.

I experimented with Naive Bayes, Maximum Entropy, and SVM classifiers, but found

Naive Bayes to perform as well or slightly better than the others on this stage one.

The small size of the Timebank Corpus may be a factor in the generative approach

coming out ahead. The results in this chapter are from Naive Bayes with Laplace

smoothing.

The features I used on this stage include part of speech tags of neighboring words

(two before the event) and the event word itself, lemmas of the event words, WordNet

CHAPTER 4. LEARNING TO ORDER EVENTS 65

tense POS-2-event, POS-1-event, POS-of-event, have word, be word
aspect POS-of-event, modal word, be word
class synset
modality none
polarity none

Table 4.1: Features selected for learning each temporal attribute. POS-2 is two tokens
before the event.

Event Attribute Accuracy
tense aspect class

Baseline 52.21 84.34 54.21
Accuracy 88.28 94.24 75.2

Baseline (OTC) 48.52 86.68 59.39
Accuracy (OTC) 87.46 88.15 76.1

Table 4.2: Accuracy of the Stage One classifiers.

synsets, and the appearance of auxiliaries and modals before the event. This latter

set included all derivations of be and have auxiliaries, modal words (e.g., may, might,

etc.), and the presence/absence of not. I performed feature selection (simple ablation

experiments) on this list of features, learning a different set of features for each of the

five attributes. The list of selected features for each is shown in figure 4.1.

Modality and polarity did not select any features because their majority class

baselines were so high (98%) that learning these attributes does not improve results.

A deeper analysis of event interaction would require a modal analysis, but it seems

that a newswire domain does not provide great variation in modalities. Consequently,

modality and polarity are not used in Stage Two. The classifiers’ accuracy on tense,

aspect and class are shown in figure 4.2 with majority class baselines. Tense classifica-

tion achieves 36% absolute improvement, aspect 10% and class 21%. Performance on

the OTC set is similar, although aspect is slightly lower. These imperfect predictions

are then passed to Stage Two.

CHAPTER 4. LEARNING TO ORDER EVENTS 66

4.2.3 Stage Two: Event-Event Features

The task in this stage is to choose the temporal relation between two events, given

the pair of events. I assume that the events have been extracted and that there exists

some relation between them (using the Timebank annotations); the task is to predict

the correct relation. The Timebank Corpus uses relations that are based on Allen’s

set of thirteen (Allen, 1984). Six of the relations are inverses of the other six, and

so I condense the set to before, ibefore, includes, begins, ends and simultaneous. I

map the thirteenth identity into simultaneous. One oddity is that Timebank includes

both during and included by relations, but during does not appear in Timebank

documentation. While I don’t know how previous work handles this, I condense

during into included by (invert to includes).

Features

The types of features used in my supervised classifier are categorized and described

below. Information about the tense, aspect, and event class is used from the output

of Stage One’s classifiers.

Event Specific: The five temporal attributes from Stage One are used for each event

in the pair, as well as the event strings, lemmas and WordNet synsets. Mani et al.

(2007) added two other features from these, indicators if the events agree on tense

and aspect. I add a third, event class agreement. Further, to capture the dependency

between events in a discourse, I create new bigram features of tense, aspect and class

(e.g., “present past” if the first event is in the present, and the second is past).

Part of Speech: For each event, I include the Penn Treebank POS tag of the event,

the tags for the two tokens preceding, and one token following. I use the Stanford

Parser1 to extract them. I also extend previous work and create bigram POS features

of the event and the token before it, as well as the bigram POS of the first event and

the second event.

1http://nlp.stanford.edu/software/lex-parser.shtml

CHAPTER 4. LEARNING TO ORDER EVENTS 67

Event-Event Syntactic Properties: A phrase P is said to dominate another phrase

Q if Q is a daughter node of P in the syntactic parse tree. I leverage the syntactic

output of the parser to create the dominance feature for intra-sentential events. It

is either on or off, depending on the two events’ syntactic dominance. Lapata and

Lascarides (2006) used a similar feature for subordinate phrases and an indicator be-

fore for textual event ordering. I adopt these features and also add a same-sentence

indicator if the events appear in the same sentence.

Prepositional Phrase: Since preposition heads are often indicators of temporal

class, I created a new feature indicating when an event is part of a prepositional

phrase. The feature’s values range over 34 English prepositions. Combined with

event dominance (above), these two features capture direct intra-sentential relation-

ships. To my knowledge, this is the first use of this feature in temporal ordering.

Temporal Discourse: Seeing tense as a type of anaphora, it is a natural conclusion

that the relationship between two events becomes stronger as the textual distance

draws closer. Because of this, I adopted the view that intra-sentential events are gen-

erated from a different distribution than inter-sentential events. I therefore train two

models during learning, one for events in the same sentence, and the other for events

crossing sentence boundaries. It essentially splits the data on the same sentence fea-

ture. As I will show, this turned out to be a very useful feature. It is called the split

approach in the next section.

Example (require, compromise):

“Their solution required a compromise...”

Features

(lemma1: require) (lemma2: compromise) (dominates: yes)

(tense-bigram: past-none) (aspect-bigram: none-none)

(tense-match: no) (aspect-match: yes) (before: yes) (same-sent: yes)

CHAPTER 4. LEARNING TO ORDER EVENTS 68

Timebank Corpus Gold Auto Auto-Split
Baseline 37.22 37.22 46.58
Mani 50.97 50.19 53.42
Mani+Lapata 52.29 51.57 55.10
All+New 60.45 59.13 59.43

Mani stage one attributes, tense/aspect-match, event strings

Lapata dominance, before, lemma, synset

New prep-phrases, same-sent, class-match, POS uni/bigrams, tense/aspect/class-
bigrams

Table 4.3: Incremental accuracy by adding features.

4.2.4 Evaluation and Results

All results are from a 10-fold cross validation (as in previous work) using SVM (Chang

and Lin, 2001). I also evaluated Naive Bayes and Maximum Entropy. Naive Bayes

(NB) returned similar results to SVM and I present feature selection results from NB

to compare the added value of my new features.

The input to Stage Two is a list of pairs of events; the task is to classify each

according to one of six temporal relations. Four sets of results are shown in figure

4.3. Mani, Mani+Lapata and All+New correspond to performance on features as

listed in the figure. The three table columns indicate how a gold-standard Stage

One (Gold) compares against imperfect guesses (Auto) and the guesses with split

distributions (Auto-Split).

A clear improvement is seen in each row, indicating that the new features pro-

vide significant improvement over previous work. A decrease in performance is seen

between columns gold and auto, as expected, because imperfect data is introduced,

however, the drop is manageable. The auto-split distributions make significant gains

for the Mani and Lapata features, but less when all new features are involved. The

highest fully-automatic accuracy on Timebank is 59.43%, a 4.3% gain from the new

features. I also report 67.57% gold and 65.48% auto-split on the OTC dataset to

compare against Mani’s reported hand-tagged features of 62.5%, a gain of 3% with

automatic features.

CHAPTER 4. LEARNING TO ORDER EVENTS 69

Same Sentence Diff Sentence
POS-1 Ev1 2.5% Tense Pair 1.6%
POS Bigram Ev1 3.5% Aspect Ev1 0.5%
Preposition Ev1 2.0% POS Bigram 0.2%
Tense Ev2 0.7% POS-1 Ev2 0.3%
Preposition Ev2 0.6% Word EV2 0.2%

Table 4.4: Top 5 features as added in feature selection w/ Naive Bayes, with their
percentage improvement.

4.2.5 Discussion

Previous work on OTC achieved classification accuracy of 62.5%, but this result was

based on “perfect data” from human annotators. A low number from good data is at

first disappointing, however, I show that performance can be improved through more

linguistic features and by isolating the distinct tasks of ordering inter-sentential and

intra-sentential events.

My classifier shows a clear improvement over previous work. The features that

capture dependencies between the events, rather than isolated features provide the

greatest utility. Also, the impact of imperfect temporal data is surprisingly minimal.

Using Stage One’s results instead of gold values hurts performance by less than 1.4%.

This suggests that much of the value of the hand-coded information can be achieved

via automatic approaches. Stage One’s event class shows room for improvement, yet

the negative impact on Event-Event relationships is manageable. It is conceivable

that more advanced features would better classify the event class, but improvement

on the event-event task would be slight.

Finally, it is important to note the difference in classifying events in the same

sentence vs. cross-boundary. Splitting the 3345 pairs of corpus events into two sepa-

rate training sets makes the training data more sparse, but I still see a performance

improvement when using Mani/Lapata features. Figure 4.4 gives a hint to the differ-

ence in distributions as the best features of each task are very different. Intra-sentence

events rely on syntax cues (e.g., preposition phrases and POS), while inter-sentence

events use tense and aspect. However, the differences are minimized as more advanced

CHAPTER 4. LEARNING TO ORDER EVENTS 70

features are added. The final row in figure 4.3 shows minimal split improvement.

4.2.6 Pairwise Events Conclusion

I have described a two-stage machine learning approach to event-event temporal re-

lation classification. I have shown that imperfect event attributes can be used ef-

fectively, that a range of event-event dependency features provide added utility to a

classifier, and that events within the same sentence have distinct characteristics from

those across sentence boundaries. This fully automatic raw text approach achieves a

3% improvement over previous work based on perfect human tagged features. Fur-

ther, the Stage One results may prove useful to other NLP tasks that desire tense

and aspect features independent of my event ordering task, such as event coreference

and document classification.

4.3 Jointly Combining Implicit Constraints

Most work on event-event ordering has focused on improving classifiers for pairwise

decisions, ignoring obvious contradictions in the global space of events when misclas-

sifications occur. The previous section advanced the state-of-the-art in this area, but

suffers from the same drawbacks. A global framework to repair these event ordering

mistakes had not yet been explored until my publication of the global model described

in this section (Chambers and Jurafsky, 2008a).

This chapter addresses three main factors involved in a global framework: the

global optimization algorithm, the constraints that are relevant to the task, and the

level of connectedness across pairwise decisions. I employ Integer Linear Program-

ming to address the first factor, drawing from related work in paragraph ordering

(Bramsen et al., 2006). After finding minimal gain with the initial model, I explore

reasons for and solutions to the remaining two factors through temporal reasoning

and transitivity rule expansion. I analyze the connectivity of the Timebank Corpus

and show how textual events can be indirectly connected through a time normaliza-

tion algorithm that automatically discovers relations between time expressions (e.g.,

CHAPTER 4. LEARNING TO ORDER EVENTS 71

today and tomorrow have a clear after relationship that is not always labeled in the

corpus). I show how this increased connectivity is essential for a global model to

improve performance.

I present three progressive evaluations of a global model on the Timebank Cor-

pus, showing a 3.6% gain in accuracy over its original set of relations, and an 81%

increase in training data size from previous work. In addition, I present the first

results on Timebank that include an unknown relation, establishing a benchmark for

performance on the full task of document ordering.

4.3.1 The Global Model

My initial model has two components: (1) a pairwise classifier between events, and

(2) a global constraint satisfaction layer that maximizes the confidence scores from

the classifier. The first is based on my pairwise event-event classifier from the pre-

vious section (Mani et al., 2007; Chambers et al., 2007) and the second is a novel

contribution to global event order classification.

Pairwise Classification

Classifying the relation between two events is the basis of my global model. A soft

classification with confidence scores is important for the global maximization step that

is described in the next section. I use the support vector machine (SVM) classifiers

from the previous section and use the probabilities from these pairwise SVM decisions

as my confidence scores. These scores are then used to choose an optimal global

ordering.

Table 4.5 summarizes the features from the previous event-event section that I

use here. They vary from POS tags and lexical features surrounding the event, to

syntactic dominance, to whether or not the events share the same tense, grammatical

aspect, or aspectual class. These features are the highest performing set on the basic

6-way classification of Timebank.

For the purposes of this comparative study of global constraints, I use Timebank’s

gold labeled event attributes.

CHAPTER 4. LEARNING TO ORDER EVENTS 72

Feature Description
Word* The text of the event
Lemma* The lemmatized head word
Synset* The WordNet synset of head word
POS* 4 POS tags, 3 before, and 1 event
POS bigram* The POS bigram of the event and its preceding tag
Prep* Preposition lexeme, if in a prepositional phrase
Tense* The event’s tense
Aspect* The event’s grammatical aspect
Modal* The modality of the event
Polarity* Positive or negative
Class* The aspecual class of the event
Tense Pair The two concatenated tenses
Aspect Pair The two concatenated aspects
Class Pair The two concatenated classes
POS Pair The two concatenated POS tags
Tense Match true if the events have the same tense
Aspect Match true if the events have the same aspect
Class Match true if the events have the same class
Dominates true if the first event syntactically dominates the second
Text Order true if the first event occurs first in the document
Entity Match true if they share an entity as an argument
Same Sent true if both events are in the same sentence

Table 4.5: The features to learn temporal relations between two events. Asterisks (*)
indicate features that are duplicated, one for each of the two events.

Global Constraints

Pairwise classifiers can make contradictory classifications due to their inability to

consider other decisions. For instance, the following three decisions are in conflict:

A before B

B before C

A after C

Transitivity is not taken into account. In fact, there are several ways to resolve the

conflict in this example. Given confidence scores (or probabilities) for each possible

CHAPTER 4. LEARNING TO ORDER EVENTS 73

before after unknown
A r1 B .5 .3 .2
B r2 C .4 .3 .3
A r3 C .4 .5 .1
total 1.3 1.1 .6

A r1 B .5 .3 .2
B r2 C .4 .3 .3
A r3 C .2 .7 .1
total 1.1 1.3 .6

Table 4.6: Two sets of confidence scores. The first set chooses before for all three
labels, and the second chooses after. Other lower-scoring valid relation sets also exist,
such as before, unknown, and before.

relation between the three pairs, I can compute an optimal label assignment (optimal

over the imperfect scores from a classifier). Different scores can lead to different

conflict resolutions. Table 4.6 shows two resolutions given different sets of scores.

The first chooses before for all three relations, while the second chooses after.

Bramsen et al. (2006) presented a variety of approaches to using transitivity con-

straints to help inform pairwise decisions. They found that Integer Linear Program-

ming (ILP) performed the best on a paragraph ordering task, consistent with its

property of being able to find the optimal solution for a set of constraints. Other

approaches are variations on a greedy strategy of adding pairs of events one at a time,

ordered by their confidence. These can lead to suboptimal configurations, although

they are guaranteed to find a solution. Mani et al. (2007) hypothetically proposed

one of these greedy strategies, but did not implement such a system. I implemented

both a greedy best-first strategy and ILP, but found ILP to outperform the greedy

approach.

My Integer Linear Programming framework uses the following objective function:

max
∑

i

∑
j

pijxij (4.1)

CHAPTER 4. LEARNING TO ORDER EVENTS 74

with added constraints:

∀i∀j xij ∈ {0, 1} (4.2)

∀i xi1 + xi2 + ...+ xim = 1 (4.3)

where xij represents the ith pair of events classified as the jth relation of m relations.

Thus, each pair of events generatesm variables. Given n pairs of events, there are n∗m
variables. pij is the probability of classifying pair i with relation j. Equation (4.2)

(the first constraint) simply says that each variable must be 0 or 1. Equation (4.3)

contains m variables for a single pair of events i representing its m possible relations.

It states that one relation must be set to 1 and the rest to 0. In other words, a pair of

events cannot have two relations at the same time. Finally, a transitivity constraint is

added for all connected pairs i, j, k, for each transitivity condition that infers relation

c given a and b:

xia + xjb − xkc <= 1 (4.4)

I generated the set of constraints for each document and used lpsolve2 to solve the

ILP constraint problem.

The transitivity constraints are only effective if the available pairwise decisions

constitute a connected graph. If pairs of events are disconnected, then transitiv-

ity makes little to no contribution because these constraints are only applicable to

connected chains of events.

Transitive Closure

In order to connect the event graph, I draw on work from Mani et al. (2007) and

apply transitive closure to the documents. Transitive closure was first proposed not

to address the problem of connected event graphs, but rather to expand the size

of training data for relations such as before. Timebank is a relatively small corpus

with few examples of each relation. One way of expand the training set is through

2http://sourceforge.net/projects/lpsolve

CHAPTER 4. LEARNING TO ORDER EVENTS 75

Total Event-Event Relations After Closure

before after
Timebank 592 656
+ closure 3919 3405

Table 4.7: The number of event-event relations after transitive closure.

transitive rules. A few rules are given here:

A simultaneous B ∧ A before C → B before C

A includes B ∧ A ibefore C → B before C

A before B ∧ A ends C → B after C

While the original motivation was to expand the training size of tagged relations,

this approach also creates new connections in the graph, replacing previously unla-

beled event pairs with their true relations. I adopted this approach and closed the

original set of 12 relations to help connect the global constraint model.

Initial Experiment

The first evaluation of my global temporal model is on the Timebank Corpus over the

labeled relations before and after. I merged ibefore and iafter into these two relations

as well, ignoring all others. I use this task as a reduced evaluation to study the specific

contribution of global constraints. I also chose this strict ordering task because it is

well defined from a human understanding perspective. Snow et al. (2008) shows that

average internet users can make before/after decisions with very high confidence,

although the distinction with an unknown relation is not as clear. An evaluation

including unknown (or vague as in TempEval) is presented later.

I expanded the corpus (prior to selecting the before/after relations) using transitive

closure over all 12 relations as described above. Table 4.7 shows the increase in data

size. The number of before and after relations increase by a factor of six.

I trained and tested the system with 10-fold cross validation and micro-averaged

accuracies. The folds were randomly generated to separate the 186 files into 10 folds

CHAPTER 4. LEARNING TO ORDER EVENTS 76

Comparative Results

Training Set Accuracy
Timebank Pairwise 66.8%
Global Model 66.8%

Table 4.8: Using the base Timebank annotated tags for testing, accuracy on be-
fore/after tags in the two models.

(18 or 19 files per fold). The same 10-way split is used for all the evaluations. I used

libsvm3 to implement the event-event pairwise SVM classifiers.

Table 4.8 shows the results from my ILP model with transitivity constraints.

The first row is the baseline pairwise classification trained and tested on the original

Timebank relations. The second row gives performance with ILP. The model shows

no improvement. The global ILP constraints did affect local decisions, changing 175

of them (out of 7324), but the changes cancelled out and had no affect on overall

accuracy.

Loosely Connected Graph

Why didn’t a global model help? The problem lies in the graph structure of Time-

bank’s annotated relations. The Timebank annotators were not required to annotate

relations between any particular pair of events. Instead, they were instructed to an-

notate what seemed appropriate due to the almost insurmountable task of annotating

all pairs of events. A modest-sized document of 30 events, for example, would contain(
30
2

)
= 435 possible pairs. Annotators thus marked relations which they deemed fit,

most likely between obvious and critical relations to the understanding of the arti-

cle. The vast majority of possible relations are untagged, thus leaving a large set of

unlabeled (and disconnected) unknown relations.

Figure 4.1 graphically shows all relations that are annotated between events and

time expressions in one of the shorter Timebank documents. Nodes represent events

and times (event nodes start with the letter ‘e’, times with ‘t’), and edges represent

3http://www.csie.ntu.edu.tw/̃ cjlin/libsvm

CHAPTER 4. LEARNING TO ORDER EVENTS 77

temporal relations. Solid lines indicate hand annotations, and dotted lines indicate

new rules from transitive closure (only one, from event e4 to time t14). As can be

seen, the graph is largely disconnected and a global model contributes little informa-

tion since transitivity constraints cannot apply.

Timebank Annotation of wsj 0551

Figure 4.1: Annotated relations in document wsj 0551.

The large amount of unlabeled relations in the corpus presents several problems.

First, building a classifier for these unknown relations is easily overwhelmed by the

huge training set. Second, many of the untagged pairs have non-unknown ordering

relations between them, but were missed by the annotators. This point is critical

because one cannot filter this noise when training an unknown classifier. The noise

problem will appear later and will be discussed in my final experiment. Finally,

the space of annotated events is very loosely connected and global constraints cannot

assist local decisions if the graph is not connected. The results of this first experiment

illustrate this latter problem.

Bethard et al. (2007) strengthen the claim that many of Timebank’s untagged

relations should not be left unlabeled. They performed an independent annotation

of 129 of Timebank’s 186 documents, tagging all events in verb-clause relationships.

They found over 600 valid before/after relations that are untagged in Timebank, on

CHAPTER 4. LEARNING TO ORDER EVENTS 78

average three per document. One must assume that if these nearby verb-clause event

pairs were missed by the annotators, the much larger number of pairs that cross

sentence boundaries were also missed.

The next model thus attempts to fill in some of the gaps and further connect the

event graph by using two types of knowledge. The first is by integrating Bethard’s

data, and the second is to perform temporal reasoning over the document’s time

expressions (e.g., yesterday or january 1999).

4.3.2 A Global Model With Time

My initial model contained two components: (1) a pairwise classifier between events,

and (2) a global constraint satisfaction layer. However, due to the sparseness in

the event graph, I now introduce a third component addressing connectivity: (3) a

temporal reasoning component to inter-connect the global graph and assist in training

data expansion.

One important aspect of transitive closure includes the event-time and time-time

relations during closure, not just the event-event links. Starting with 5,947 different

types of relations, transitive rules increase the dataset to approximately 12,000. How-

ever, this increase wasn’t enough to be effective in global reasoning. To illustrate the

sparsity that still remains, if each document was a fully connected graph of events,

Timebank would contain close to 160,000 relations4, more than a 13-fold increase.

More data is needed to enrich the Timebank event graph. Two types of informa-

tion can help: (1) more event-event relations, and (2) a separate type of information

to indirectly connect the events: event-X-event. I incorporate the new annotations

from Bethard et al. (2007) to address (1) and introduce a new temporal reasoning pro-

cedure to address (2). The following section describes this novel approach to adding

time expression information to further connect the graph.

4Sum over the # of events nd in each document d,
(
nd

2

)

CHAPTER 4. LEARNING TO ORDER EVENTS 79

Time-Time Information

As described above, I use event-time relations to produce the transitive closure, as

well as annotated time-time relations. It is unclear if Mani et al. (2007) used these

latter relations in their work.

However, I also add new time-time links that are deduced from the logical time

intervals that they describe. Time expressions can be resolved to time intervals with

some accuracy through simple rules. New time-time relations can then be added to

the space of events through time stamp comparisons. Take this newswire example:

The Financial Times 100-share index shed 47.3 points to close at

2082.1, down 4.5% from the previous Friday, and 6.8% from

Oct. 13, when Wall Street’s plunge helped spark the current weak-

ness in London.

The first two expressions (‘previous Friday ’ and ‘Oct. 13 ’) are in a clear before re-

lationship that Timebank annotators captured. The ‘current’ expression, is correctly

tagged with the PRESENT REF attribute to refer to the document’s timestamp.

Both ‘previous Friday ’ and ‘Oct. 13 ’ should thus be tagged as being before this ex-

pression. However, the annotators did not tag either of these two before relations, and

so my timestamp resolution procedure fills in these gaps. This is a common example

of two expressions that were not tagged by the annotators, yet are in a clear temporal

relationship.

I use Timebank’s gold standard TimeML annotations to extract the dates and

times from the time expressions. In addition, those marked as PRESENT REF are

resolved to the document timestamp. Time intervals that are strictly before or after

each other are thus labeled and added to the space of events. I then create new before

relations based on the deterministic procedure given in figure 4.2. As in the example

given above, the phrases ‘Oct 13’ and ‘previous Friday’ are sent to this procedure and

a before link is automatically added. All other time-time orderings not including the

before relation are ignored (i.e. includes is not created, although could be with minor

changes).

CHAPTER 4. LEARNING TO ORDER EVENTS 80

function isBefore(interval1, interval2) {

if interval1.year < interval2.year

return true

if interval1.year == interval2.year

if interval1.month < interval2.month

return true

if interval1.month == interval2.month

if interval1.day < interval2.day

return true

end

end

end

return false

end

Figure 4.2: The straightforward procedure that compares two time intervals.

This new time-time knowledge is used in two separate stages of my model. The

first is just prior to transitive closure, enabling a larger expansion of the tagged

relations set and reduce the noise in the unknown set. The second is in the constraint

satisfaction stage where I add the automatically computed time-time relations (with

the gold event-time relations) to the global graph to help correct local event-event

mistakes.

Temporal Reasoning Experiment

My second evaluation continues the use of the two-way classification task with be-

fore and after to explore the contribution of closure, time normalization, and global

constraints.

I augmented the corpus with the labeled relations from Bethard et al. (2007) and

added the automatically created time-time relations as described in section 4.3.2. I

then expanded the corpus using transitive closure. Table 4.9 shows the progressive

data size increase as I incrementally add each to the closure algorithm.

The time-time generation component automatically added 2459 new before and

after time-time relations into the 186 Timebank documents. This is in comparison

CHAPTER 4. LEARNING TO ORDER EVENTS 81

Total Event-Event Relations After Closure

before after
Timebank 3919 3405
+ time-time 5604 5118
+ time/bethard 7111 6170

Table 4.9: The number of event-event before and after relations after transitive closure
on each dataset.

Comparative Results with Closure

Training Set Accuracy
Timebank Pairwise 66.8%
Global Model 66.8%
Global + time/bethard 70.4%

Table 4.10: Using the base Timebank annotated tags for testing, the increase in
accuracy on before/after tags.

to only 157 relations that the human annotators tagged, less than 1 per document

on average. The second row of table 4.9 shows the drastic effect that these time-

time relations have on the number of available event-event relations for training and

testing. Adding both Bethard’s data and the time-time data increases the training

set’s size by 81% over closure without it.

Using this expanded dataset for training, I again performed 10-fold cross validation

with micro-averaged accuracies. However, each fold tested only on the transitively

closed Timebank data (the first row of table 4.9). In other words, the Bethard data

is not included in the test sets since most other work does not evaluate on this set.

In addition, accuracy numbers may be inflated on the Bethard data as they focus on

a specific language construct. The training set, on the other hand, uses all available

data (the third row of table 4.9) including the Bethard data as well as my new time-

time links for closure.

Table 4.10 shows the results from this new model. The first row is the baseline

pairwise classification trained and tested on the original Timebank labeled relations

only. My model improves on this baseline by 3.6% absolute. This improvement is

CHAPTER 4. LEARNING TO ORDER EVENTS 82

statistically significant (p < 0.000001, McNemar’s test, 2-tailed).

Discussion

To further illustrate why my model now improves local decisions, I continue my

previous graph example. The actual text for the graph in figure 4.1 is shown here:

docstamp: 10/30/89 (t14)

Trustcorp Inc. will become(e1) Society Bank & Trust when its

merger(e3) is completed(e4) with Society Corp. of Cleveland, the bank

said(e5). Society Corp., which is also a bank, agreed(e6) in June(t15)

to buy(e8) Trustcorp for 12.4 million shares of stock with a market

value of about $450 million. The transaction(e9) is expected(e10) to

close(e2) around year end(t17).

The automatic time normalizer computes and adds three new time-time relations,

two connecting t15 and t17 with the document timestamp, and one connecting t15

and t17 together. These are not otherwise tagged in the corpus. Figure 4.3 shows

the augmented document. The double-line arrows indicate the three new time-time

relations and the dotted edges are the new relations added by my transitive closure

procedure. Most critical to my global framework, three of the new edges are event-

event relations that help to expand the training data’s size. When this document

is used in testing (rather than training), these new edges help inform my transitive

rules during classification within the ILP framework.

Even with this added information, disconnected segments of the graph are still

apparent even in this example. However, the 3.6% performance gain encourages us

to move to the final full task.

4.3.3 Final Experiment with Unknowns

The final evaluation expands the set of relations to include unlabeled relations and

tests on the entire dataset available to us. The following is now a classification task

between the three relations: before, after, and unknown.

CHAPTER 4. LEARNING TO ORDER EVENTS 83

Time-Time + Closure

Figure 4.3: Before and after time-time links with closure.

I duplicated the previous evaluation by adding the labeled relations from Bethard

et al. (2007) and my automatically created time-time relations. I then expanded this

dataset using transitive closure. Unlike the previous evaluation, I also use this entire

dataset for testing, not just for training. Thus, all event-event relations in Bethard

as well as Timebank are used to expand the dataset with transitive closure and are

used in training and testing. I wanted to fully evaluate document performance on

every possible event-event relation that logically follows from the data.

As before, I converted IBefore and IAfter into before and after respectively, while

all other relations are reduced to unknown. This relation set coincides with TempEval-

07’s core three relations (although they use vague instead of unknown).

Rather than include all unlabeled pairs in the unknown set, I only include the

unlabeled pairs that span at most one sentence boundary. In other words, events in

adjacent sentences are included in the unknown set if they were not tagged by the

Timebank annotators. The intuition is that annotators are more likely to label nearby

events, and so events in adjacent sentences are more likely to be actual unknown

relations if they are unlabeled. The distant events in the text were likely overlooked

by convenience, not because they truly constituted an unknown relationship.

CHAPTER 4. LEARNING TO ORDER EVENTS 84

Classification Accuracy
% unk Base (Just Pairs) Global Model Global+Time

0 72.0% 72.2% 74.0%
1 69.4% 69.5% 71.3%
3 65.5% 65.6% 67.1%
5 63.7% 63.8% 65.3%
7 61.2% 61.6% 62.8%
9 59.3% 59.5% 60.6%
11 58.1% 58.4% 59.4%
13 57.1% 57.1% 58.1%

Table 4.11: Overall accuracy when training with different percentages of unknown
relations included. 13% of unknowns is about equal to the number of befores.

The set of possible sentence-adjacent unknown relations is very large (approxi-

mately 50000 unknown compared to 7000 before), and so I randomly select a percent-

age of these relations for each evaluation. I used the same SVM approach with the

features described in section 4.3.1.

Results

Results are presented in table 4.11. The rows in the table are different training/testing

runs on varying sizes of unknown training data. There are three columns with accu-

racy results of increasing complexity. The first, base, are results from pairwise clas-

sification decisions over Timebank and Bethard with no global model. The second,

global, are results from the Integer Linear Programming global constraints, using the

pairwise confidence scores from the base evaluation. Finally, the global+time col-

umn shows the ILP results when all event-time, time-time, and automatically induced

time-time relations are included in the global graph.

The ILP approach does not alone improve performance on the event-event tagging

task, but adding the time expression relations greatly increases the global constraint

results. This is consistent with the results from out first two experiments. The

evaluation with 1% of the unknown tags shows an almost 2% improvement in accuracy.

The gain becomes smaller as the unknown set increases in size (1.0% gain with 13%

CHAPTER 4. LEARNING TO ORDER EVENTS 85

Base Pairwise Classification

precision recall F1
before 61.4 55.4 58.2
after 57.6 53.1 55.3
unk 53.0 62.8 57.5

Global+Time Classification

precision recall F1
before 63.7 (+2.3) 57.1 (+2.2) 60.2 (+2.0)
after 60.3 (+2.7) 54.3 (+2.9) 57.1 (+1.8)
unk 52.0 (-1.0) 62.9 (+0.1) 56.9 (-0.6)

Table 4.12: Precision and Recall for the base pairwise decisions and the global con-
straints with integrated time information.

unknown). Unknown relations will tend to be chosen as more weight is given to

unknowns. When there is a constraint conflict in the global model, unknown tends

to be chosen because it has no transitive implications. All improvements from base

to global+time are statistically significant (p < 0.000001, McNemar’s test, 2-tailed).

The first row of table 4.11 corresponds to the results in my second experiment

in table 4.10, but shows higher accuracy. The reason is due to my different test

sets. This final experiment includes Bethard’s event-event relations in testing. The

improved performance suggests that the clausal event-event relations are easier to

classify, agreeing with the higher accuracies originally found by Bethard et al. (2007).

Table 4.12 shows the precision, recall, and f-score for the evaluation with 13%

unknowns. This set was chosen for comparison because it has a similar number of

unknown labels as before labels. I see an increase in precision in both the before and

after decisions by up to 2.7%, an increase in recall up to 2.9%, and an F1 score by as

much as 2.0%. The unknown relation shows mixed results, possibly due to its noisy

behavior as previously discussed in this chapter.

CHAPTER 4. LEARNING TO ORDER EVENTS 86

Discussion

My results on the two-way (before/after) task show that explicitly adding implicit

temporal constraints and then performing global reasoning results in significant im-

provements in temporal ordering of events (3.6% absolute over simple pairwise deci-

sions).

Both before and after also showed increases in precision and recall in the three-

way evaluation. However, unknown did not parallel this improvement, nor are the

increases as dramatic as in the two-way evaluation. I believe this is consistent with

the noise that exists in the Timebank corpus for unlabeled relations. Evidence from

Bethard’s independent annotations directly point to missing relations, but the dra-

matic increase in the size of the closure data (81%) from adding a small amount

of time-time relations suggests that the problem is widespread. This noise in the

unknown relation may be dampening the gains that the two way task illustrates.

This work is also related to the task of event-time classification. While not di-

rectly addressed in this chapter, the global methods described within clearly apply

to pairwise models of event-time ordering as well.

Further progress in improving global constraints will require new methods to more

accurately identify unknown events, as well as new approaches to create implicit

constraints over the ordering. I expect such an improved ordering classifier to be used

to improve the performance of tasks such as summarization and question answering

about the temporal nature of events.

Finally, this complete document event-event classifier can be used to learn the

type of generalized event orderings (e.g., arrest is typically before convict) that are

needed for narrative schemas. The next section lays out this connection between

narrative schemas and an event ordering system.

Chapter 5

Ordering Event Schemas

Chapters 2 and 3 described how to learn rich event structure from unlabeled, unclas-

sified text. Chapter 4 described a series of supervised learning models that identify

the temporal ordering between pairs of events in text. I will now merge these two

processes and impose a partial ordering over my learned narrative schemas using the

temporal classifiers.

As the previous chapter discussed, there are a number of algorithms for deter-

mining the temporal relationship between two events (Mani et al., 2006; Lapata and

Lascarides, 2006; Chambers et al., 2007), many of them trained on the TimeBank

Corpus (Pustejovsky et al., 2003). The currently highest performing of these on

raw Timebank text is my model of temporal labeling just described in the previous

Chapter 4. Though the global model is most sophisticated, it requires full tempo-

ral reasoning over time expressions to connect the events in a document, and so I

only focus on the pairwise supervised classifier here. Further, instead of using all

six possible relations between pairs of events (before, immediately-before, included-by,

simultaneous, begins and ends), I will instead focus solely on the before relation. The

other relations are less relevant to our immediate task of ordering event schemas,

and training data for them is quite sparse. I also want higher accuracy in the final

ordering, so I will focus instead on the more prevelant before relation. I combine

immediately-before with before, and merge the other four relations into an other cate-

gory. This is different from the unknown category of the previous chapter, but rather

87

CHAPTER 5. ORDERING EVENT SCHEMAS 88

is a catch-all class that includes all known relations that are not before or after.

Using this trained classifier, I will classify all pairs of events in the Gigaword

Corpus and observe which pairs of events are consistently classified with a single

relation. To my knowledge, this is the first work to use a supervised classifier that

collects ordering statistics over a corpus the size of Gigaword. These statistics make

up the final ordering decisions in my learned narrative schemas.

5.1 Related Work

Chapter 4 covered in detail previous work on supervised learning of event pairs in

context, but I now instead focus on learning general event orderings, such as, arrest

is usually before convict. This chapter describes how to use supervised classifiers to

make this generalization.

Approaches to knowledge acquisition have effectively used unsupervised and semi-

supervised algorithms to learn a type of general event order. (Chklovski and Pantel,

2004) learned pairs of ordered events by using Hearst-style patterns (Hearst, 1992) to

extract tokens in happens-before and enablement relationships. They queried a web

search engine for hand-built patterns like “to X and then Y” and “Xed and later Yed”

and determined significance using mutual information. (Chklovski and Pantel, 2005)

then studied how to chain pairs of these happens-before relations together. Their

approach can extract repeated precise event pairs, but it has the drawback of being

limited to only events that happen to appear in a predefined set of string patterns.

The vast majority of before relationships in individual documents do not appear in

these patterns.

This chapter therefore extracts similar pairs of events, but with a higher level of

recall. Instead of relying on a set of hand-coded patterns, it classifies every pair of

events in every document. These counts are then used to order the event pairs that

have already been learned for narrative schemas. This is the first algorithm to use a

supervised classifier over such a large corpus to collect statistics on event orderings.

CHAPTER 5. ORDERING EVENT SCHEMAS 89

5.2 Training a Temporal Classifier

I use the entire Timebank Corpus as supervised training data, condensing the before

and immediately-before relations into one before relation. The remaining relations are

merged into other.

As discussed in Chapter 4, the vast majority of potential event pairs in Timebank

are unlabeled. These are often none relations (events that have no explicit relation)

or as is sometimes the case, overlap relations where the two events have no Timebank-

defined ordering but overlap in time. Even worse, many events do have an ordering,

but they were not tagged by the human annotators. This could be due to the over-

whelming task of temporal annotation, or simply because some event orderings are

deemed more important than others in understanding the document. I consider all

untagged relations as unknown, and merge these into the other category. I experiment

with including different amounts of unknown relations by randomly selecting none,

half, and all of them in training.

I also increased Timebank’s training size by applying transitivity rules to the hand

labeled data, as described in Chapter 4. Since the annotators do not label all possible

relations, inferring new relations through transitivity increases the training data size.

Transitivity rules have obvious applications within the same relation, such as the

following example:

if run BEFORE fall and fall BEFORE injured

then run BEFORE injured

But there are less obvious rules that mix relation types which can also be applied,

greatly increasing the number of relations. The following is one such example:

if run INCLUDES fall and fall SIMULTANEOUS injured

then run INCLUDES injured

I encoded all possible transitivity rules between all possible relations, and applied

them to Timebank. This increases the number of relations from 37519 to 45619, a 22%

increase in size. Perhaps more importantly for our task, of all the added relations, the

before relation is added the most. I then condensed the resulting relations into before

CHAPTER 5. ORDERING EVENT SCHEMAS 90

and other, as described above. I experimented with both the original set of relations

in Timebank and this expanded set from transitivity. In contrast to the results in

chapter 4 when temporal expressions were included, using transitivity did not help

performance. The lack of improvement may be due to poor transitivity additions,

as several Timebank documents contain inconsistent labelings. The simultaneous

relation is boosted in transitivity quite often, and increases the results of the previous

section. However, focusing on the before relation does not have the same improvement.

All reported results are thus from training without transitivity.

I also use the same two-stage machine learning architecture from Chapter 4. The

first stage uses supervised machine learning to label temporal attributes of events,

including tense, grammatical aspect, and aspectual class. This first stage classifier

relies on features such as neighboring part of speech tags, neighboring auxiliaries

and modals, and WordNet synsets. Instead of solely relying on Naive Bayes, I also

experiment with a support vector machine and see minor performance boosts on the

test set. These imperfect classifications, combined with other linguistic features, are

then used in the second stage to classify the temporal relationship between two

events.

5.3 Temporal Classifier in Narrative Chains

This section describes how to apply the above binary before/other classifier to the

New York Times section of the Gigaword Corpus (Graff, 2002). This is the same

corpus from which chapters 2 and 3 learned narrative schemas. To order the learned

sets of events, I will classify each observed pair of events in the context of its document

and observe the frequency of before relations.

Let the pair of events arrest and plead serve as an example of this process. These

two verbs were learned as part of a criminal prosecution narrative schema, but we do

not know in what order they generally occur. I ran the classifier over all occurrences

of both verbs in the same document, recording their before/other counts. Figure 5.1

shows four such passages. Three of the four illustrate the stereotypical arrest before

plead relation, with one noisy example involving multiple arrest events. I then count

CHAPTER 5. ORDERING EVENT SCHEMAS 91

Two Hartford police officers were arrested Friday and charged with beat-
ing a Massachusetts man...Lawyers for Ancona and Middleton said their
clients would plead not guilty.
(arrest is before plead)

Pratt, the Cyclones’ second-leading scorer and rebounder last season, was
arrested Saturday night after being involved in a wreck. ... This came
after Pratt had pleaded guilty Nov. 19 to disorderly conduct.
(plead is before arrest)

Last May 24, the FBI arrested a fourth suspect, Kevin McCarthy, 19, of
Philadelphia. McCarthy, who will be an important witness in Langan’s
trial, has agreed to plead guilty.
(arrest is before plead)

Ms. Woodward, who turned 19 last week, pleaded not guilty to assault
charges in February. She has been held without bail at the maximum
security Framingham prison since her arrest on Feb. 5.
(arrest is before plead)

Figure 5.1: Four passages from the NYT section of the Gigaword Corpus containing
arrest and plead. The temporal classifier classifies each passage independently, deter-
mining if each pair is in a before or other relation. The second example illustrates a
difficult case involving multiple arrest events.

the number of befores and others across the entire corpus.

This classification process over the Gigaword Corpus occurs in two stages: once

for the temporal features on each event (tense, grammatical aspect, aspectual class),

and once between all pairs of events that share arguments. This allows us to classify

the before/other relations between all potential narrative events.

The first stage is trained on Timebank as before, and the second is trained using

the approach just described, varying the size of the unknown training relations. Each

pair of events in a gigaword document that share a coreferring argument is treated as

a separate ordering classification task. I count the resulting number of labeled before

relations between each verb/dependency pair. Processing the entire corpus produces

a database of event pair counts where confidence of two generic events A and B is

CHAPTER 5. ORDERING EVENT SCHEMAS 92

Event Pair # Before # After
arrest, convict 684 22
arrest, acquit 24 5
arrest, plead 132 1
search, arrest 22 37
search, sentence 2 0
search, convict 10 0
convict, sentence 579 457
acquit, convict 209 35

Figure 5.2: Before and after counts between pairs of events in the criminal domain:
counts of classification decision over the NYT portion of the Gigaword Corpus.

measured by comparing how many before labels have been seen versus their inverted

order B and A1.

Figure 5.2 shows the before/after counts of event pairs in a criminal domain, the

same events in the first schema from figure 1.1. The final pair, acquit and convict, is

most interesting. My error analysis on the acquit/convict pair discovered two types of

passages that make up the vast majority of acquit before convict classifications. The

first is from passages that discuss multiple trials with the same participant, but that

occur at different times. Once someone is convicted of a crime, they more often than

not are sentenced to prison, and so have less of a chance of being acquitted of future

crimes. However, someone who is acquitted can still be convicted in a separate trial

on later charges. Figure 5.4 shows three such text examples that were classified as

acquit before convict. Learning to detect event relationships across disparate schemas

such as these remains for future work.

The second type of passage is more prominent, and involves acquittals from some

charges, but convictions on other charges involving the same crime. Figure 5.5 shows

several such text passages, all typically mentioned in a single sentence. The English

preference seems to be listing the acquittals first, followed by the convictions. The

classifier thus chooses a before relation in these cases. It is debatable if this should

be a simultaneous relation or not. The fine-grained distinctions between a crime,

1Note that I train with the before relation, and so transposing two events is similar to classifying
the after relation.

CHAPTER 5. ORDERING EVENT SCHEMAS 93

multiple charges on the same crime, and different verdicts on each charge are not

captured by this dissertation’s learning algorithms. Future work will need to use

intra-sentence clues like these to learn this level of detail.

5.4 Temporal Evaluation

Previous work used human evaluations to judge individual event pair decisions (Chklovski

and Pantel, 2004), but the goal of this dissertation is to order entire schemas, not

pairwise events. I want to evaluate the temporal order at a narrative level, across

all events within a schema. For narrative schemas to be used for tasks of coherence,

among other things, it is desirable to evaluate temporal decisions within a coherence

framework. Along these lines, my test set uses actual narrative chains from (coherent)

documents, hand labeled for a partial ordering. I evaluate coherence of these true

chains against a random ordering. The task is thus deciding which of the two chains

is most coherent, the original or the random (baseline 50%)? I generated up to 300

random orderings for each test document, averaging the accuracy across all. This is

similar to the ordering evaluations used in summarization (Barzilay and Lee, 2004)

and event learning (Manshadi et al., 2008).

The evaluation data is the same 69 documents used in the test set for the narra-

tive cloze evaluations in Chapters 2 and 3. The chain from each document is hand

identified and labeled for a partial ordering using only the before relation. I manually

ordered the events and all attempts were made to include every before relation that

exists in the document, or that could be deduced through transitivity rules. These

include before relations that are semantically connected in a temporal sense (e.g.,

departed before arrived), but also those that are before in temporal order but not

necessarily semantically connected in a temporal sense (e.g., departed before laughed).

Figure 5.3 shows an example and its full reversal, although the evaluation uses ran-

dom orderings. Each edge is a distinct before relation and is used in the judgement

score.

The coherence score for a partially ordered narrative chain is the sum of all the re-

lations that our classified corpus agrees with, weighted by confidence. If the gigaword

CHAPTER 5. ORDERING EVENT SCHEMAS 94

Figure 5.3: A narrative chain and its fully reversed partial ordering.

classifications disagree, a negative score is given. Confidence is based on a logarithm

scale of the difference between the counts of before and after classifications. Formally,

the score is calculated as the following:

∑
E:x,y

log(D(x, y)) if xβy and B(x, y) > B(y, x)

− log(D(x, y)) if xβy and B(y, x) > B(x, y)

− log(D(x, y)) if !xβy & !yβx & D(x, y) > 0

0 otherwise

where E is the set of all event pairs, B(i, j) is how many times the classifier classified

events i and j as before in Gigaword, and D(i, j) = |B(i, j) − B(j, i)|. The relation

iβj indicates that i is temporally before j.

5.5 Results

My approach gives higher scores to schema orderings that coincide with the pairwise

orderings observed in the Gigaword training data. The results are shown in table 5.1.

Of the 69 test event chains, six did not have any strictly ordered (e.g., before/after)

CHAPTER 5. ORDERING EVENT SCHEMAS 95

Event Ordering Accuracy

All At least 6 At least 10
correct 8086 75% 7603 78% 6307 89%
incorrect 1738 1493 619
tie 931 627 160

Table 5.1: Results for choosing the correct ordered chain. At least 10 indicates that
there were at least 10 pairs of ordered events in the chain.

relations and were removed from the evaluation. These contained only overlap and

vague relations. I generated (up to) 300 random orderings for each of the remaining

63. Final accuracy on predicting the original order is 75.2%. However, 22 of the 63

had five or fewer pairs of ordered events. The final choice in these cases is dependent

on very little evidence of order. Table 5.1 therefore gives results from the test chains

based on the richness of their orderings. The table shows results for chains with at

least six relations and at least 10 relations, as well as the overall score. As I would

hope, the accuracy improves the larger the ordered narrative chain. I achieve 89.0%

accuracy on the 24 documents whose chains are most richly connected with the before

relation, rather than chains whose strict order is more ambiguous.

Finally, I found that the classifier trained without any unknown relations resulted

in higher recall for before decisions. Perhaps due to data sparsity in the small Time-

bank Corpus, this produces our best results and is reported above. The best classifier

is thus a two-class before/other classifier where the other class is the union of all

labeled Timebank relations that are not before or after.

5.6 Error Analysis

This section looks at a few examples of misclassified event pairs and the reasons that

cause the errors.

The final event pair in Figure 5.2, acquit and convict, is most interesting in that

it contains 209 instances of acquit occurring before convict, but very few of the

inverse (35 instances). This is at first counter-intuitive because intuition suggests

CHAPTER 5. ORDERING EVENT SCHEMAS 96

that trials end with one or the other verdict, but not both. My error analysis on the

acquit/convict pair discovered two types of passages that make up the vast majority

of these acquit before convict classifications. The first is from passages that discuss

multiple trials with the same participant, but that occur at different times. Once

someone is convicted of a crime, they more often than not are sentenced to prison,

and so have less of a chance of being acquitted of future crimes. However, someone

who is acquitted can still be convicted in a separate trial on later charges. Figure 5.4

shows three such text examples that were classified as acquit before convict. Learning

to detect event relationships across disparate schemas such as these remains for future

work. Some of these examples describe events with ambiguous modalities, such as

the first example in Figure 5.4. In this case, a man was acquitted, but his potential

conviction is discussed as a possible event that did not occur. Dealing with complex

modalities and interpreting their correct temporal order remains for future work.

The second type of acquit/convict passage is more prominent, and involves acquit-

tals from some charges, but convictions on other charges involving the same crime.

Figure 5.5 shows several such text passages, all typically mentioned in a single sen-

tence. The English preference seems to be listing the acquittals first, followed by the

convictions. The classifier thus chooses a before relation in these cases. It is debatable

if this should be a simultaneous relation or not. The fine-grained distinctions between

a crime, multiple charges on the same crime, and different verdicts on each charge

are not captured by this dissertation’s learning algorithms. Future work will need to

use intra-sentence clues like these to learn this level of detail.

Many errors in temporal ordering arise from the small size of the Timebank Cor-

pus, and the lack of robustness in a supervised classifier trained on it. Let the obituary

example from Figure 2.7 in Chapter 2 serve as an example. The died event has a

directed arrow into the retired event, suggesting that people die before they retire.

In fact, my Timebank-trained classifier labeled (mostly incorrectly) 295 examples of

dying before retiring, and only 1 example of retiring before dying. This is obviously

incorrect, and the reason lies in our small training data. The event die only occurs

twice in Timebank, once in a before relation and once in an after relation. Neither

are with retire, so it is ambiguous. However, the event retire occurs in 6 labeled event

CHAPTER 5. ORDERING EVENT SCHEMAS 97

Zamarripa, 41, was acquitted last year. Now, he’s suing the Mesa Police
Department, claiming he was coerced into making a false confession after
taking a polygraph test. The lawsuit details how a man admitted a crime
that a jury agreed he didn’t commit. His lawyers said Zamarripa, who
now works at a convenience store, was a victim of a carefully orchestrated
plan to get him to admit the allegations. “When asked the right questions
and told the right lies, under circumstances designed to be coercive, an
innocent suspect confessed because he believed he could be convicted
by his own silence.”

In two prior trials in 1995, juries acquitted Bly of drug trafficking
for allegedly selling cocaine on Morton Street in Mattapan and for his
alleged role in a drive-by shooting in Dorchester that wounded a man.
Sources said the timing of McLaughlin’s murder helped make Bly a key
suspect. McLaughlin was set to begin Bly’s third trial, on carjacking
and attempted murder charges, the next day. His colleague, Michael
Pomarole, took over Bly’s prosecution later that year and subsequently
convicted him. Superior Court Judge Patrick King sentenced him to 10
to 15 years in prison.

A jury in November acquitted Durst of murdering neighbor Morris Black.
.... Durst then tampered with evidence of a crime when he tossed the body
parts into the bay, according to the indictment. In two additional
motions filed Friday, DeGuerin also alleged that the evidence-tampering
indictment should be tossed out because its wording fail3 tN meet legal
requirements and because prosecutors filed the case under the wrong por-
tion of the Texas Criminal Code. If convicted, Durst could be sentenced
to up to 10 years in prison on each of the three charges.

Figure 5.4: Passages from the NYT where acquit was classified as before convict. All
three are correct classifications involving different trial periods. Two of the three are
hypothetical convictions described with modalities occurring in the future.

CHAPTER 5. ORDERING EVENT SCHEMAS 98

When the trial is over, whether Simpson is acquitted or convicted of
murder charges, Fuhrman is expected to leave the Los Angeles Police
Department and move out of state.

Earlier in the year, Nosair had been acquitted of murder but convicted
of gun possession charges in the killing of Kahane in 1990.

A jury acquitted the two teen-agers of attempted murder but convicted
them of second-degree assault and first-degree attempted assault.

After deliberating for nearly two days, the 12-member jury convicted
Alexander Blarek, 56, and Frank Pellecchia, 49, on single counts of rack-
eteering conspiracy, money laundering and transporting drug proceeds
across state lines. The jury acquitted the two men on racketeering
charges.

Goetz was acquitted of assault and attempted murder in 1987 but was
convicted on a weapons possession charge.

Four days later, the jury acquitted the defendants on charges of conspir-
ing to disrupt the Democratic National Convention, but convicted five
of them, including Hoffman, of crossing state lines with intent to riot.

Figure 5.5: Passages from the NYT where acquit was classified as before convict.
These examples illustrate that sentence-internal ordering of past tense verbs favors
before relations.

CHAPTER 5. ORDERING EVENT SCHEMAS 99

However, cited by District of Columbia traffic police in December for
driving under the influence of alcohol, Farkas was ordered home and
retired.
cited BEFORE retired
driving BEFORE retired

Frederick B. Taylor, 48, also was named a vice chairman and chief
investment officer, a new post. He previously held similar responsibilities.
Mr. Taylor also was named a director, increasing the board to 22, but is
not part of the new office of the chairman. James E. Bacon, 58, executive
vice president, who has directed the funds-service group, will retire.
named BEFORE retired
held BEFORE retired
directed BEFORE retired

Figure 5.6: Examples of text and the gold labeled BEFORE relations in the Timebank
Corpus for the event retire.

pairs, all of which put it in the after position. Figure 5.6 shows some of these labeled

relations. Since the classifier sees such strong evidence that retire is always ordered

second, it will prefer that label unless strong syntactic evidence suggests otherwise.

295 instances in the Gigaword Corpus are thus incorrectly labeled, mostly in obitu-

aries, as die before retire. Figure 5.6 shows a few examples where these two occur

together. This is a common problem with my approach that needs to be addressed

in future work. When two events occur in separate sentences, there is little syntactic

evidence, and so the small amount of training data is easily led astray. New sources

of information, perhaps from semi-supervised datasets is needed to address this area.

5.7 Discussion

These results indicate that a supervised classifier can help discover general event

orders when run over a large corpus of text. The individual contexts within documents

may vary widely, but consistencies across them can be easily extracted with the

classifier. I found that a coherence application to judge a document’s events can

CHAPTER 5. ORDERING EVENT SCHEMAS 100

Don Cook, a foreign correspondent who covered the end of World War
II in Europe and then Western Europe’s remarkable postwar recovery
for The New York Herald Tribune and The Los Angeles Times, died
Tuesday at his home in Philadelphia. He was 74. The cause was a heart
attack, his family said. Beginning in 1944, Cook covered the final year
of the war, the turbulent early years of the Cold War, the economic
transformation of Western Europe and the birth of the Common Market,
first for The Herald Tribune and then for The Times, where he retired
in 1988 as the European diplomatic correspondent.

Morris B. Zale, founder of the jewelry-store chain Zale Corp., died
Wednesday at Presbyterian Hospital in Dallas. He was 93 and lived in
Dallas. The cause was pneumonia, said his son Donald. Zale started the
company in 1924 as a small jewelry store in Wichita Falls, Texas. By
1986, when the Zale Corporation was acquired in a hostile takeover by
Peoples Jewelers of Canada and Swarovski International Holdings AG of
Switzerland, Zale had built it into an international company with more
than 1,500 stores and $1.2 billion in annual sales. Zale stepped down as
president in 1971 and became the chairman. He was appointed chairman
emeritus in 1981 and retired in 1987.

John Michael Dunn, a veteran of three wars who rose to become a major
general and a military aide to two vice presidents, died on Friday at his
home in Arlington, Va. He was 69. Dunn stayed on the vice-presidential
staff until early 1974, when he retired from the military and became the
principal assistant secretary of commerce for domestic and international
business.

Figure 5.7: Examples of obituaries where the retire event is incorrectly classified as
after the die event.

CHAPTER 5. ORDERING EVENT SCHEMAS 101

be addressed with such counts, and they show promise for future applications in

reasoning, causation, and event prediction.

One of the main drawbacks of this algorithm is the dependence on the Timebank

Corpus for training the supervised classifier. Given only 186 documents, the classifier

is exposed to the main topics in news, such as finance and crime, but lacks most others.

The classifier is thus dependent on its topic-general features like tense, aspect, and

syntactic positions to make its ordering decisions. Although useful features, as with

many NLP applications, the lexicalized features often produce the largest improve-

ment in performance when utilized. Unfortunately, lexicalized models are dependent

on a large labeled corpus with a diverse set of tokens. The Timebank Corpus is not

large enough to benefit from these features. This is evident in the acquit/convict error

analysis of Section 5.3. Those two verbs do not appear together in Timebank, so the

classifier strongly decides (arguably, incorrectly) that acquit is before convict based

on syntactic properties alone. Anecdotedly, the Timebank’s covered topics produce

the best schema orderings, and the rest include more noise. Future work will require

integrating new unsupervised approaches to temporal relation classification.

Chapter 6

Learning Events for

Template-Based Information

Extraction

This chapter now turns to the field of Information Extraction (IE) to illustrate how

algorithms for learning narrative schemas apply to a mainstream NLP application. As

narrative schemas can encode multiple entities, template-based information extraction

is the most obvious candidate to benefit from my approaches. A template defines a

specific type of event (e.g., a bombing) with a set of semantic roles (or slots) for

the typical entities involved in such an event (e.g., perpetrator, target, instrument).

In contrast to other IE work, such as relation discovery, that focuses on learning

atomic facts (Banko et al., 2007a; Carlson et al., 2010b), templates extract a richer

representation of a particular domain, much like narrative schemas. However, unlike

relation discovery, most template-based IE approaches assume foreknowledge of the

domain’s templates. Very little work addresses how to learn the template structure

itself. My goal in this chapter is to perform the standard template filling task, but

to first automatically induce the templates (schemas) from an unlabeled corpus.

As discussed previously in this dissertation, there are many ways to represent

events, ranging from role-based representations such as frames (Baker et al., 1998)

to sequential events in scripts (Schank and Abelson, 1977) and my own narrative

102

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 103

schemas (Chambers and Jurafsky, 2009; Kasch and Oates, 2010). This chapter will

learn narrative-like knowledge as schemas, but mapped to the form of IE templates;

I learn sets of related events and semantic roles, as shown in this sample output from

my system:

Bombing Template

{detonate, blow up, plant, explode, defuse, destroy}

Perpetrator : Person who detonates, plants, blows up

Instrument : Object that is planted, detonated, defused

Target : Object that is destroyed, is blown up

A semantic role, such as target, is still a protagonist and a cluster of syntactic

functions of the template’s event words (e.g., the objects of detonate and explode).

The alogrithm, however, is a slightly modified version of the general schema learning

algorithm. I learn templates by first clustering event words based on their proximity in

a training corpus. I then perform role induction by clustering the syntactic functions

of these events based on selectional preferences and coreferring arguments (i.e., the

protagonist). The induced roles are template-specific (e.g., perpetrator), not universal

(e.g., agent or patient) or verb-specific. The end representation is a set of related

events and a mapping of syntactic arguments to semantic roles.

One of the main contributions of this chapter is that after learning a domain’s

template schemas, I perform the standard IE task of role filling template instances

from individual documents, for example:

Perpetrator: guerrillas

Target: vehicle

Instrument: dynamite

This extraction stage identifies entities using the learned syntactic functions of

my roles. I evaluate on the MUC-4 terrorism corpus with results approaching those

of supervised systems.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 104

The core of this chapter focuses on how to characterize a domain-specific corpus

by learning rich template structure. This differs from the general schema learning

in Chapter 3 in that I start from a smaller, more restricted corpus. I describe how

to first expand the small corpus’ size, how to cluster its events, and finally how to

induce semantic roles. Section 6.5 then describes the extraction algorithm, followed

by evaluations against previous supervised work in section 6.6 and 6.7.

6.1 Previous Work

Unsupervised and semi-supervised learning of binary relations and atomic facts has

recently received attention. Several approaches learn relations like Person is married

to Person without labeled data (Banko et al., 2007b), or rely on a few seed examples

for ontology induction (dog is a mammal) and attribute extraction (dogs have tails)

(Carlson et al., 2010b,a; Huang and Riloff, 2010; Durme and Pasca, 2008a). However,

these approaches focus on atomic relations and not richer template structure.

Algorithms that do focus on template extraction typically require full knowledge of

the template structure and labeled corpora, such as rule-based approaches (Chinchor

et al., 1993; Rau et al., 1992) and modern supervised classifiers (Freitag, 1998; Chieu

et al., 2003; Bunescu and Mooney, 2004; Patwardhan and Riloff, 2009). Classifiers

rely on the labeled examples’ surrounding context for features such as nearby tokens,

document position, syntax, named entities, semantic classes, and discourse relations

(Maslennikov and Chua, 2007). Ji and Grishman (2008) also supplemented labeled

with unlabeled data.

Weakly supervised approaches remove some of the need for fully labeled data.

Most still require the templates and their slots. One common approach is to begin

with unlabeled, but clustered event-specific documents, and extract common word

patterns as extractors (Riloff and Schmelzenbach, 1998; Sudo et al., 2003; Riloff et al.,

2005; Patwardhan and Riloff, 2007). Filatova et al. (2006) integrate named entities

into pattern learning (PERSON won) to approximate unknown semantic roles. Boot-

strapping with seed examples of known slot fillers has been shown to be effective (Sur-

deanu et al., 2006; Yangarber et al., 2000). In contrast, this chapter removes these

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 105

data assumptions, learning instead from a corpus of unknown events and unclustered

documents, without seed examples.

Shinyama and Sekine (2006) describe an approach to template learning without

labeled data. They present ‘unrestricted relation discovery’ as a means of discovering

relations in unlabeled documents, and extract their fillers. Central to the algorithm is

collecting multiple documents describing the same exact event (e.g., Hurricane Ivan),

and observing repeated word patterns across documents connecting the same proper

nouns. Learned patterns represent binary relations, and they show how to construct

tables of extracted entities for these relations. My approach draws on this idea of

using unlabeled documents to discover relations in text, and of defining semantic roles

by sets of entities. However, the limitations to their approach are that (1) redundant

documents about specific events are required, (2) relations are binary, and (3) only

slots with named entities are learned. I extend their work by showing how to learn

without these assumptions, obviating the need for redundant documents, and learning

templates with any type and any number of slots.

This chapter is obviously related to my approaches for large-scale learning of

scripts and narrative schemas from unlabeled text in Chapters 2 and 3. While I

learn interesting event structure from open-domain newspaper articles, the structures

typically capture the more frequent topics in a large corpus. I heavily use ideas from

previous chapters here, but my goal now is to characterize a specific domain with

limited data. Further, this is the first algorithm to apply schema knowledge to the

IE task of filling in template mentions in documents.

In summary, this dissertation extends previous work on unsupervised template-

based information extraction in a number of ways. The learning algorithm is the

first to induce the template structure of a commonly used extraction corpus (the

Message Understanding Conference corpus), and it is the first to extract entities

without knowing how many templates exist, without examples of slot fillers, and

without event-clustered documents.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 106

6.2 The MUC-4 Corpus

My goal is to learn the general event structure of a domain, and then extract the in-

stances of each learned event. In order to measure performance in both tasks (learning

structure and extracting instances), I use the terrorism corpus of the Message Under-

standing Conference (MUC-4) as my target domain (Sundheim, 1991). This corpus

of newspaper articles from Latin America was chosen because the documents are an-

notated with templates that describe all of the entities involved in each event. An

example snippet from a Bombing document is given here:

LIMA, 11 Mar 89 (EFE) – (text) it was officially reported today

that on 10 March alleged Shining Path members murdered four members

of a family in Santa Maria del Valle, Huanuco department . After

killing the peasant family, the terrorists used explosives against the

town hall. El Comercio reported that alleged Shining Path members

also attacked public facilities in huarpacha, Ambo, tomayquichua, and

kichki. Municipal official Sergio Horna was seriously wounded in an

explosion in Ambo.

The main entities in this document fill the slots of a MUC-4 Bombing template,

as shown in Figure 6.2. The document’s main entities (Shining Path members and

Sergio Horna) fill string-based slots (perpetrator (PERP) and human target (HUM

TGT)). Other properties about this document’s events, such as the date and location,

similarly fill their respective slots. Finally, the ‘INCIDENT: TYPE ’ slot indicates

the type of template (e.g., Bombing).

The MUC-4 corpus defines six template types: Attack, Kidnapping, Bombing,

Arson, Robbery, and Forced Work Stoppage. A document can be labeled with more

than one template and type. This short example document is actually labeled with

two Bombing templates and three Attack templates. One bombing template includes

the bombing of a town hall and public facilities in Santa Maria Del Valle (second

sentence), and the other is a bombing of public facilities in Huarpacha (third sen-

tence). The first Attack template covers the first sentence’s attack on ‘members of a

family’. The remaining three Attack templates cover the third sentence, duplicating

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 107

0. MESSAGE: ID DEV-MUC3-0112 (BELLCORE, MITRE)

1. MESSAGE: TEMPLATE 4

2. INCIDENT: DATE 10 MAR 89

3. INCIDENT: LOCATION PERU: HUANUCO (DEPARTMENT):

AMBO (TOWN)

4. INCIDENT: TYPE BOMBING

5. INCIDENT: STAGE OF EXECUTION ACCOMPLISHED

6. INCIDENT: INSTRUMENT ID -

7. INCIDENT: INSTRUMENT TYPE EXPLOSIVE: "-"

8. PERP: INCIDENT CATEGORY TERRORIST ACT

9. PERP: INDIVIDUAL ID "SHINING PATH MEMBERS"

10. PERP: ORGANIZATION ID "SHINING PATH"

11. PERP: ORGANIZATION CONFIDENCE SUSPECTED OR ACCUSED:

"SHINING PATH"

12. PHYS TGT: ID "PUBLIC FACILITIES"

13. PHYS TGT: TYPE OTHER: "PUBLIC FACILITIES"

14. PHYS TGT: NUMBER PLURAL: "PUBLIC FACILITIES"

15. PHYS TGT: FOREIGN NATION -

16. PHYS TGT: EFFECT OF INCIDENT -

17. PHYS TGT: TOTAL NUMBER -

18. HUM TGT: NAME "SERGIO HORNA"

19. HUM TGT: DESCRIPTION "MUNICIPAL OFFICIAL":

"SERGIO HORNA"

20. HUM TGT: TYPE GOVERNMENT OFFICIAL:

"SERGIO HORNA"

21. HUM TGT: NUMBER 1: "SERGIO HORNA"

22. HUM TGT: FOREIGN NATION -

23. HUM TGT: EFFECT OF INCIDENT INJURY: "SERGIO HORNA"

24. HUM TGT: TOTAL NUMBER -

Figure 6.1: A template from the MUC-4 corpus.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 108

QUITO, 8 Mar 89 (EFE) – (text) The Ecuadoran insurgent group “free
homeland Montoneros” (MPL) today reiterated that it will not abandon
its armed struggle. It made this announcement 1 day after the “Alfaro
lives, damnit” (AVC) group signed a peace agreement with President Ro-
drigo Borja’s government. The MPL today expressed its determination
to continue its armed struggle and not to follow the AVC’s footsteps.
AVC leaders and two Ecuadoran ministers yesterday appeared before the
media to formalize the peace agreement between the AVC and the govern-
ment. In a communique released to EFE, The MPL states that it will now
brandish its weapons “with greater force to attain freedom for Ecuadoran
society and its people.”

Figure 6.2: A portion of a MUC-4 document with no templates to extract.

annotation of a Bombing as a type of Attack, and is repeated for each location. Thus

the templates are identical, except for the location slot: Huarpacha, Tomayquichua,

and Kichki. It is not clear why the fourth town, Ambo, does not also have its own

Attack template for consistency. This document is abnormally over-annotated when

compared against most documents in the MUC-4 corpus, but it illustrates the chal-

lenge of identifying the events themselves, and extracting entities into the correct

template type.

The MUC-4 training corpus contains 1300 documents. 733 of the documents are

labeled with at least one template. While there are six types of templates, only four

are modestly frequent: bombing (208 docs), kidnap (83 docs), attack (479 docs), and

arson (40 docs). 567 documents are not labeled with any templates. These latter

unlabeled documents are miscellaneous articles that report on non-specific political

events and speeches. Figure 6.2 gives an example of an unlabeled document.

6.3 A Narrative Approach to Extraction

The template structure in MUC-4 is conducive to narrative learning because it defines

the central entities and their semantic roles in each situation. Narrative schemas learn

similar semantic roles, but with the added advantage of learning which event words

trigger those roles in each situation (e.g., a Bombing includes detonate, explode,

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 109

plant, etc.). In order to evaluate how narrative schemas can assist this Information

Extraction application, I will compare my induced structure to the same template

structures used by state-of-the-art MUC-4 systems.

Although the previous section gave an example of a full MUC-4 template, most

current systems do not evaluate performance on extracting values for the entire tem-

plate. Current extraction evaluations instead focus solely on the four string-based

slots in the templates, ignoring the other parameterized slots that involve deeper rea-

soning (such as ‘stage of execution’ and ’effect of incident’). The four main slots from

Figure 6.2 and examples of entity fillers are shown here:

Perpetrator: Shining Path members

Victim: Sergio Horna

Target: public facilities

Instrument: explosives

Current extraction algorithms assume they know these four slot types in advance

(e.g., perpetrator, victim, target, instrument), and focus solely on learning to extract

their fillers from documents using supervised techniques. I will also extract the fillers,

but I do not start with knowledge of the four slots, but instead induce this structure

automatically.

I induce this template structure from the MUC-4 corpus, and compare my induced

structure to these same four slots1 As described above, the training corpus consists

of 1300 documents, but 567 of them are not labeled with any templates. My learning

algorithm does not know which documents contain (or do not contain) which tem-

plates. After learning event words that represent templates, I induce their slots, not

knowing a priori how many there are, and then fill them in by extracting entities as

in the standard task. In the document example above, the algorithm will learn to

identify three verbs (use, attack, wound) that indicate the Bombing template, and

their syntactic arguments fill its slots.

1There are two Perpetrator slots in MUC-4: Organization and Individual. I consider their union
as a single slot.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 110

6.4 Learning Templates from Raw Text

My goal is to learn templates that characterize a domain as described in unclustered,

unlabeled documents. This presents a two-fold problem to the learner: it does not

know how many events exist, and it does not know which documents describe which

event (some may describe multiple events). I approach this problem with a three step

process: (1) cluster the domain’s event patterns to approximate the template topics,

(2) build a new corpus specific to each cluster by retrieving documents from a larger

unrelated corpus, (3) induce each template’s slots using its new (larger) corpus of

documents.

6.4.1 Clustering Events to Learn Templates

I cluster event patterns to create templates. An event pattern is either (1) a verb,

(2) a noun in WordNet under the Event synset, or (3) a verb and the head word of

its syntactic object. Examples of each include (1) ‘explode’, (2) ‘explosion’, and (3)

‘explode:bomb’. I also tag the corpus with the Stanford NER system (Finkel et al.,

2005) and allow patterns to include named entity types, e.g., ‘kidnap:PERSON’.

These patterns are crucially needed later to learn a template’s slots. However, I

first need an algorithm to cluster these patterns to learn the domain’s core events. I

consider two unsupervised algorithms: Latent Dirichlet Allocation (Blei et al., 2003)

and agglomerative clustering based on word distance.

LDA for Unknown Data

Latent Dirichlet Allocation (LDA) is a probabilistic model that treats documents as

mixtures of topics. It learns topics as discrete distributions (multinomials) over the

event patterns, and thus meets my needs as it clusters patterns based on co-occurrence

in documents. The algorithm requires the number of topics to be known ahead of

time, but in practice this number is set relatively high and the resulting topics are

still useful. My best performing LDA model used 200 topics. I had mixed success

with LDA though, and ultimately found my next approach performed slightly better

on the document classification evaluation.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 111

Clustering on Event Distance

Agglomerative clustering does not require foreknowledge of the templates, but its

success relies on how event pattern similarity is determined.

Ideally, I want to learn that detonate and destroy belong in the same cluster rep-

resenting a bombing. Vector-based approaches are often adopted to represent words

as feature vectors and compute their distance with cosine similarity. Unfortunately,

these approaches typically learn clusters of synonymous words that can miss detonate

and destroy. My goal is to instead capture world knowledge of co-occuring events. I

thus adopt an assumption that closeness in the world is reflected by closeness in a

text’s discourse. I hypothesize that two patterns are related if they occur near each

other in a document more often than chance.

Let g(wi, wj) be the distance between two events (1 if in the same sentence, 2 in

neighboring, etc). Let Cdist(wi, wj) be the distance-weighted frequency of two events

occurring together:

Cdist(wi, wj) =
∑

d

∑
wi,wj∈D

1− log4(g(wi, wj)) (6.1)

where d is a document in the set of all documents D. The base 4 logarithm discounts

neighboring sentences by 0.5 and scires those within the same sentence as 1. Using

this definition of distance, pointwise mutual information measures the similarity of

any two events:

pmi(wi, wj) =
Pdist(wi, wj)

P (wi)P (wj)
(6.2)

P (wi) =
C(wi)∑
j C(wj)

(6.3)

Pdist(wi, wj) =
Cdist(wi, wj)∑

k

∑
l Cdist(wk, wl)

(6.4)

I run agglomerative clustering with pmi over all event patterns. Merging decisions

use the average link score between all new links across two clusters. As with all

clustering algorithms, a stopping criterion is needed. I continue merging clusters until

any single cluster grows beyond m patterns. I briefly inspected the clustering process

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 112

kidnap: kidnap, kidnap:PER, abduct, release, kidnapping, ransom, rob-
bery, registration

bombing: explode, blow up, locate, place:bomb, detonate, damage, explo-
sion, cause, damage, ...

attack: kill, shoot down, down, kill:civilian, kill:PER, kill:soldier,
kill:member, killing, shoot:PER, wave, ...

arson: burn, search, burning, clip, collaborate, ...

Figure 6.3: The 4 clusters mapped to MUC-4 templates.

and chose m = 40 to prevent learned scenarios from intuitively growing too large

and ambiguous. Post-evaluation analysis shows that this value has wide flexibility.

For example, the Kidnap and Arson clusters are unchanged from 30 < m < 80, and

Bombing unchanged from 30 < m < 50. Figure 6.3 shows 3 clusters (of 77 learned)

that characterize the main template types.

6.4.2 Information Retrieval for Templates

Learning a domain often suffers from a lack of training data. The previous section

clustered events from the MUC-4 corpus, but its 1300 documents do not provide

enough examples of verbs and argument counts to further learn the semantic roles

in each cluster. My solution is to assemble a larger IR-corpus of documents for each

cluster. For example, MUC-4 labels 83 documents with Kidnap, but my learned

cluster (kidnap, abduct, release, ...) retrieved 3954 documents from a general corpus.

I use the Associated Press and New York Times sections of the Gigaword Corpus

(Graff, 2002) as my general corpus. These sections include approximately 3.5 million

news articles spanning 12 years.

My retrieval algorithm retrieves documents that score highly with a cluster’s to-

kens. A document’s score is defined by two common metrics: word match, and word

coverage. A document’s match score is defined as the average number of times the

words in cluster c appear in document d:

match(d, c) =

∑
w∈c

∑
t∈d 1{w = t}
|c|

(6.5)

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 113

I define coverage as the number of seen cluster words. Coverage avoids matching

documents that score highly by repeating a single cluster word a lot. I only score a

document if its coverage, coverage(d, c), is at least 3 words (or less for tiny clusters):

ir(d, c) =

{
match(d, c) if coverage(d, c) > min(3, |c|

4
)

0 otherwise

A document d is retrieved for a cluster c if ir(d, c) > 0.4. Finally, I emphasize

precision by pruning away 50% of a cluster’s retrieved documents that are farthest in

distance from the mean document of the retrieved set. Distance is just the cosine sim-

ilarity between bag-of-words vector representations. The confidence value of 0.4 was

chosen from a brief manual inspection among a single cluster’s retrieved documents.

Pruning 50% was arbitrarily chosen to improve precision, and I did not experiment

with other pruning amounts. A search for optimum values among these parameters

may possibly lead to better results.

6.4.3 Inducing Semantic Roles (Slots)

Having successfully clustered event words and retrieved an IR-corpus for each cluster,

I now address the problem of inducing semantic roles. My learned roles will then

extract entities in the next section and I will evaluate their per-role accuracy.

Most work on unsupervised role induction focuses on learning verb-specific roles,

starting with seed examples (Swier and Stevenson, 2004b; He and Gildea, 2006b)

and/or knowing the number of roles (Grenager and Manning, 2006b; Lang and Lapata,

2010). This dissertation has shown how to learn situation-specific roles over scenarios

(Chambers and Jurafsky, 2009), similar to frame roles in FrameNet (Baker et al.,

1998). I link the syntactic relations of verbs by clustering them based on observing

coreferring arguments in those positions. This chapter is now extending this intuition

by introducing a new vector-based approach to coreference similarity.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 114

Syntactic Relations as Roles

I learn the roles of cluster C by clustering the syntactic relations RC of its words.

Consider the following example:

C = {go off, explode, set off, damage, destroy}
RC = {go off:s, go off:p in, explode:s, set off:s}

where verb:s is the verb’s subject, :o the object, and :p in a preposition. I ideally

want to cluster RC as:

bomb = {go off:s, explode:s, set off:o, destroy:s}
suspect = {set off:s}
target = {go off:p in, destroy:o}

I want to cluster all subjects, objects, and prepositions. Passive voice is normalized

to active2.

I adopt two views of relation similarity: coreferring arguments and selectional

preferences. As I have observed earlier concerning the protagonist, coreferring argu-

ments suggest a semantic relation between two predicates. In the sentence, he ran

and then he fell, the subjects of run and fall corefer, and so they likely belong to

the same scenario-specific semantic role. I applied this idea to a new vector simi-

larity framework. I represent a relation as a vector of all relations with which their

arguments coreferred. For instance, arguments of the relation go off:s were seen core-

ferring with mentions in plant:o, set off:o and injure:s. I represent go off:s as a vector

of these relation counts, calling this its coref vector representation. Table 6.1 shows

two more examples: coreference vectors for the two subjects of kidnap and release.

When compared using cosine similarity, these two are scored highly (0.93).

Selectional preferences (SPs) are also useful in measuring similarity (Erk and

Pado, 2008). A verb and its syntactic function can be represented as a vector of the

observed arguments filling that function during training. For instance, the SPs for

go off:s in my data include {bomb, device, charge, explosion}. An SP vector is thus a

vector of argument head words and their corpus counts, multiplied by the argument’s

2I use the ‘Stanford Parser’ at nlp.stanford.edu/software

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 115

Coref Vector Representation

kidnap:subject release:subject
kill:subject 153 hold:subject 93
hold:subject 79 demand:subject 65
release:subject 69 kill:subject 48
threaten:subject 69 tell:subject 37
rule:prep by 29 seize:subject 35
try:subject 29 threaten:subject 29
seize:subject 21 hostage:possessive 21
negotiate:subject 13 release:possessive 17

Table 6.1: Coreference Vectors for the subjects of kidnap and release. The syntactic
functions are counts of how many times each syntactic function contained an argument
that coreferred with the main verb’s subject (e.g., kidnap or release).

inverse document frequency (IDF) to penalize common words. Using the same two

verbs as examples, kidnap and release, Table 6.2 shows the top preferences for each.

I show only the corpus counts for readability, leaving out the IDF factor.

Kidnap and release have similar selectional preference vectors, but the similarity is

not as strong as their coreference vectors. In addition to the normal kidnapper words,

the subject of release includes many countries (the LOCATION named entity tag)

and governments. This is because countries and governments often release records

and reports, but have little to do with kidnapping events. The cosine similarity score

in this case is thus penalized from the non-kidnap events that release often associates

with.

I measure similarity using cosine similarity in both approaches, but coreference

vectors and selectional preference vectors are measuring different types of similar-

ity. Coreference is a looser narrative similarity (bombings cause injuries), while SPs

capture synonymy (plant and place have similar arguments). I observed that many

narrative relations are not synonymous, and vice versa. I thus take the maximum of

either cosine score as our final similarity metric between two relations. I then back

off to the average of the two cosine scores if the max is not confident (less than 0.7).

When neither score is confident, taking the average further penalizes the similarity

score. I chose the value of 0.7 from a grid search to optimize extraction results on

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 116

Selectional Preferences Vector

kidnap:subject release:subject
rebel 283 kidnapper 223
group 246 LOCATION 162
ORGANIZATION 242 rebel 151
gunman 199 group 123
militant 151 PERSON 122
tribesman 149 ORGANIZATION 119
insurgent 140 government 77
man 133 militant 54

Table 6.2: Selectional Preference vectors for the subjects of kidnap and release.

the training set. In the kidnap/release example above, the coreference vector cosine

score (0.93) is selected as their final similarity score.

Clustering Syntactic Functions

I use agglomerative clustering with the above pairwise similarity metric. Cluster

similarity is the average link score over all new links crossing two clusters. I include

a sparsity penalty r(ca, cb) if there are too few links between clusters ca and cb:

Clustering stops when the merged cluster scores drop below a threshold optimized to

extraction performance on the training data.

score(ca, cb) =
∑

wi∈ca

∑
wj∈cb

sim(wi, wj) ∗ r(ca, cb) (6.6)

r(ca, cb) =

∑
wi∈ca

∑
wj∈cb

1{sim(wi, wj) > 0}∑
wi∈ca

∑
wj∈cb

1
(6.7)

This penalizes clusters from merging when they share only a few high scoring edges.

I also begin with two assumptions about syntactic functions and semantic roles.

The first assumes that the grammatical subject and object of a verb carry different

semantic roles. For instance, the subject of sell fills a different role (Seller) than

the object (Good). The second assumption is that each semantic role has a high-

level entity type. For instance, the subject (or agent role) of sell is a Person or

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 117

Organization, and the object is a Physical Object.

I implement the first assumption as a constraint in the clustering algorithm, pre-

venting two clusters from merging if their union contains the same verb’s subject and

object.

I implement the second assumption by automatically labeling each syntactic func-

tion with a role type based on its observed arguments. The role types are broad

general classes: Person/Org, Physical Object, or Other. A syntactic function is la-

beled as a class if 20% of its arguments appear under the corresponding WordNet

synset3, or if the NER system labels them as such. Once labeled by type, I separately

cluster the syntactic functions for each role type. For instance, Person functions are

clustered separate from Physical Object functions. Figures 6.4 and 6.5 show some of

the resulting roles.

Finally, since agglomerative clustering makes hard decisions, related events to a

template may have been excluded in the initial event clustering stage. To address

this problem, I identify the 200 nearby events to each event cluster. These are simply

the top scoring event patterns with the cluster’s original events. I add their syntactic

functions to their best matching roles. This expands the coverage of each learned role.

Varying the 200 amount does not lead to wide variation in extraction performance.

Once induced, the roles are evaluated by their entity extraction performance in Section

6.5.

6.4.4 Template Evaluation

I now compare my learned templates to those hand-created by human annotators for

the MUC-4 terrorism corpus. The corpus contains 6 template types, but two of them

occur in only 4 and 14 of the 1300 training documents. I thus only evaluate the 4

main templates (bombing, kidnapping, attack, and arson), ignoring robbery and forced

work stoppage. The gold slots are shown in figure 6.6.

I evaluate the four learned templates that score highest in the document classifi-

cation evaluation (to be described in section 6.5.1), aligned with their MUC-4 types.

3Physical objects are defined as non-person physical objects

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 118

Bombing Template (MUC-4)

Perpetrator Person/Org who detonates, blows up, plants, hurls,
stages, is detained, is suspected, is blamed on, launches

Instrument A physical object that is exploded, explodes, is hurled,
causes, goes off, is planted, damages, is set off, is defused

Target A physical object that is damaged, is destroyed, is exploded at,
is damaged, is thrown at, is hit, is struck

Police Person/Org who raids, questions, discovers, investigates, de-
fuses, arrests

N/A A physical object that is blown up, destroys

Attack/Shooting Template (MUC-4)

Perpetrator Person/Org who assassinates, patrols, ambushes, raids,
shoots, is linked to

Victim Person/Org who is assassinated, is toppled, is gunned down,
is executed, is evacuated

Target Person/Org who is hit, is struck, is downed, is set fire to, is
blown up, surrounded

Instrument A physical object that is fired, injures, downs, is set off,
is exploded

Kidnap Template (MUC-4)

Perpetrator Person/Org who releases, abducts, kidnaps, ambushes,
holds, forces, captures, is imprisoned, frees

Target Person/Org who is kidnapped, is released, is freed, escapes,
disappears, travels, is harmed, is threatened

Police Person/Org who rules out, negotiates, condemns, is pressured,
finds, arrests, combs

Figure 6.4: Three learned example templates representing three of the original MUC-3
hand-coded templates.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 119

Weapons Smuggling Template (NEW)

Perpetrator Person/Org who smuggles, is seized from, is captured, is
detained

Police Person/Org who raids, seizes, captures, confiscates, detains,
investigates

Instrument A physical object that is smuggled, is seized, is confiscated,
is transported

Election Template (NEW)

Voter Person/Org who chooses, is intimidated, favors, is appealed to,
turns out

Government Person/Org who authorizes, is chosen, blames, autho-
rizes, denies

Candidate Person/Org who resigns, unites, advocates, manipulates,
pledges, is blamed

Figure 6.5: Two learned example templates that were not hand-created in the MUC-3
corpus. All knowledge except the template/role names (e.g., ‘Victim’) is learned.

Bombing Kidnap Attack Arson
Perpetrator x x x x
Victim x x x x
Target x x x
Instrument x x

Figure 6.6: Slots in the hand-crafted MUC-4 templates.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 120

Figure 6.4 shows three of my four templates, and figure 6.5 two brand new ones that

my algorithm learned. Of the four templates, I learned 12 of the 13 semantic roles

as created for MUC. In addition, I learned a new role not in MUC-4 for bombings,

kidnappings, and arson: the Police or Authorities role. The annotators chose not to

include this in their labeling, but this knowledge is clearly relevant when understand-

ing such events, so I consider it correct. There is one additional Bombing and one

Arson role that does not align with MUC-4, marked incorrect. I thus report 92% slot

recall, and precision as 14 of 16 (88%) learned slots.

I only measure agreement with the MUC-4 template schemas here, but my system

learns other events as well. I show two such examples in figure 2: the Weapons

Smuggling and Election Templates. This illustrates the strength in using a learning

approach based on narrative schemas. I have learned brand new knowledge (elections

and smuggling) that event human annotators did not capture when they originally

annotated the corpus. Human annotations are expensive, and typically only the main

events are labeled. A fully automated knowledge extraction algorithm such as this

one can greatly expand the knowledge we extract.

6.5 Information Extraction: Slot Filling

I now present how to apply my learned templates to information extraction. This sec-

tion will describe how to extract slot fillers using my templates, but without knowing

which templates are correct.

I could simply use a standard IE approach, for example, creating seed words for

my new learned templates. But instead, I propose a new method that obviates the

need for even a limited human labeling of seed sets. I consider each learned semantic

role as a potential slot, and I extract slot fillers using the syntactic functions that

were previously learned. Thus, the learned syntactic patterns (e.g., the subject of

release) serve the dual purpose of both inducing the template slots, and extracting

appropriate slot fillers from text.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 121

6.5.1 Document Classification

A document is labeled for a template if two different conditions are met: (1) it contains

at least one trigger phrase, and (2) its average per-token conditional probability meets

a strict threshold.

Both conditions require a definition of the probability of a token and a template.

The probability is then defined as the token’s importance relative to its uniqueness

across all templates:

P (w, t) =
PIRt(w)∑

s∈T PIRs(w)
(6.8)

where PIRt(w) is the probability of pattern w in the IR-corpus of template t.

PIRt(w) =
Ct(w)∑
v Ct(v)

(6.9)

where Ct(w) is the number of times word w appeared in the IR-corpus of template

t. A template’s trigger words are then defined as all words satisfying P (w, t) > 0.2.

Trigger phrases are thus template-specific patterns that are highly indicative of that

template.

After identifying triggers, I use the above definition to score a document with a

template. A document is labeled with a template if it contains at least one trigger,

and its average word probability is greater than a parameter optimized on the training

set. A document can be (and often is) labeled with multiple templates.

Finally, I label the sentences that contain triggers and use them for extraction in

section 6.5.2.

Experiment: Document Classification

The MUC-4 corpus links templates to documents, allowing us to evaluate my docu-

ment labels. I treat each link as a gold label (kidnap, bomb, attack, or arson) for that

document, and documents can have multiple labels. My learned clusters naturally

do not have MUC-4 labels, so I report results on the four clusters that score highest

with each label. I evaluate each cluster’s document assignments with each gold label,

and map the cluster with the highest performance to each label.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 122

Document Classification

Kidnap Bomb Attack Arson
Precision .64 .83 .66 .30
Recall .54 .63 .35 1.0

F1 .58 .72 .46 .46

Table 6.3: Document classification results on test.

Table 6.3 shows the document classification results for precision, recall, and F1

score. The bombing template performs best with an F1 score of .72, and kidnap with

.58. Precision is above .60 for the three most prevelant templates.

The classification results for the Attack template is lower because the MUC-4

definition of an attack is essentially an agglomeration of diverse types of attack events.

For instance, documents that describe single murders, broader military coups, and

infrastructure sabotage are all labeled with the same general Attack template. My

learned templates, however, have a different granularity. Rather than one broad

Attack type, I learn several: Shooting, Murder, Coup, General Injury, and Pipeline

Attack. I see these subtypes as strengths of my algorithm, but it misses the MUC-4

granularity of Attack and results in a lower F1 score.

6.5.2 Entity Extraction

Once documents are labeled with templates, I next extract entities into the template

slots. Extraction occurs in the trigger sentences from the previous section. The

extraction process is two-fold:

1. Extract all NPs that are arguments of patterns in the template’s induced roles.

2. Extract NPs whose heads are observed frequently with one of the roles (e.g., ‘bomb’

is seen with Instrument relations in figure 6.4).

Take the following MUC-4 sentence as an example:

The two bombs were planted with the exclusive purpose of intimidating the

owners of the premises.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 123

The verb plant is in my learned bombing cluster, so step (1) will extract its passive

subject bombs and map it to the correct instrument role (see figure 6.4). The human

target, owners, is missed because intimidate was not learned. However, if owner is

in the selectional preferences of the learned ‘human target’ role, step (2) correctly

extracts it into that role.

These are two different, but complementary, views of semantic roles. The first is

that a role is defined by the set of syntactic relations that describe it. Thus, I find

all role relations and save their arguments (pattern extraction). The second view is

that a role is defined by the arguments that fill it. Thus, I extract all arguments that

filled a role in training, regardless of their current syntactic environment.

Finally, I filter extractions whose WordNet or named entity label does not match

the learned slot’s type (e.g., a Location does not match a Person).

6.6 Standard Evaluation

I trained on the 1300 documents in the MUC-4 corpus and tested on the 200 docu-

ment TST3 and TST4 test set. I evaluate the four string-based slots: perpetrator,

physical target, human target, and instrument. I merge MUC’s two perpetrator slots

(individuals and orgs) into one gold Perpetrator slot. As in Patwardhan and Riloff

(2007; 2009), I ignore missed optional slots in computing recall. I induced clusters in

training, performed IR, and induced the slots. I then extracted entities from the test

documents following the above procedure in section 6.5.2.

The standard evaluation for this corpus is to report the F1 score for slot type

accuracy, ignoring the template type. For instance, a perpetrator of a bombing and

a perpetrator of an attack are treated the same. This allows supervised classifiers to

train on all perpetrators at once, rather than template-specific learners. Although

not ideal for my learning goals, I report it for comparison against previous work.

Several supervised approaches have presented results on MUC-4, but unfortu-

nately I cannot compare against them. Maslennikov and Chua (2006; 2007) evaluated

a random subset of test (they report .60 and .63 F1), and Xiao et al. (2004) did not

evaluate all slot types (they report .57 F1 on perpetrator, physical target, and human

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 124

MUC-4 Extraction Results

P R F1
Patwardhan & Riloff-09 : Supervised 48 59 53
Patwardhan & Riloff-07 : Weak-Sup 42 48 44
My Results (1 attack) 48 25 33
My Results (5 attack) 44 36 40

Table 6.4: MUC-4 extraction, ignoring template type.

target, but did not include instrument).

Table 6.4 thus shows my results with previous work that is comparable: the

fully supervised and weakly supervised approaches of Patwardhan and Riloff (2009;

2007). I give two numbers for my system: mapping one learned template to Attack,

and mapping five. As discussed above, my learned templates for Attack have a

different granularity than MUC-4. My system actually learns several distinct types

representing specific attack situations like Shooting, Murder, Coup, General Injury,

and Pipeline Attack. I thus show results when I apply the best five learned templates

to Attack, rather than just one. The final F1 with these Attack subtypes is .40.

The precision of my algorithm is as good as (and its F1 score near) two super-

vised algorithms that require knowledge of the templates and/or labeled data. My

algorithm instead learned this knowledge without such supervision. The main reason

for the slightly lower F1 score from previous work is recall. Supervised approaches

can take advantage of knowing that only four templates exist, and so can more easily

identify their key sentences. A sentence describes one of the four templates, or none

of them. My approach instead learned over 70 potential templates, many of which

are noisy. Identifying key sentences is thus more difficult as there are over 70 classes

to choose from for each sentence, and recall is hurt as the algorithm skips sentences

to maintain similar precision to supervised approaches.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 125

Individual Template Performance

F1 Score Kidnap Bomb Arson Attack
Results .53 .43 .42 .16 / .25

Table 6.5: Performance of the individual templates. The Attack column compares
both of my 1 vs 5 best templates.

Individual Template Performance on Gold Documents

Precision Recall F1
Kidnap .82 .47 .60 (+.07)
Bomb .60 .36 .45 (+.02)
Arson 1.0 .29 .44 (+.02)
Attack .36 .09 .15 (0.0)

Table 6.6: Performance of each template type, but only evaluated on the documents
that are labeled with that template type. All others are removed from testing. The
parentheses indicate F1 score gain over evaluating on all test documents (Table 6.5).

6.7 Specific Evaluation

In order to more precisely evaluate each learned template, I also evaluated per-

template performance. Instead of merging all slots across all template types, I score

the slots within each template type. This is a stricter evaluation than Section 6.6; for

example, bombing victims assigned to attacks were previously deemed correct4.

Table 6.5 gives my results. Three of the four templates score at or above .42 F1,

showing that my lower score from the previous section is mainly due to the Attack

template. Arson also unexpectedly scored well. It only occurs in 40 documents

overall, suggesting my algorithm works with little evidence.

Per-template performace is good, and my .40 overall score from the previous

section illustrates that I perform quite well in comparison to the .44-.53 range of

weakly and fully supervised results.

4I do not address the task of template instance identification (e.g., splitting two bombings into
separate instances). This requires deeper discourse analysis not addressed by this dissertation.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 126

These evaluations use the standard TST3 and TST4 test sets, including the doc-

uments that are not labeled with any templates. 74 of the 200 test documents are

unlabeled. In order to determine where the system’s false positives originate, I also

measure performance only on the 126 test documents that have at least one template.

Figure 6.6 presents the results on this subset. Kidnap improves most significantly in

F1 score (7 F1 points absolute), but the others only change slightly. Most of the

false positives in the system thus do not originate from the unlabeled documents (the

74 unlabeled), but rather from extracting incorrect entities from correctly identified

documents (the 126 labeled).

6.8 Discussion

Template-based IE systems typically assume knowledge of the domain and its tem-

plates. I began by showing that domain knowledge isn’t necessarily required; I learned

the MUC-4 template structure with surprising accuracy, learning new semantic roles

and several new template structures. This algorithm is the first to my knowledge to

automatically induce MUC-4 templates. It is possible to take these learned slots and

use a previous approach to IE (such as seed-based bootstrapping), but I presented

an algorithm that instead uses my learned syntactic patterns. I achieved results with

comparable precision, and an F1 score of .40 that approaches prior algorithms that

rely on hand-crafted knowledge.

Future work will need to address how the algorithm’s unsupervised nature hurts

recall. Without labeled or seed examples, it does not learn as many patterns or

robust classifiers as supervised approaches. I will investigate new text sources and

algorithms to try and capture more knowledge. The final experiment in figure 6.6

shows that perhaps new work should first focus on the pattern learning and entity

extraction algorithm, rather than document identification. Given perfect document

identification, system recall still suffers, suggesting that bigger gains can be found by

improving the extraction algorithm, rather than document identification.

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 127

The extraction results are encouraging, but the template induction itself is a cen-

tral contribution of this work. My induction algorithm is the first to learn the tem-

plate knowledge structures for the MUC-4 task, and my algorithm learned additional

template types (e.g., government elections) not annotated by the MUC-4 annotators.

A user seeking information in a body of text would recognize these new templates,

and could then extract the central entities. Knowledge induction plays an important

role in moving to new domains and assisting users who may not know what a corpus

contains. Recently, there is significant activity in the area of unsupervised knowl-

edge induction, such as recent work learning atomic relations and ontologies (Banko

et al., 2007b). I believe my algorithm for template-based IE complements this work

by focusing on template structure.

Finally, my approach to the MUC-4 task is a pipelined solution. Starting from

the raw text, I have split the algorithm into two separate stages: template induction

and entity extraction. Further, since the MUC-4 corpus is so small, I have a third

Information Retrieval stage that is embedded within the template structure induc-

tion stage. The benefits of this pipeline include flexibility in development and more

transparency in identifying errors. However, there are also several parameters in each

stage that need to be set and tuned to the task. I believe the IR parameters are quite

robust to change, and did not intently focus on improving this stage. However, the

initial clustering of event words and the clustering of slots during template induction

involves a couple clustering steps with parameters that control stopping conditions

and word filtering. I optimized some of these, as described above in this chapter,

and chose others by hand through visual inspection of example training output. All

learning algorithms require parameters, including generative models like LDA, but

future work will need to focus on removing as many of these as possible to allow

algorithmic transfer to new domains and genres.

The templates learned in this chapter are equivalent to narrative event schemas.

The algorithm was adapted to fit an IE domain, but the knowledge structures are

the same. Whereas Chapters 2 and 3 presented intrinsic evaluations of narrative

schemas, this chapter’s results present an evaluation of the usefulness of learning

narrative schemas in a different NLP application. I assumed less knowledge at the

CHAPTER 6. LEARNING EVENTS FOR INFORMATION EXTRACTION 128

start than previous work; I allowed narrative schemas to fill in the knowledge gap;

and completed the extraction task with comparable performance to previous work.

Chapter 7

Conclusions

This dissertation explored a new knowledge representation for characterizing situa-

tions in the world: the Narrative Event Schema. I presented approaches to learning

this knowledge from unlabeled text, classifiers with new temporal reasoning compo-

nents, and several evaluations, including its integration into an end-user information

extraction application. I believe this work is an important contribution that connects

the richness of historical NLP models with the robustness and flexibility of today’s

statistical learning models.

7.1 Contributions

The central contribution of this dissertation is the Narrative Schema representation.

Chapters 2 and 3 described how it uniquely captures events, entities, and the syn-

tactic constraints of the roles the entities fill in one single representation. I described

the core representation as a narrative chain: a set of events that are semantically

connected by a single actor, called the protagonist. I showed how a protagonist is

defined by its syntactic roles, and how chains can be extended into the full narrative

schema representation by characterizing all actors in the narrative. Finally, I showed

how the statistical relationships between the events and entities fulfill the modern

interpretation of Schankian scripts, and enable a unique approach to learning this

knowledge from open-domain text.

129

CHAPTER 7. CONCLUSIONS 130

Chapter 4 then described my contributions to the fields of event ordering and

temporal reasoning. I described the first supervised approach to event-event ordering

that built its features from raw text, and the results are still state-of-the-art today. I

also described the first model of temporal event order that enforces global transitivity

constraints on the local event-event decisions, maintaining consistency across the

entire document. I investigated reasons such a global model can be difficult, and

presented results improving over a local classifier. I concluded the temporal reasoning

part of this dissertation in Chapter 5 and showed how to impose event orderings over

learned schemas.

Other contributions of this dissertation include several new evaluations for struc-

tured event representations, and the results from these evaluations using my database

of learned narrative schemas. I created a new evaluation called the narrative cloze

by adapting the Cloze Test from linguistics to event relationships. It evaluated the

predictive power of the learned events. I also evaluated both precision and recall of

my learned schemas by comparing against the FrameNet database, and a coverage

experiment over newspaper articles. Finally, I evaluated the temporal order through

a consistency evaluation that permutes the true order of a document and relies on

the model to predict the original order. Through these four intrinsic evaluations, I

showed the high level of precision of my schema database, and its appropriate level

of recall against real-world data.

Finally, I concluded this dissertation in Chapter 6 with an extrinsic, application-

specific evaluation that applied my schema learning process to a completely different

field in NLP: information extraction. I mapped my narrative schema representation

to the templates in a common template-based information extraction task, and in-

tegrated my learning process into that framework. All previous work on this task

assumed knowledge of hand-coded templates and focused solely on extracting fillers

for the templates. This dissertation is first to approach this task without templates,

and instead learn them in the form of narrative schemas. Once learned, I extracted

their fillers and ultimately achieved extraction results that approached the perfor-

mance of supervised learners. My narrative schema framework thus offers a new

direction for unsupervised extraction.

CHAPTER 7. CONCLUSIONS 131

7.2 Future Work

The space of learning how events and entities interact is very much unexplored. This

dissertation is one of the first explorations to learn a representation that includes

both events and entities in one structure. As such, several open questions remain. I

highlight a few here.

Can we build a hierarchy of schemas to jointly inform schema structure? I have

shown how to learn a flat hierarchy of schemas. Each schema is a self-contained set

of events, but there are no semantic connections across schemas except for perhaps

word overlap. Many schemas, however, include entities that fill the same semantic

role. Using the IE domain from Chapter 6 as an example, the four target situations all

include a person who is a perpetrator. These four situations should be under a single

generalized schema for crime or terrorist event. They then inherit the role from the

parent, and can jointly inform each other during learning and extraction. Learning

hierarchies is an open problem in machine learning, and hierarchical schemas will

require new models of selectional preferences that can detect role-bearing words (e.g.,

suspect) when they appear in text.

Can we encode schemas recursively? One of the results of this dissertation is

that schemas vary in the granularity of events that they describe. The granularity is

currently controlled by the corpus, however, and the algorithm learns the granularity

contained in the text itself. For instance, I learned a “life schema” from obituaries

that includes broad life events like born, graduate, retire, die. I also learned schemas

that represent more specific events that characterize situations like a graduation.

Future work that can detect this granularity and embed schemas within schemas

holds promise for advanced reasoning systems and better document understanding.

How do we separate synonymy from narrative relations? The majority of unsuper-

vised learning in NLP focuses on clustering words and patterns that are synonymous.

By using a protagonist, among other things, I have shown how to learn all events in

a situation, not just synonymous relations. Many synonyms are implicitly captured

by the protagonist as well, so the resulting schemas contain a mix of both synonyms

(e.g., plant, place) and broader narrative relations (e.g., plant, explode). Making

CHAPTER 7. CONCLUSIONS 132

this distinction within a schema may lead to more precise learning algorithms that

can first cluster synonyms, and then discover narrative relations. I believe this will

require a mixture of approaches that utilize distributional approaches to synonymy,

and protagonist-based work.

Can we build a unified induction and extraction framework for template-based in-

formation extraction? My approach to information extraction is a pipelined approach

that first optimizes template structure induction, and then optimizes the entity ex-

traction stage. There is some feedback in adjusting induction parameters based on

extraction performance, but the interaction between stages is not significant. The

most obvious area for improvement is reasoning over induced slots and their per-

document extraction. For instance, induced slots should extract entities in most of

the template’s document matches. If a slot rarely extracts instances, this could be

used as negative reinforcement in the induction process. In contrast, if a template’s

matched documents contain repeated mentions of words that are not being extracted,

these words can be used as indicators of a new slot. Generative models offer tools to

build such a joint model, but techniques to make inference tractable over the topics,

their events, syntactic slots, and dependencies like the protagonist, are challenges to

overcome. Other models not yet explored that can feedback extraction results to

induction may perform more efficiently.

Finally, how does narrative knowledge assist other NLP applications? I explored

one particular application, information extraction, and showed how schema learning

can transform the task from supervised to largely unsupervised. Many of today’s

NLP tasks focus on sentence-level applications, such as parsing, named entity recog-

nition, machine translation, etc. As the field moves to full document understanding

and incorporates more of the context inherent in a document, I believe models like

narrative schemas will offer a deeper representation of semantics to better model the

context. I look forward to learning and utilizing rich models of event structure across

a host of applications.

Bibliography

Alishahi, Afra, and Suzanne Stevenson. 2007. A computational usage-based model

for learning general properties of semantic roles. In The 2nd European Cognitive

Science Conference.

Allen, James. 1984. Towards a general theory of action and time. Artificial Intelligence

23:123–154.

Azzam, Saliha, Kevin Humphreys, and Robert Gaizauskas. 1999. Using coreference

chains for text summarization. In ACL Workshop on Coreference and its Applica-

tions.

Baker, Collin F., Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley

FrameNet project. In Christian Boitet and Pete Whitelock (eds.), Proceedings

of the Association for Computational Linguistics (ACL), pp. 86–90. Morgan Kauf-

mann Publishers. url: citeseer.ist.psu.edu/baker98berkeley.html.

Banko, Michele. 2009. Open Information Extraction for the Web. PhD thesis, Uni-

versity of Washington.

Banko, Michele, Michael J Cafarella, Stephen Soderland, Matt Broadhead, and Oren

Etzioni. 2007a. Learning relations from the web. In Proceedings of the International

Joint Conferences on Artificial Intelligence (IJCAI).

Banko, Michele, Michael J Cafarella, Stephen Soderland, Matt Broadhead, and Oren

Etzioni. 2007b. Open information extraction from the web. In Proceedings of the

International Joint Conferences on Artificial Intelligence (IJCAI).

133

BIBLIOGRAPHY 134

Barzilay, Regina, and Michael Elhadad. 1997. Using lexical chains for text summa-

rization. In Proceedings of the Intelligent Scalable Text Summarization Workshop.

Barzilay, Regina, and Mirella Lapata. 2005. Modeling local coherence: an entity-based

approach. Proceedings of the 43rd Annual Meeting on Association for Computa-

tional Linguistics pp. 141–148.

Barzilay, Regina, and Lillian Lee. 2004. Catching the drift: Probabilistic content

models, with applications to generation and summarization. In Proceedings of

HLT-NAACL.

Bean, David, and Ellen Riloff. 2004. Unsupervised learning of contextual role knowl-

edge for coreference resolution. Proc. of HLT/NAACL pp. 297–304.

Bejan, Cosmin. 2008. Unsupervised discovery of event scenarios from texts. In

Proceedings of the Florida Artificial Intelligence Research Society.

Bejan, Cosmin Adrian. 2009. Learning Event Structures From Text. PhD thesis, The

University of Texas at Dallas.

Bergler, Sabine, Rene Witte, Michelle Khalife, Zyuoyan Li, and Frank Rudzicz. 2003.

Using knowledge-poor coreference resolution for text summarization. In Document

Understanding Conference.

Bethard, Steven, and James H. Martin. 2007. Cu-tmp: Temporal relation classifica-

tion using syntactic and semantic features. In Proceedings of the 4th International

Workshop on Semantic Evaluations (SemEval).

Bethard, Steven, James H. Martin, and Sara Klingenstein. 2007. Timelines from

text: Identification of syntactic temporal relations. In International Conference on

Semantic Computing.

Blei, David, Andrew Ng, and Michael Jordan. 2003. Latent dirichlet allocation.

Journal of Machine Learning Research.

BIBLIOGRAPHY 135

Boguraev, Branimir, and Rie Kubota Ando. 2005. Timeml-compliant text analysis

for temporal reasoning. In Proceedings of the International Joint Conferences on

Artificial Intelligence (IJCAI).

Bramsen, Philip, Pawan Deshpande, Yoong Keok Lee, and Regina Barzilay. 2006.

Inducing temporal graphs. In Proceedings of the Conference on Empirical Methods

on Natural Language Processing (EMNLP).

Brody, Samuel. 2007. Clustering Clauses for High-Level Relation Detection: An

Information-theoretic Approach. Proceedings of the 43rd Annual Meeting of the

Association for Computational Linguistics pp. 448–455.

Bunescu, Razvan, and Raymond Mooney. 2004. Collective information extraction

with relational markov networks. In Proceedings of the Association for Computa-

tional Linguistics (ACL), pp. 438–445.

Carlson, Andrew, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., and T.M.

Mitchell. 2010a. Toward an architecture for never-ending language learning. In

Proceedings of the Conference on Artificial Intelligence (AAAI).

Carlson, Andrew, J. Betteridge, R.C. Wang, E.R. Hruschka Jr., and T.M. Mitchell.

2010b. Coupled semi-supervised learning for information extraction. In Proceedings

of the ACM International Conference on Web Search and Data Mining (WSDM).

Chambers, Nathanael, and Dan Jurafsky. 2008a. Jointly combining implicit con-

straints improves temporal ordering. In Proceedings of the Conference on Empirical

Methods on Natural Language Processing (EMNLP).

Chambers, Nathanael, and Dan Jurafsky. 2008b. Unsupervised learning of narra-

tive event chains. In Proceedings of the Association for Computational Linguistics

(ACL).

Chambers, Nathanael, and Dan Jurafsky. 2009. Unsupervised learning of narrative

schemas and their participants. In Proceedings of the Association for Computational

Linguistics (ACL).

BIBLIOGRAPHY 136

Chambers, Nathanael, Shan Wang, and Dan Jurafsky. 2007. Classifying tempo-

ral relations between events. In Proceedings of the Association for Computational

Linguistics (ACL).

Chang, Chih-Chung, and Chih-Jen Lin. 2001. LIBSVM: a library for support vector

machines. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Cheng, Yuchang, Masayuki Asahara, and Yuji Matsumoto. 2007. Naist.japan: Tem-

poral relation identification using dependency parsed tree. In Proceedings of the

4th International Workshop on Semantic Evaluations (SemEval).

Chieu, Hai Leong, Hwee Tou Ng, and Yoong Keok Lee. 2003. Closing the gap:

Learning-based information extraction rivaling knowledge-engineering methods. In

Proceedings of the Association for Computational Linguistics (ACL).

Chinchor, Nancy, David Lewis, and Lynette Hirschman. 1993. Evaluating message

understanding systems: an analysis of the third message understanding conference.

Computational Linguistics 19:3:409–449.

Chklovski, Timothy, and Patrick Pantel. 2004. Verbocean: Mining the web for fine-

grained semantic verb relations. In Proceedings of the Conference on Empirical

Methods on Natural Language Processing (EMNLP).

Chklovski, Timothy, and Patrick Pantel. 2005. Global path-based refinement of noisy

graphs applied to verb semantics. In IJCNLP-05.

de Marneffe, Marie-Catherine, Bill MacCartney, and Christopher D. Manning. 2006.

Generating typed dependency parses from phrase structure parses. In Proceedings

of LREC-06, pp. 449–454.

Deyes, Tony. 1984. Towards an authentic ’discourse cloze’. Applied Linguistics 5(2).

Durme, Benjamin Van, and Marius Pasca. 2008a. Finding cars, goddesses and en-

zymes: Parametrizable acquisition of labeled instances for open-domain informa-

tion extraction. In Proceedings of the 23rd Annual Conference on Artificial Intel-

ligence (AAAI-2008), pp. 1243–1248.

BIBLIOGRAPHY 137

Durme, Benjamin Van, and Marius Pasca. 2008b. Weakly-supervised acquisition of

open-domain classes and class attributes from web documents and query logs. In

Proceedings of the Association for Computational Linguistics (ACL), pp. 19–27.

Erk, Katrin, and Sebastian Pado. 2008. A structured vector space model for word

meaning in context. In Proceedings of the Conference on Empirical Methods on

Natural Language Processing (EMNLP).

Filatova, Elena, and Vasileios Hatzivassiloglou. 2004. Event-based extractive sum-

marization. In Text Summarization Branches Out: Proceedings of the ACL-04

Workshop.

Filatova, Elena, Vasileios Hatzivassiloglou, and Kathleen McKeown. 2006. Automatic

creation of domain templates. In Proceedings of the Association for Computational

Linguistics (ACL).

Finkel, Jenny Rose, Trond Grenager, and Christopher Manning. 2005. Incorporating

non-local information into information extraction systems by gibbs sampling. In

Proceedings of the Association for Computational Linguistics (ACL), pp. 363–370.

Freitag, Dayne. 1998. Toward general-purpose learning for information extraction. In

Proceedings of the Association for Computational Linguistics (ACL), pp. 404–408.

Fujiki, Toshiaki, Hidetsugu Nanba, and Manabu Okumura. 2003. Automatic acquisi-

tion of script knowledge from a text collection. In Proceedings of the Conference of

the European Chapter of the Association for Computational Linguistics (EACL),

pp. 91–94.

Gerber, Matthew, and Joyce Chai. 2010. Beyond nombank: A study of implicit argu-

ments for nominal predicates. In Proceedings of the Association for Computational

Linguistics (ACL).

Gildea, Daniel, and Daniel Jurafsky. 2002. Automatic labeling of semantic roles.

Computational Linguistics 28(3):245–288.

BIBLIOGRAPHY 138

Gordon, Andrew S. 2010. Mining commonsense knowledge from personal stories in

internet weblogs. In First Workshop on Automated Knowledge Base Construction.

Graff, David. 2002. English gigaword. Linguistic Data Consortium.

Green, Rebecca, and Bonnie J. Dorr. 2005. Frame semantic enhancement of lexical-

semantic resources. In ACL-SIGLEX Workshop on Deep Lexical Acquisition, pp.

57–66.

Grenager, Trond, and Christopher D. Manning. 2006a. Unsupervised discovery of a

statistical verb lexicon. In Proceedings of the Conference on Empirical Methods on

Natural Language Processing (EMNLP).

Grenager, Trond, and Christopher D. Manning. 2006b. Unsupervised discovery of a

statistical verb lexicon. In Proceedings of the Conference on Empirical Methods on

Natural Language Processing (EMNLP).

Grosz, Barbara J., Aravind K. Joshi, and Scott Weinstein. 1995. Centering: A

framework for modelling the local coherence of discourse. Computational Linguistics

21(2).

Hagege, Caroline, and Xavier Tannier. 2007. Xrce-t: Xip temporal module for

tempeval campaign. In Proceedings of the 4th International Workshop on Semantic

Evaluations (SemEval).

He, Shan, and Daniel Gildea. 2006a. Self-training and co-training for semantic role

labeling: Primary report. Technical Report 891, University of Rochester.

He, Shan, and Daniel Gildea. 2006b. Self-training and co-training for semantic role

labeling: Primary report. Technical Report 891, University of Rochester.

Hearst, Marti A. 1992. Automatic acquisition of hyponyms from large text corpo-

raclassification. In Proceedings of the 14th International Conference on Computa-

tional Linguistics (COLING).

BIBLIOGRAPHY 139

Hepple, Mark, Andrea Setzer, and Rob Gaizauskas. 2007. Usfd: Preliminary explo-

ration of features and classifiers for the tempeval-2007 tasks. In Proceedings of the

4th International Workshop on Semantic Evaluations (SemEval).

Huang, Ruihong, and Ellen Riloff. 2010. Inducing domain-specific semantic class

taggers from (almost) nothing. In Proceedings of the Association for Computational

Linguistics (ACL).

Ingria, R, and James Pustejovsky. 2002. TimeML specification 1.0. In

http://www.time2002.org.

Ji, Heng, and Ralph Grishman. 2008. Refining event extraction through unsupervised

cross-document inference. In Proceedings of the Association for Computational

Linguistics (ACL).

Kasch, Niels, and Tim Oates. 2010. Mining script-like structures from the web. In

Proceedings of NAACL HLT, pp. 34–42.

Kipper, Karin, Hoa Trang Dang, and Martha Palmer. 2000. Class-based construction

of a verb lexicon. In Proceedings of AAAI-2000.

Kok, Stanley, and Pedro Domingos. 2008. Extracting semantic networks from text

via relational clustering. In ECML.

Lang, Joel, and Mirella Lapata. 2010. Unsupervised induction of semantic roles. In

Proceedings of the North American Association for Computational Linguistics.

Lapata, Mirella, and Alex Lascarides. 2006. Learning sentence-internal temporal

relations. In Journal of AI Research, volume 27, pp. 85–117.

Lin, C.Y., and E. Hovy. 2000. The automated acquisition of topic signatures for text

summarization. Proceedings of the 17th conference on Computational linguistics-

Volume 1 pp. 495–501.

Mani, Inderjeet, Marc Verhagen, Ben Wellner, Chong Min Lee, and James Puste-

jovsky. 2006. Machine learning of temporal relations. In Proceedings of the Asso-

ciation for Computational Linguistics (ACL).

BIBLIOGRAPHY 140

Mani, Inderjeet, Ben Wellner, Marc Verhagen, and James Pustejovsky. 2007. Three

approaches to learning tlinks in timeml. Technical Report CS-07-268, Brandeis

University.

Manshadi, Mehdi, Reid Swanson, and Andrew S. Gordon. 2008. Learning a prob-

abilistic model of event sequences from internet weblog stories. In Proceedings of

the Florida Artificial Intelligence Research Society.

Maslennikov, Mstislav, and Tat-Seng Chua. 2007. Automatic acquisition of domain

knowledge for information extraction. In Proceedings of the Association for Com-

putational Linguistics (ACL).

McIntyre, Neil, and Mirella Lapata. 2009. Learning to tell tales: A data-driven

approach to story generation. In Proceedings of the Association for Computational

Linguistics (ACL).

Min, Congmin, Munirathnam Srikanth, and Abraham Fowler. 2007. Lcc-te: A hybrid

approach to temporal relation identification in news text. In Proceedings of the 4th

International Workshop on Semantic Evaluations (SemEval).

Moens, Marc, and Mark Steedman. 1988. Temporal ontology and temporal reference.

Computational Linguistics 14(2):15–28.

Mooney, Raymond, and Gerald DeJong. 1985. Learning schemata for natural lan-

guage processing. In Ninth International Joint Conference on Artificial Intelligence

(IJCAI), pp. 681–687.

Morris, Jane, and Graeme Hirst. 1991. Lexical cohesion computed by thesaural

relations as an indicator of the structure of text. Computational Linguistics 17:

21–43.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: A

corpus annotated with semantic roles. Computational Linguistics 31(1):71–106.

BIBLIOGRAPHY 141

Pantel, Patrick, and Dekang Lin. 2002. Document clustering with committees. In

ACM Conference on Research and Development in Information Retrieval, pp. 199–

206.

Pantel, Patrick, and Deepak Ravichandran. 2004. Automatically labeling semantic

classes. Proceedings of HLT/NAACL 4:321–328.

Pasca, Marius. 2008. Turning web text and search queries into factual knowledge: Hi-

erarchical class attribute extraction. In Proceedings of the 23rd National Conference

on Articial Intelligence (AAAI-08), pp. 1225–1230.

Pasca, Marius, and Benjamin Van Durme. 2007. What you seek is what you get: Ex-

traction of class attributes from query logs. In Proceedings of the 20th International

Joint Conference on Artificial Intelligence (IJCAI-07), pp. 2832–2837.

Patwardhan, Siddharth, and Ellen Riloff. 2007. Effective ie with semantic affinity pat-

terns and relevant regions. In Proceedings of the Conference on Empirical Methods

on Natural Language Processing (EMNLP).

Patwardhan, Siddharth, and Ellen Riloff. 2009. A unified model of phrasal and

sentential evidence for information extraction. In Proceedings of the Conference on

Empirical Methods on Natural Language Processing (EMNLP).

Paul, Michael, Roxana Girju, and Chen Li. 2009. Mining the web for reciprocal

relationships. In Conference on Computational Natural Language Learning.

Poon, Hoifung, and Pedro Domingos. 2010. Unsupervised ontology induction from

text. In Proceedings of the Association for Computational Linguistics (ACL), pp.

296–305.

Puscasu, Georgiana. 2007. Wvali: Temporal relation identification by syntactico-

semantic analysis. In Proceedings of the 4th International Workshop on Semantic

Evaluations (SemEval).

BIBLIOGRAPHY 142

Pustejovsky, James, Patrick Hanks, Roser Sauri, Andrew See, David Day, Lisa Ferro,

Robert Gaizauskas, Marcia Lazo, Andrea Setzer, and Beth Sundheim. 2003. The

timebank corpus. Corpus Linguistics pp. 647–656.

Rau, Lisa, George Krupka, Paul Jacobs, Ira Sider, and Lois Childs. 1992. Ge nltoolset:

Muc-4 test results and analysis. In Proceedings of the Message Understanding

Conference (MUC-4), pp. 94–99.

Regneri, Michaela, Alexander Koller, and Manfred Pinkal. 2010. Learning script

knowledge with web experiments. In Proceedings of the Association for Computa-

tional Linguistics (ACL).

Reisinger, Joseph, and Marius Pasca. 2009. Latent variable models of concept-

attribute attachment. In Proceedings of the Association for Computational Lin-

guistics (ACL), pp. 620–628.

Riloff, Ellen, and Mark Schmelzenbach. 1998. An empirical approach to concep-

tual case frame acquisition. In Proceedings of the Sixth Workshop on Very Large

Corpora.

Riloff, Ellen, Janyce Wiebe, and William Phillips. 2005. Exploiting subjectivity

classification to improve information extraction. In Proceedings of AAAI-05.

Schank, Roger C., and Robert P. Abelson. 1977. Scripts, plans, goals and under-

standing. Lawrence Erlbaum.

Shinyama, Yusuke, and Satoshi Sekine. 2006. Preemptive ie using unrestricted rela-

tion discovery. In Proceedings of NAACL.

Snow, Rion, Brendan O’Connor, Dan Jurafsky, and Andrew Ng. 2008. Cheap and

fast - but is it good? evaluating non-expert annotations for natural language tasks.

In Proceedings of the Conference on Empirical Methods on Natural Language Pro-

cessing (EMNLP).

BIBLIOGRAPHY 143

Suchanek, F., G. Kasneci, and G. Weikum. 2007. Yago: a core of semantic knowledge

unifying wordnet and wikipedia. In Proceedings of the 16th World Wide Web

Conference (WWW-07), pp. 697–706.

Sudo, Kiyoshi, Satoshi Sekine, and Ralph Grishman. 2003. An improved extraction

pattern representation model for automatic ie pattern acquisition. In Proceedings

of the Association for Computational Linguistics (ACL), pp. 224–231.

Sundheim, Beth M. 1991. Third message understanding evaluation and conference

(muc-3): Phase 1 status report. In Proceedings of the Message Understanding

Conference.

Surdeanu, Mihai, Jordi Turmo, and Alicia Ageno. 2006. A hybrid approach for

the acquisition of information extraction patterns. In Proceedings of the EACL

Workshop on Adaptive Text Extraction and Mining.

Swier, Robert S., and Suzanne Stevenson. 2004a. Unsupervised semantic role la-

belling. In Proceedings of the Conference on Empirical Methods on Natural Lan-

guage Processing (EMNLP).

Swier, Robert S., and Suzanne Stevenson. 2004b. Unsupervised semantic role la-

belling. In Proceedings of the Conference on Empirical Methods on Natural Lan-

guage Processing (EMNLP).

Taylor, Wilson L. 1953. Cloze procedure: a new tool for measuring readability.

Journalism Quarterly 30:415–433.

Verhagen, Marc, Robert Gaizauskas, Frank Schilder, Mark Hepple, Graham Katz,

and James Pustejovsky. 2007. Semeval-2007 task 15: Tempeval temporal relation

identification. In Workshop on Semantic Evaluations.

Verhagen, Marc, Robert Gaizauskas, Frank Schilder, Mark Hepple, Jessica Moszkow-

icz, and James Pustejovsky. 2009. The tempeval challenge: identifying temporal

relations in text. Special Issue: Computational Semantic Analysis of Language:

SemEval-2007 and Beyond 43(2):161–179.

BIBLIOGRAPHY 144

Wu, F., and D. Weld. 2008. Automatically rening the wikipedia infobox ontology. In

Proceedings of the 17th World Wide Web Conference (WWW-08), pp. 635–644.

Xiao, Jing, Tat-Seng Chua, and Hang Cui. 2004. Cascading use of soft and hard

matching pattern rules for weakly supervised information extraction. In Proceedings

of the 20th International Conference on Computational Linguistics (COLING).

Yangarber, Roman, Ralph Grishman, Pasi Tapanainen, and Silja Huttunen. 2000.

Automatic acquisition of domain knowledge for information extraction. In Proceed-

ings of the 18th International Conference on Computational Linguistics (COLING),

pp. 940–946.

Yoshikawa, Katsumasa, Sebastian Riedel, Masayuki Asahara, and Yuji Matsumoto.

2009. Jointly identifying temporal relations with markov logic. In Proceedings of

the Association for Computational Linguistics (ACL).

Yoshinaga, N., and K. Torisawa. 2007. Open-domain attribute-value acquisition

from semi-structured texts. In Proceedings of the 6th International Semantic Web

Conference (ISWC-07) Workshop on Text to Knowledge: The Lexicon/Ontology

Interface (OntoLex-2007), pp. 55–66.

