Computer Science Department
SI495 Research Project Report

Fall AY04

High Energy Laser Modeling and Simulation Framework Evaluation
by

Midshipman E. C. Eckstrand, 041866
United States Naval Academy
Annapolis, MD

Date

Certification of Faculty Mentor’s Approval

Associate Professor Donald M. Needham

Department of Computer Science

Date
Department Chair Endorsement
Professor Kay G. Schulze

Chair, Department of Computer Science

Date
Abstract
High Energy Lasers offer warfighters the potential of technological and operational superiority in terms of precision combat capabilities. The High Energy Laser Joint Technology Office (HEL-JTO) has funded considerable research in terms of the modeling, simulation, and construction of high energy laser devices. A wide variety of end-to-end High Energy Laser simulations exist, and the development of these simulations could benefit from modularizing the software architecture under which these simulations are developed. In this manner, one component of a software simulation framework, such as a laser’s wave front propagation component, can be modified or replaced without disturbing the rest of the simulation framework. Such a modification to the component model must be efficient in terms of ease of use of the modeling framework, as well as in minimizing the restrictions placed on the component undergoing modification. Changing a particular portion of a simulation should only require modifying the component which held that particular part, rather than having to modify the whole simulation. Modifying the simulation framework to support the inclusion of a new propagation code should not require a complete understanding of the entire simulation, but rather only the perspective of the particular module being added and its interaction with the surrounding modules. This project contributes to the HEL-JTO effort by incorporating an existing laser propagation model into the Northrop Grumman High Energy Laser Simulation (HELSEEM) framework. This project focuses on the feasibility of incorporating legacy laser propagation codes into the HELSEEM framework. The incorporation process is detailed, and particular attention is given to problems likely to be encountered by developers of subsequent laser propagation codes. Lessons learned from the incorporation process, as well as recommendations for the improvement of the process, are identified.

Table of Contents

 1. Introduction……………………………………………………………………….1
2. Background……………………………………………………………………….1 2.1 Legacy Laser Propagation Code……………………………………………...2
2.2 HELSEEM Simulation Software……………………………………………..2
3. Component Construction…………………………………………………………3
3.1 Fundamentals of the HELSEEM Script File…………………………………3
3.2 Building a JMPS Component ………………………………………………..4

3.2.1 Compiling an Existing Component ………………………………..4

3.2.2 Building the Shell of a Propagation Component …………………...6
3.2.3 Incorporating the Legacy Propagation Model into our
 Propagation Component……………………………………11
3.2.3.1 Incorporation Attempt #1: Making a System Call……….13

3.2.3.2 Incorporation Attempt #1: Moving the Legacy Code

 to the Propagation Component…………………..………16
 3.3 Observing the Simulation ………………………………………………......17
 4. Analysis…………………………………………………………………………...18
 5. Conclusions and Future Work…………………………………………………….19

 6. References………………………………………………………………………...20
1. Introduction
The focus of this project is to analyze the High Energy Laser Simulation End-to-End Model (HELSEEM) software developed by Northrop Grumman in terms of modularity. Schach defines modularity from two perspectives [7]. First, modularity is defined by the extent of the module’s relationship within itself. Second, modularity is defined by the extent of the module’s relationship with other modules. In a well-designed module, according to Schach, the elements of a module are highly related, and there is little relation between the elements of one module to the elements of another. Such well-designed modules can easily be reused, extended, or enhanced with minimal effect to the surrounding modules [7]. We evaluate the HELSEEM framework to determine first hand whether the properties of well-designed modules are observed throughout the process of incorporating a new component into the HELSEEM framework. A modification, consisting of the removal of an existing module in the HELSEEM framework, was required in order to complete this task. The laser propagation component of the HELSEEM framework was chosen as the module targeted for replacement. Altering and removing the existing laser propagation module to incorporate a legacy laser propagation model gave us a glimpse into the degree to which the HELSEEM framework conforms to the principle of modularity. For instance, if the HELSEEM framework consists of well-designed modules, then it should be possible to alter or remove the existing laser propagation module and replace is with the legacy model of laser propagation without disturbing any other module. Additionally, this incorporation process should not require knowledge of how any other module works, but only how it interacts with the laser propagation module.

The remainder of this paper is organized as follows. Section 2 focuses on background information regarding the legacy propagation code that was used and how the HEL-JTO effort could benefit from a modular High Energy Laser simulation framework. This section also includes background information on the HELSEEM software that is being developed by Northrop Grumman. Section 3 of this paper is the largest and will contain the documentation of the incorporation process of the legacy laser propagation code. Section 4 will analyze the framework in terms of modularity. We discuss additional factors impacting modularity, lessons learned during the incorporation process, and make recommendations for improvement. Section 5 presents our conclusions and provides suggestions regarding future work.
2. Background
The High Energy Laser Joint Technology Office (HEL-JTO) has funded considerable research in terms of the modeling, simulation, and construction of high energy laser devices. A wide variety of end-to-end High Energy Laser simulations exist. One approach to providing an end-to-end High Energy Laser simulation focuses on the physical model of laser propagation and development of simulation software around this sole model. This approach centers on the physics of wave propagation. Although this approach can benefit the HEL-JTO in terms of the modeling, simulation, and construction of high energy laser devices, the possibility of future change to the model of wave propagation, or the emergence of competitive propagation models with varying fidelity need to be anticipated. Dependence on the model of wave propagation incorporation would exclude the extensive work that has been done by other members of the laser community as well as future developments by the laser community.
Although reusable software components have been in used in various forms for over 30 years [4], the benefits of reusable components, such as limiting costs, increasing quality, and supporting rapid prototyping [5, 6, 8], have proven difficult to demonstrate in practice. Recognizing the difficulty facing the integration of emerging laser propagation models, the Northrop Grumman corporation has built end-to-end High Energy Laser simulations capable of capitalizing on the present and future work of the laser community. Specifically, Northrop Grumman has taken this approach with its HELSEEM framework. The HELSEEM framework, while providing its own model of laser propagation, does not focus solely on this model, nor does it develop its simulation software around this model. The focus of the HELSEEM project is, rather, to provide the capability to its users to incorporate their own models of laser propagation. This model capitalizes on the idea that it is difficult to develop high quality reusable components [9]. Instead of focusing on creating a model of laser propagation and incorporating it into their system, HELSEEM allows the user, who is more familiar with his/her high quality laser propagation code, to incorporate it into the HELSEEM framework. Additionally, HELSEEM avoids the interoperability problem of incompatibilities in programming languages by providing a DLL interface to their components [1].
2.1 Legacy Laser Propagation Code
The laser propagation model that we incorporated into the HELSEEM framework was developed by Dr. Colson, a professor at the Naval Postgraduate School and an expert in the area of free electron lasers. He provided a C program that simulates the propagation of a laser’s wave front through the atmosphere [3]. The input parameters are read from a file and provide information that defines the propagation environment. The program generates a wave front that is then manipulated according to a simplified variation of Dr. Colson’s laser propagation model. The resulting wave front, after a given period of time, is recorded in an output file. Dr. Colson’s program was written and compiled in a UNIX environment.

2.2 HELSEEM Simulation Software
The High Energy Laser simulation software, HELSEEM, that we used as the target for our modularity analysis and code incorporation process was provided by the Northrop Grumman Corporation [2]. The software is written in C++ in a Windows environment. The components of the simulation software are constructed as DLL files. This project uses the Microsoft Visual C++ environment to edit and build the HELSEEM components.
3 Component Construction
The script file is used to select and initialize components that define the simulation environment. One might select a Billboard component, which could be a target, a Laser component, and a Propagation component. One might also set the Billboard component to be a certain size and set the Laser component to be a certain strength. The HELSEEM user’s manual [2] is a good source for understanding how to set up a simulation with a script file. We will incrementally construct a script file and a user-defined Propagation component in the following sections. This Propagation component models laser propagation according to the model provided by Dr. Colson. This was the most complex part of the project and it was broken down into a number of steps. The major portions of which include compiling an existing component, building the shell of a Propagation component, and incorporating the laser propagation model into the shell.
3.1 Fundamentals of the HELSEEM Script File
Selecting a component follows this format:

Construct ModuleFile ComponentName

ModuleFile refers to the type of the component identified by ComponentName. In order to select a component of type Laser and call it HEL, for example, you would write:

Construct Laser HEL

You can select more than one component of the same type, but they must have different names. The following statements have correct syntax:

Construct Laser HEL1
Construct Laser HEL2
Names cannot be duplicated. The following statements have incorrect syntax:
Construct Laser HEL
Construct Propagator HEL
As mentioned above, it is possible to initialize a component’s parameters in a script file. This is accomplished by sending the component a message. Messages take the following form:

MessageName LogicalTime ComponentName

DATATYPE FeildName [dimension(s)] values … END

DATATYPE FeildName [dimension(s)] values … END

…

ENDMESSAGE

Messages are defined by its name and by the information contained inside the message. MessageName identifies the name of message being sent. When a component receives a message, it first looks at the name. Each component has a set of message names that it can respond to. If a component recognizes the message name, then the component will look at the information contained in the message. In addition to having a set of message names, each component also has a set of fields that define the component. For example, a Target might have a width, a location, and an orientation. We can send a message to a component to initialize the component’s fields. Currently, this is done by sending a “SetParameters” message. Existing components recognize this name and initialize their fields based on the information in these messages. Components recognize other messages as well. When we build our Propagator component we will write the list of messages that it recognizes and how it responds to each message. The following message was constructed to initialize the fields of a Billboard component:

SetParameters 0RO Target

DOUBLE Location [3] 0 0 0 END

DOUBLE Orientation [3 3] 1 0 0 #forward

0 -1 0 #right

0 0 -1 END #down

ENDMESSAGE

DATATYPE includes a number of different types, which are defined in the user’s manual. Some of these types are FLOAT, DOUBLE, STRING, and COMPLEX. The FeildName, is the name of the field that you want to initialize. In this case the location and orientation fields of the target are being initialized to certain values.
Other propagation components of different types will have different fields to initialize. The following is an example of a propagation component of type BlurPropagator named Prop being initialized:

SetParameters 0RO Prop

STRING BlurTable ../Data/blurTable2.txt END
ENDMESSAGE

This topic area will be revisited as we build our propagation component.
3.2 Building a JMPS Component

As mentioned earlier, the task of building our own Propagation component will be broken into steps. First, we will compile an existing component. Next, we will build the shell of a Propagation component. Finally, we will incorporate the legacy laser propagation model into the shell. Microsoft Visual C++ 6.0 was chosen as the development environment because it was the most accessible and it is widely used.
3.2.1 Compiling an Existing Component
Building a component DLL for which the code was already written was the first step towards constructing a new propagation DLL component. The file Clock.cpp that was included with the HELSEEM distribution was used to construct a Clock component. As instructed in the user’s manual, an empty multi-threaded Win32 DLL project was selected and Clock.cpp was added to the project. At this point I attempted to compile and link the component, but was unsuccessful. The following compile error was given:
Compiling...

Clock.cpp

c:\helseembase\src\helseem\clock\clock.cpp(4) : fatal error C1083: Cannot open include file: 'Base.H': No such file or directory

Error executing cl.exe.
As indicated in the message, the compiler could not open the include file Base.H and compilation failed as a result. In order to remedy this problem, it is recommended in the user’s manual to include the following directories in your path:

src/JMPS/Util

src/JMPS/MessageBroker

src/JMPS/Base
Doing so in Microsoft Visual C++ 6.0 requires selecting Project from the menu and then selecting the Settings option. Choose the C/C++ tab and in the Project Options text area add the following compiler commands and then click OK:
/I "C:\HELSEEM\src\JMPS\Util"

/I "C:\HELSEEM\src\JMPS\Base"

/I "C:\HELSEEM\src\JMPS\MessageBroker"
In general, the command looks like this:

/I directory
The /I option includes the subsequent directory in the path for compilation. Compiling the component at this point was successful, but link errors were received and the DLL failed to build. The following is an example of the link error that halted the build process:

Linking...

 Creating library Debug/Clock2.lib and object Debug/Clock2.exp

Clock.obj : error LNK2001: unresolved external symbol "public: virtual int __thiscall SimComponent::receiveWrapper(struct SimMessageStruct *)" (?receiveWrapper@SimComponent@@UAEHPAUSimMessageStruct@@@Z)

Encountering an unresolved external symbol error such as this means that you forgot to link the proper library or libraries. So, how do you know which libraries to link? The user’s manual suggests linking the following libraries:
src/Lib/Microsoft/MS_UtilD.lib

src/Lib/Microsoft/MS_BaseD.lib

src/Lib/Microsoft/BC_MBR.lib
Additionally, you could search all of the available libraries using dumpbin.exe [2]. dumpbin.exe should reside in the C:\Program Files\Microsoft Visual Studio\VC98\Bin directory. Open an MS DOS console window, change into the directory that dumpbin.exe resides, and execute the following command:

dumpbin /exports C:\HELSEEM\src\Lib\MicroSoft\MS_BaseD.lib
The result of this execution will be a list of what symbols the specified library exports. This specific command results in a list of the symbols that the MS_BaseD.lib library exports. After browsing this specific list, the following entry is found:
?receiveWrapper@SimComponent@@UAEHPAUSimMessageStruct@@@Z (public: virtual int __thiscall SimComponent::receiveWrapper(struct SimMessageStruct*))
We can interpret this entry to mean that the MS_BaseD.lib library exports the SimComponent::receiveWrapper(struct SimMessageStruct*)symbol. This is the very symbol that is missing in the link process and which, in part, causes the link error. As, such we have come to the conclusion that the MS_BaseD.lib library needs to be linked. At this point the decision to include the three libraries that the user’s manual recommends is made. Linking a library under the Microsoft Visual C++ environment requires selecting Project from the menu and then selecting the Settings option. Under the Link tab enter the following text in the Project Options text area and then click OK:
MS_BaseD.lib BC_MBR.lib MS_UtilD.lib
At this point compiling and linking was successful and the Clock.dll file is created. If linking was not successful, and the same symbol referencing errors are received, then add the following link command to the Project Options text area under the Link tab:

/libpath:"C:\HELSEEM\src\Lib\MicroSoft"
The general form of this command is:

/libpath: directory
The /libpath command specifies a directory, in addition to the default path, to find the linked libraries. If you wish to include more than one directory, then more than one /libpath command must included. Note, your libraries might not reside in the "C:\HELSEEM\src\Lib\MicroSoft" directory. After building the Clock DLL component one must move the Clock.dll file into the same directory as the JMPS simulation executable. If this is not done, then the Clock component will not be able to interact with other components in the simulation. This must be done for any component. The MSDN library under the help menu was a useful resource with respect to the different compiling and linking options.
3.2.2 Building the Shell of a Propagation Component

The next step in the creation of a propagation component DLL is to create a shell of a Propagation component. The term shell will be elaborated, but basically, it means that the propagation component has no added functionality that existing JMPS Propagation components already provide.

Before constructing the shell Propagation component DLL, it was helpful to look at and understand existing JMPS Propagation components and the relationship between them. The existing propagation component source files are Propagator.cpp and Propagator.H, IdealPropagator.cpp and IdealPropagator.H, and BlurPropagator.cpp and BlurPropagator.H. The following diagram is an inheritance hierarchy and it displays the relationship between the propagation components:

[image: image15.png]:_at_Camera -Jo&d

 As displayed, the Propagator class is the parent class to the IdealPropagator class. The Propagator class has a number of methods, most of which are pure virtual methods, and a number of data members. From a computer science perspective the Propagator class is an abstract base class. This means that it contains at least one pure virtual function. In this case, Propagator contains seven protected pure virtual functions. This means that the child class, IdealPropagator, must, and does, provide a definition for these seven methods. The Propagator class defines a public receive method and it is virtual. This means that any instance of the child class, IdealPropagator, or any instance that is a child of the child class, BlurPropagator, has the option of redefining this method or calling it as if it were its own method. The IdealPropagator class does little else than define the pure virtual methods of the Propagator class. A majority of the methods in the IdealPropagator are protected virtual methods. This means that only the immediate children of the IdealPropagator class have the ability to redefine these methods or call them as if they were their own methods. The IdealPropagator class does not have a SetParameters method, so, from the perspective of the script file, if we were to select an IdealPropagator component in the simulation, it would not be able to receive a SetParameters message. This is appropriate because there are no parameters that we have to initialize for an IdealPropagator since there are no fields or data members in the IdealPropagator class that need initialization.
The BlurPropagator class redefines three of IdealPropagator’s methods. These three are the PropagateSceneToViewer, PropagateSceneToTarget, and the PropagateIllumination methods. By doing this, the BlurPropagator incorporates a blur effect to the propagation model that IdealPropagator did not. We also redefine the PropagateIllumination method of the IdealPropagator class to incorporate the legacy model of wave propagation into our Propagation component. In addition to redefining the PropagateIllumination method, BlurPropagator defines a SetParameters method and a receive method. Together, the definition of these methods allows us to in effect, create a message list and a corresponding response to each message. The receive method holds the list of recognizable messages for the BlurPropagator. The SetParameters message is one of these messages. The SetParameters method defines the action the BlurPropagator takes in response to a SetParameters message. As such, in a script file we are able to send this component a SetParameters message to initialize the necessary fields or data members of the BlurPropagator class. We will also define a receive method for our Propagator and we will define a SetParameters method to respond to a SetParameters message. More attention will be given to the above inheritance hierarchy organization among the Propagation components. Also, an analysis of how this inheritance hierarchy does or does not promote modularity and good software engineering principles of coupling and cohesion will be given in later sections.
From a practical standpoint, this inheritance hierarchy means that you would not create a Propagator component DLL to use in the simulation. You could, on the other hand, compile, link, and create an IdealPropagator component DLL or a BlurPropagator component DLL. You could then add the DLL to the directory in which the JMPS simulation executable resides and be able use it in a simulation. The following script file entry shows how these components might be used in a simulation once they are created.
Construct IdealPropagator IP

Construct BlurPropagator BP

SetParameters 0RO BP

STRING Blurtable END

ENDMESSAGE

The inheritance hierarchy also suggests that the Propagation component that we create can build upon the functionality already provided by Propagator, IdealPropagator, and BlurPropagator.
With the above in mind and the lessons we learned from creating the Clock component DLL, we can now build our Propagator shell. First, create an empty multi-threaded Win32 DLL project and call it, for example, NewPropagator. Just as the BlurPropagator component has BlurPropagator.cpp and BlurPropagator.h files, add NewPropagator.cpp and NewPropagator.h files to the project. To do this, click File on the menu and choose the New option. Select C++ Source File under the Files tab, name it NewPropagator, and click OK. Do the same thing to create the NewPropagator.h file except select C/C++ Header File under the Files tab.
In this project the decision was made to make it a child of IdealPropagator. NewPropagator will look similar to BlurPropagator in terms of the body of the code, so copy and paste the source code from BlurPropagator.cpp to NewPropagator.cpp and copy and paste the code from BlurPropagator.h to NewPropagator.h. We start by removing the methods and data members that we don’t need or want from NewPropagator.h. First, the BlurDesc class was removed since we are not going to use this data member in our NewPropagator. Next, the loadTable method was removed because we are not loading any blur tables when we initialize our NewPropagator. Next, we remove the PropagateSceneToTarget and PropagateSceneToViewer methods because we are just going to make use of IdealPropagator’s definition of these methods. Finally, we will get rid of the getBlurDesc method, the splitLine method, and the BlurList data member because we will not use them either. Remove the corresponding methods from NewPropagator.cpp along with the parseToDouble method. At this point one should replace any text that contains BlurPropagator with NewPropagator, and BLURPROPAGATOR with NEWPROPAGATOR. The find and replace utility is good for this job. Next, we will edit the definitions of the remaining methods. In NewPropagator.cpp get rid of mBlurList() in the NewPropagator constructor. Remove the call to the loadTable method in the SetPararmeters method. We will redefine this function later, when we identify the fields that we need to initialize via the SetParameters message in the script file. Remove everything in the PropagateIllumination method except the call to IdealPropagator’s PropagateIllumination method.

At this point we have a “shell” of a propagator. Its functionality is no different than that of an IdealPropagator, but it is easy to add functionality. In order to do so, we just have to define or add code to the PropagateIllumination method of NewPropagator. This code will manipulate the wavefront according to our model of wave propagation. Additionally, if we want to receive SetParameters messages from the simulation script file, we will have to add code to the receive method and the SetParameters method of NewPropagator.
The next step at this point is to attempt to compile, link, and create the NewPropagator component DLL. When an attempt is made to do so at this point, the following compiler error is received:
Compiling...
NewPropagator.cpp

c:\documents and settings\administrator\my documents\my received files\NewPropagator\NewPropagator.cpp(8) : fatal error C1083: Cannot open include file: 'Base.H': No such file or directory

Error executing cl.exe.
This error is very familiar and, in fact, it is the same one that we encountered when we first tried to compile the Clock component. As such, we use the same remedy as was prescribed before for this problem. Now, we attempt to create the component again and receive this error:
c:\documents and settings\administrator\my documents\my received files\NewPropagator\NewPropagator.cpp(10) : fatal error C1083: Cannot open include file: 'Propagator.H': No such file or directory
This is the same type of error that we just received. We conclude that Propagator.H does not reside in the following directory paths:

src/JMPS/Util

src/JMPS/MessageBroker

src/JMPS/Base
We do know that it does reside in the src\HELSEEM\Base directory. As such, we add this directory to our path. Now, if we try to create the component the compile works, but we get a link error. The error has been encountered before. A number of the same type of the following link error is received:
NewPropagator.obj : error LNK2001: unresolved external symbol "public: virtual int __thiscall IdealPropagator::inPath(class SimMessage const &,class SimMessage const &)" (?inPath@IdealPropagator@@UAEHABVSimMessage@@0@Z)
We are wiser this time around and know that we should probably link the recommended libraries and add the directory that these libraries reside to the library path. Still, after doing so, we get fewer errors, but errors none the less. Again, we know how to solve the problem. We have to find out which library exports the symbols for the IdealPropagator class. We can eliminate the three libraries that we have linked. That leaves one library left, the MS_CompBaseD library. This library must be the one we want, but just to be sure, we run the dumpbin program on this library. We find that, in fact, this library does export IdealPropagator symbols. Once we link this library and try our build again, we are still unsuccessful. We get a couple of the all-to-familiar symbol referencing link errors, but with a little twist this time around. The following is a link error that we receive:
NewPropagator.obj : error LNK2001: unresolved external symbol "__declspec(dllimport) public: virtual __thiscall NewPropagator::~NewPropagator(void)" (__imp_??1NewPropagator@@UAE@XZ)
It appears that the linker can’t find the library that exports NewPropagator symbols. This is odd because the NewPropagator.lib library exports these symbols and this is the very library that we are trying to create. Before we proceed it would be helpful to go over the dynamic that occurs between DLLs and executables. The following is a diagram of this interaction:

This problem stems from the header at the top of NewPropagator.cpp. This is how the header appears:
#ifndef _WIN32

#define NEWPROPAGATOR_API

#endif

#ifndef NEWPROPAGATOR_API

#ifdef NEWPROPAGATOR_DLL

#define NEWPROPAGATOR_API __declspec(dllexport)

#else

#define NEWPROPAGATOR_API __declspec(dllimport)

#endif

#endif
This sequence of statements determines whether we are exporting the NewPropagator object and its methods so that other executable files or DLLs have access to the NewPropagator interface or whether we are importing the NewPropagator object and its methods so that we have access to its interface. The latter case is not logical. We do not want to import the NewPropagator object and methods so that the NewPropagator DLL can have access to its own interface. There are situations in which we would want to have access to NewPropagator’s interface. For example, the JMPS simulation executable needs to have access to NewPropagator’s interface in order to use its functionality. With that said, one might ask where in the above sequence of statements have we wrongfully decided to import the NewPropagator object and methods. Since we are working in a windows environment the _WIN32 identifier is always defined, so the statement #define NEWPROPAGATOR_API does not get executed. Next, the #ifndef NEWPROPAGATOR_API statement checks to see if the NEWPROPAGATOR_API identifier is defined. It is not, so we execute the next statement #ifdef NEWPROPAGATOR_DLL. As it stands, NEWPROPAGATOR_DLL is not defined, so the #define NEWPROPAGATOR_API __declspec(dllimport) statement is executed to the exclusion of the #define NEWPROPAGATOR_API __declspec(dllexport) statement. In short, we have just decided that the NewPropagator DLL will import functions from the NewPropagator DLL. This was not intended and the problem can be remedied by defining the NEWPROPAGATOR_DLL identifier in the NewPropagator DLL project. Define this identifier by selecting the Project menu button and then clicking on the Settings option and under the C/C++ tab and place the following command in the Project Options text area and click OK:

/DNEWPROPAGATOR_DLL

 After doing so, the NewPropagator DLL is set to export its interface so that other DLLs and executable files can use it. The build should be successful and the NewPropagator DLL should reside in the Debug folder of your project. You can now place this NewPropagator DLL component in the same folder as the JMPS simulation executable giving you the ability use its functionality in the simulation.
3.2.3 Incorporating the Legacy Propagation Model into our Propagation Component

Once we have the shell of a propagator, the step is to give it some functionality. Two different approaches were taken to accomplish this task. Both of them have benefits and disadvantages. Before we discuss these two different approaches it is helpful to understand how the legacy propagation code works.

 The legacy propagation code consisted of four files; wave.c, ftfns.c, cmath.c, and cmath.h. wave.c was the main source code file with the cmath files providing support for mathematical manipulation of complex numbers and ftfns.c providing functions that propagate a wavefront. It was not especially difficult compiling this code in the Microsoft Visual C++ environment, but I did run into a number of small problems because this code was developed and compiled in a Unix environment. (Note to self: go over specifics of what problems you ran into and how your solved them.).
For the sake of incorporating this model into the NewPropagator class, we are more concerned with the inputs to this wave code and the outputs that it produces than the scientific correctness of this specific model of wave propagation. The input/output analysis of the code in made more important by the fact that in order to get the legacy code interact with the HELSEEM framework, the HELSEEM framework has to be able to feed the legacy code the inputs that it desires. In addition, the legacy code has to be able to produce an output that is desired by the HELSEEM framework. The following diagram highlights this dynamic:

[image: image2]
The legacy code takes an input file with a number of initialization parameters. Here is what the input file looks like along with a description of the parameters that are being input:

100.0
0.0
0.2
0.0
0.0
0.0

0
0.0
0.0
12.0
128
100
100
2

a0
tw
z0
tc
dphi
dphis

ns
kc
dphir
wdx
nx
nt
ntp
method

a0=initial optical field amplitude,
tw=optical waist position

z0=Rayleigh length,
tc=lens position, dphi=lens strength

dphis=stagnation zone strength,
ns=number of phase screens

kc=char. wavenumber for turbulence,
dphir=turbulent lens strength

wdx=window width, nx=number of grid elements

nt=number of time steps,
ntp=number of time steps to plot

method=1: propagate with first-order Laplacian method

method=2: propagate with FFT method

The code, in turn produces two output files. The first output file is a representation of the initial wavefront before it encounters any atmospheric disturbance. The second output file is a representation of the final wavefront after it incurs a certain amount of atmospheric disturbance. The legacy code represents a wavefront at a particular instant in time as a two dimensional array of complex numbers. You could take this two-dimensional array of complex values as input to a function and map it onto an x-y axis. The result would be a two-dimensional view of the wavefront at a certain point in time, where each x-y pair is a complex value with a corresponding intensity and phase.

A corresponding input/output analysis of the HELSEEM framework is required. Since we know the input that is required by the legacy code, we know that the HELSEEM framework has to be able to generate this input. The method that HELSEEM generates this input is where approach #1 differs from approach #2.
3.2.3.1 Incorporation Attempt #1: Making a System Call

Approach #1 calls wave.exe from inside the PropagateIllumination method of NewPropagator. As mentioned previously, the PropagateIllumination method was chosen because this method determines the uniqueness of propagation models. The format body of our PropagateIllumination method in the NewPropagator class was changed to look like this:
{
 // Let IdealPropagator do basic translation

 IdealPropagator::PropagateIllumination(src,td,wf);
 /********run legacy propagation code*************/ system("cd \"C:\\Documents and Settings\\Administrator\\My Documents\\My Received Files\\wave\\Debug\" & wave");
}
At this point it is worth understanding the system("cd \"C:\\Documents and Settings\\Administrator\\My Documents\\My Received Files\\wave\\Debug\" & wave"); statement.
The system call can take a string as an argument, as it does here, and it executes the string as a command. Think of the system call as taking the string argument, placing it on a DOS command prompt line, and then executing the command(s). In this specific case two commands are actually executed. First, we change directories to the directory that the legacy executable resides. Next, we execute the legacy code executable. These two commands are separated by the ‘&’ character. It is necessary to change into the directory that contains the legacy executable because if one does not do this, then the system will not be able to find the executable.
It is also necessary that the input file that the wave executable reads in also be in the same directory as your wave executable. The legacy propagation code executable places the output files in this same directory. Each entry in an output file is equal to the real part of the complex value squared plus the imaginary part squared. In effect, the file contains the amplitude squared of each entry in the two-dimensional array of complex values. Now that we know the output of the legacy propagation code, the HELSEEM framework must be able to use this output as input to the HELSEEM framework. The HELSEEM framework represents a wavefront as an intensity grid and a phase grid. Intensity is equal to amplitude squared, so there is a one-to-one correlation between the output file produced by the legacy propagation code and the input required by HELSEEM framework for intensity. The legacy code had to be modified in order to produce an output file of phase angles for each complex entry in the two-dimensional array. This is simple enough. The phase angle of a complex value is equal to the inverse tangent of the result of the imaginary part divided by the real part. The phase angle was computed for each complex entry in the two-dimensional array and then can be output to a file. Now there is a one-to-one correlation between this file and a HELSEEM phase angle grid.
In order to translate the file entries into HELSEEM grids one first needs to know how to instantiate a grid. The following code represents grid with 128x128 dimensions all initialized to 0.0:

Grid intensity(128,128,0.0);

I called it “intensity” here in order to convey that the grid entries holds wave front intensity values. The size of dimensions of the complex array generated by the legacy code can vary depending on values set in the input file. As such, the above statement would only work if the input file entry for the dimensions of the complex array was 128. It is not sufficient to “hard code” the value as is done above, because every time that one would want to change the dimensions, one would have to recompile the component. Accordingly, one could make the above statement more generic by reading in the entry for the dimensions of the complex array from a file.
Once an intensity grid and a phase grid have been instantiated, one can begin to copy the values in the intensity file to the intensity grid and the values from the phase angle file to the phase angle grid. In order to be useful to the HELSEEM simulation, the intensity grid and the phase angle grid should be put in messages. Once a grid is in a message it can be sent to and used by other components in the simulation. For example, the Display components of the simulation will need grid information to generate displays on the screen. Using the displays is an important part of the simulation environment. In order to use a display, one must first select a display component is the simulation script file.
The following group of statements is an entry in a script file that chooses a display and sets some options about the display:

Construct VCLTrackViewer FinalLaserViewer

SetParameters 0RO
 FinalLaserViewer

STRING Caption Final_Laser END

STRING ImageSource Propagator
END

STRING ImageMessage FinalIllumination END

STRING ImageField Intensity END

ENDMESSAGE
One can see here that the display component is actually of type VCLTrackViewer and we have named it FinalLaserViewer because in this example we are displaying the final wavefront. The Caption parameter value is just the name that will appear on the display. The ImageSource parameter value indicates from what component this display is allowed to receive messages. In this example, the FinalLaserViewer can only receive messages from the Propagator component. The ImageMessage parameter value indicates that FinalLaserViewer can only receive messages named FinalIllumination. Finally, the ImageField parameter value indicates that the name of the data that is in the message it will be receiving will be called Intensity.

In addition to choosing a display in a script file, we must also know how to create and send a message with grid information inside. After we instantiate a grid and filled it with the desired values, as discussed above, we put it in a message and broadcast it to all of the components and hope that one of them is listening for that type of message. The following group of statements accomplishes just this:
TIME_T t = wf.getTime();

INT32 idPI = MBRgetMessageID("FinalIllumination");

SimMessage m(t,idPI);

m.add("Intensity",intensity);

sendTSO(m);
Here, the first two statements are used to initialize a message. wf is a message that contains the original wave front. m is the message we are constructing and it contains the final wave front. The next statement constructs the message and gives it the FinalIllumination name. The fourth statement adds the intensity grid that we constructed to the message and calls the data Intensity. The final statement broadcasts the message to all of the components. At this point, one can create the Propagation DLL component. The following sequence diagram summarizes the process discussed above:
[image: image1][image: image10.png]

[image: image11.png]

[image: image12.png]

[image: image3]
3.2.3.2 Incorporation Attempt #2: Moving the Legacy Code to the Propagation Component

In order to incorporate Dr. Colson’s propagation model into the NewPropagator method it was necessary to first convert his functions, which are written in the C language, to the C++ language syntax. Once this was done, it was just a matter of copying and pasting them into the NewPropagator class. In addition to moving Dr. Colson’s functions, the data members were also moved to the NewPropagator class. The functions and data members were made private so they are only visible to the NewPropagator class. At this point we needed a method to initialize some of Dr. Colson’s data members. Previously, this was done by reading in an input file with the initialization values. Rather than attempting this, it was decided to send the NewPropagator class a SetParameters message from a script file that contains the initialization parameters. As such, the SetParameters method of the NewPropagator class was modified to extract the input parameters from a SetParameters message. Additionally, the receive method was modified such that it was able to receive a SetParameters message. Once this was completed the NewPropagator component was able to receive its initialization parameters via a script file. The following is an example of a script file entry that would construct a message with the initialization parameters required by NewPropagator:

SetParameters 0RO Propagator

DOUBLE InitialOpticalFieldAmplitude .0001 END

DOUBLE OpticalWaistPosition
0.0
END

DOUBLE RayleighLength

0.2
END

DOUBLE LensPosition

0.0
END

DOUBLE LensStrength

0.0
END

DOUBLE StagnationZoneStrength
0.0
END

DOUBLE NumberOfPhaseScreens
0
END

DOUBLE WaveNumForTurb

0.0
END

DOUBLE TurbLensStrength
0.0
END

DOUBLE WindowWidth

12.0
END

DOUBLE NumOfGridElements
256
END

DOUBLE NumOfTimeSteps

100
END

DOUBLE NumOfTimeStepsToPlot
100
END

DOUBLE PropMethod

1
END

ENDMESSAGE

3.3 Observing the Simulation

After building the component in either of the above approaches move the DLL to the proper location. We are ready to create our own simulation environment and have our NewPropagator component interact with the environment. In order to set up our simulation environment, we must write it in a script file. Instead of writing the script file from scratch, it is easier to just insert the following script file entries into an existing script file:

Construct NewPropagator Propagator
Construct VCLTrackViewer FinalLaserViewer

SetParameters 0RO
 FinalLaserViewer

STRING Caption Final_Laser END

STRING ImageSource Propagator
END

STRING ImageMessage FinalIllumination END

STRING ImageField Intensity END

ENDMESSAGE
Depending on which approach was taken above, one might have to initialize the NewPropagator parameters in the script file. In the immediate above entry it is assumed that the first approach was taken, so no parameter initialization need to take place. The existing script file that we used was called “miniDemo.sim.” It was commented well enough that it was clear where the above entries should be inserted. Execute the JMPS simulation executable, press the “Initialize” button, choose the miniDemo.sim file and wait for the results. The graphics windows that appear show what the initial wave front looks like, what the final wave front looks like, and what the wave front looks like on the truck target. In addition to displaying windows of the wave front at different times, it is also possible to record the wave fronts in different file formats. Once the wave front is in one of these file formats, it is possible to analyze the wave front using programs that use the given file formats. All of this can be done by selecting these options in the script file. The components are already built and examples of how to do this are given in existing script files.

4 Analysis

The incorporation approaches discussed above have different advantages and disadvantages. An advantage to the first approach is that there is minimal code transfer from the legacy code to the HELSEEM component. Additionally, if the legacy code is written in a different language than the component, it becomes harder to do the code transfer. Under this approach, an executable is simply created from the legacy code which is called from the Propagation component. An advantage to the second approach can be seen when the legacy code takes on more responsibility than just propagation. For example, the legacy code might generate an initial laser beam in addition to propagating the initial laser beam. The problem with generating a laser beam is that this is the responsibility of a Laser component in the HELSEEM framework. It is the responsibility of a Laser component because generating a laser beam depends on the characteristics of the laser, which are part of the Laser class and should not be visible to other components. Towards this end, making a system call to legacy propagation code that takes this form, might not produce the intended results. For instance, although a file is generated from our legacy code that represents a wave front that has been propagated after a certain amount of time, the initial wave front that the legacy code is using might differ from the one that the HELSEEM framework provides. It is not known if the HELSEEM framework relies on knowing what the initial wave front generated by the laser looks like, so it is not known if this is an irreconcilable problem. One does not encounter this problem if one transfers the relevant pieces of the legacy code to the relevant HELSEEM components. In this case, the idea behind the second approach should be taken. It is not clear if the second approach is proper because we are still generating our own initial wave front and applying our propagation method to this wave front. In effect, the result is the same as the first approach.
Another important part in the process of building a Propagation component is deciding where the NewPropagator component should fit in the Propagation inheritance hierarchy. Should it be child of IdealPropagator or a child of BlurPropagator? In making this decision one should consider the model of wave propagation that you want to use. For, example, if you do not want to utilize the model of wave propagation provided by the HELSEEM BlurPropagator component, or if you just want to model wave propagation according to your own model, do not make NewPropagator a child of BlurPropagator. Otherwise, make NewPropagator a child of BlurPropagator.
Building the Propagation component as outlined in this paper resulted in an average ability to interact with the HELSEEM framework. Interaction will be defined here by the extent to which our Propagation component can communicate with other components as is intended by most users. For example, our Propagation component should be able to send a message to a Display component. As represented by the following screen shots, we are capable of doing this:

[image: image5]

 SHAPE * MERGEFORMAT
[image: image6]
In fact, we are capable of sending a message to any component by broadcasting a message. So if we are not limited in who we can send a message to, how are we limited? We are limited in relation to what data we can place in a message. We cannot, for instance, send a message to a Display component that contains information that describes how the propagating wave front looks on a target. The following screen shots were obtained using different Laser initializations and indicate what we should be capable of displaying:

[image: image7]

 SHAPE * MERGEFORMAT
[image: image8]

 SHAPE * MERGEFORMAT
[image: image9]
Part of the above mentioned problem stems from the fact that we have to be able to receive messages that contain information that describe a target. Additionally, we have to be able to map the wave front that we generated in our Propagator onto the Target. This capability would allow us to send the desired message to a Display component.
5 Conclusions and Future Work

As observed through our incorporation of user-defined propagator components, we found that the HELSEEM framework does have a modular design conducive to reuse. The methods within the IdealPropagator class are highly cohesive. Most of the methods are centered around the action of propagating a laser or some function that support laser propagation. This holds true for the BlurPropagator class as well. Additionally, there are few relationships (couplings) between the methods of the Propagator components and the methods of other HELSEEM components. The methods of the Propagator classes do not depend on other components methods in terms of their ability to perform their function in the absence of the other methods. The functions with the Propagator classes are not contingent on the existence of methods in other components.
Conversely, the legacy propagation code that we used did not have a modular design. This made it more difficult to incorporate into the HELSEEM framework. As mentioned in the analysis, the legacy propagation code performed functions that were not related. The legacy code both generated an initial laser beam and then propagated the laser beam. It was harder to identify which functions corresponded to each task. The fact that the code was commented well and descriptive function definitions were used greatly improved the process of identifying the related functions and data members. As such, to enhance the reusability of legacy propagation software, it should be developed to meet the standards of modularity.
An area of future work centers on the ease with which legacy propagation codes can be made to interact with HELSEEM. If HELSEEM were modified to support a generic wrapper class that was designed for integration with legacy propagation code, much of the effort needed to integrate legacy code would be mitigated. Such a wrapper class would need an interface that HELSEEM could expect to dynamically invoke. The legacy code would then need to be tied in only with the wrapper class, leaving very little knowledge required on the part of the user regarding the inner workings of the HELSEEM framework.

6 References
[1] Garlan, D.; Allen, R.; Ockerbloom, J.; Software, IEEE , Volume: 12 Issue: 6 , Nov. 1995 Page(s): 17 -18
[2] HELSEEM Software and User’s Manual, version 0.1a (2003). Northrup Grumman Corporation, Information Technology, Albuquerque, NM.

[3] Laser Propagation Software, Dr. Colson, Naval Postgraduate School.

[4] M. McIlroy (1968). Mass produced software components. Proceedings of the NATO Software Engineering Conference.

[5] Software reuse executive premier (1996). Technical report, DOD Software Reuse Initiative Program Management Office.

[6] D. Rine and N. Nada (2000). Three empirical studies of a software reuse reference model. Software - Practice and Experience, 30(6).

[7] Stephen R. Schach, Object Oriented and Classical Software Engineering, 5th Edition. (McGraw Hill, 2002), 170

[8] M. Tsagias and B. Kitchenham (2000). An evaluation of the business object approach to software development. Journal of Systems and Software, 52(2-3):14.

[9] R. Wasserman (1996), Toward a Discipline of Software Engineering. IEEE Software, 28

HELSEEM

Framework

Propagator

Public:

Propagator();

Virtual ~Propagator();

Virtual int receive();

Protected:

Virtual void PropagateSceneToTarget() = 0

Virtual void PropagateSceneToViewer() = 0

Virtual SimMessageStruct* TranslateRenderRequest() = 0

Virtual void PropagateIllumination() = 0

Virtual SimMessageStruct* CreateInitialScene() = 0

Virtual int CloseToFOV() = 0

Virtual int inPath()=0

Private:

Int RespontToRenderRequest();

Int PropagateIlluminations();

BlurPropagator

Public:

BlurPtopagator()

Virtual int receive();

Void loadTable();

Protected:

Virtual void PropagateSceneToTarget();

Virtual void PropagateSceneToViewer();

Virtual void PropagateIllumination();

Const BlurDesc * getBlurDesc()

Vector<string> splitLine() const;

Virtual int SetParameters();

IdealPropagator

Public:

IdealPropagator();

Int CloseToFOV();

Virtual int inPath();

Protected:

Virtual void PropagateSceneToTarget();

Virtual void PropagateSceneToViewer();

Virtual SimMessageStruct* TranslateRenderRequest();

Virtual void PropagateIllumination();

Virtual SimMessageStruct* CreateInitialScene();

Generates Input to Legacy Code

HELSEEM

Framework

Legacy

Code

Generates Input to HELSEEM Framework

 HELSEEM

 Input must

 conform to

 the form

 that the

 Legacy

 Code

 desires.

Legacy Code

 output must

 conform to

 the form

 that the

 HELSEEM

 Framework desires.

9. Broadcast Message

8. Put Grid in a Message

7. Read file and Construct a Grid

5. Retrieve Wave Output

File

4. Produce Wave Output File

3. Send Parameter Input File

Data Store

2. Retrieve Parameter Input File

1. System call to wave.exe

Simulation Message

Propagation Program (wave.exe)

NewPropagator

6. Send Wave Output File

PAGE
ii

[image: image13.png]

[image: image14.png]

