Computer Science Department

SI435 Final Report

Spring 2002

Programming Embedded Systems Using Java

by

Midshipman Michael Simpson, 026491
United States Naval Academy

Annapolis, MD

Certification of Faculty Mentor’s Approval

Associate Professor Donald M. Needham

Department of Computer Science

Department Chair Endorsement

Professor Patrick Harrison

Chair, Computer Science Department

Abstract

Embedded programs typically use multi-threaded constructs, at either the operating system or programming language level, to control the hardware of the system in which they are embedded. This paper presents the design and development of a multi-threaded Java-based embedded control system for the Naval Academy's 2002 entry into the International Autonomous Underwater Vehicle competition. We analyze design decisions made from the perspective of software reuse, and the problems we encountered in integrating our Java-based control system both with the operating system and with the C-based device drivers for the system's hardware. We discuss lessons learned in using Java as an embedded control system, and examine the suitability of our approach for use in future autonomous underwater vehicle entries.
Table of Contents

1. Introduction ……………………………………………………………………………
 1

2. Background ……………………………………………………………………………
 1

2.1) The AUV Competition …………………………………………………..…
 1

2.2) Preliminary Work in SI411 and SI434 ……………………………………..
 2

2.3) Related Work ……………………………………………………………….
 2

3. Research Goals …………………………………………………………………………
 4

3.1) Software Reuse and Maintenance ……………………………………………
 4

3.2) Multi-threaded Control Systems …………………………………………..…
 4

3.3) Hardware/Software Interaction ………………………………………………
 5

3.4) Control Logic Design ………………………………………………………..
 5

4. Research Methodologies ………………………………………………………………..
 8

4.1) Software Reuse and Maintenance ……………………………………………
 9

4.2) Multi-threaded Control Systems ……………………………………………..
10

4.3) Hardware/Software Interaction ………………………………………………
11

4.4) Control Logic Design ………………………………………………………..
12

5. Analysis …………………………………………………………………………………
13

5.1) Choosing Our Operating System ……………………………………………..
13

5.2) Getting Mouse Support ……………………………………………………….
14

5.3) Installing Necessary Programs ……………………………………………….
14

5.4) Communication Using Different Computer Languages ………………..…….
14

5.5) Producing Visual Support …………………………………………………….
16

5.6) Testing of The AUV Controller ……………………………………………...
17

6. Conclusions and Future Work …………………………………………………………..
20

7. References ……………………………………………………………………………….22

1. Introduction

This paper examines the design, development, and implementation of an embedded, multi-threaded control system for USNA’s Autonomous Underwater Vehicle (AUV) being entered in the 4th International Autonomous Underwater Vehicle Competition[1]. The autonomous element of this project indicates that when the vehicle is placed in the water, it provides control flow logic for itself based on input it receives from its onboard sensors, without any outside interaction. Specifically, the vehicle is able to determine its depth and heading direction, can detect a given frequency underwater, turn towards the bearing of the frequency, read barcodes through the use of a video camera, and keep track of the information gathered throughout the entire mission.

Our research focuses primarily with the control system for the AUV. We implemented the control system using Java, which made our work the first attempt to use programming language threads in the architecture of USNA’s entry in the competition. This paper documents our research, and the approaches we used to overcome the problems we encountered using a Java-based controller embedded within the AUV. The remainder of this paper is organized as follows: In Section 2, we cover background information on the International AUV Competition, our previous experience in dealing with multi-threaded systems, and analyze related work in the area of embedded control systems. Section 3 examines the goals of our project, with specific emphasis on software re-use and maintenance, multi-threaded control systems, and hardware/software interaction. In Section 4, we provide the methodologies we used to accomplish these goals and their outcomes. In Section 5 we analyze the progress we made throughout the semester designing, implementing, and testing the system and the specific difficulties that we encountered, analyzed, and overcame. In Section 6, we discuss our conclusions and areas of future work.
2. Background

This section discusses the annual AUV competition, preliminary work done by the authors prior to this research, and related work in the area of embedded control systems that apply to our approach.

2.1 The AUV Competition

The annual AUV Competition is the culmination of our efforts during this semester long research project, and is the result of work and conducted by several midshipmen from various majors at the Naval Academy. The joint effort and communication between the midshipmen, as well as other schools in the competition, helps advance the research and testing of Autonomous Underwater Vehicles by performing realistic missions in the underwater environment. The International Autonomous Underwater Vehicle Competition modifies the specific rules and requirements for the competition each year. The Association for Unmanned Vehicle Systems International (AUVSI) [1] and the U.S. Office of Naval Research (ONR) directs the competition each year. The applications for AUVs include measuring or mapping the bathymetry of the seafloor, and identifying the shallowest item in an array of man-made objects. Additionally, numerous operational missions require finding and recovering objects on the seabed. The AUVSI-ONR organizers expect these fundamental capabilities to be the foundation for future competition scenarios, with the degree of difficulty increasing each year proportionate to the degree of entrant proficiency.

Beginning in 1999, interdisciplinary teams of midshipmen have entered AUVSI’s annual AUV competition. Each year the AUV is physically constructed in the spring semester, and the team spends the balance of the semester analyzing and constructing circuits for the sonar system, navigation systems, measuring power requirements, determining buoyancy, and water tight integrity. This year the competition was expanded to include video input.

2.2 Preliminary Work in SI411 and SI434

The availability of a multi-threaded software system to control the AUV is critical to support the integration and testing of hardware components during system construction, and to control the AUV during the competition. The Computer Science Department provides all computer science students with exposure to such a control system via the Java programming language in a variety of courses. SI411 (Operating Systems) introduced Java-based multi-threaded environments and explored topics that arise when dealing with embedded environments that interact with an operating system. In the Fall of AY02, the SI434 (Software Engineering) course expanded the exposure to Java by having students design, develop, and test an event-driven graphical user interface that controlled a multi-threaded control system. These two courses provided the foundation for the Java knowledge needed to construct the AUV’s control system using Java.

2.3 Related Work

A major aspect of our project was the interaction between our multithreaded Java system and independent device drivers written in C. With these programs running simultaneously on the same machine, each accessing shared data, there was much room for error. It was necessary to model these two programs using two separate finite state machines. A finite state machine is a design notation that can be used to analyze systems that recognize and display patterns. R.M. Hierons’ work [3] focuses on checking the states and transitions of a set of communicating finite state machines. Hierons contends that finite state machines should be looked at as separate identities that interact with each other. Each of these entities is considered to be their own finite state machine each containing an input queue. Hierons work provides the basis upon which our AUV system is designed. Each of our two programs were written independently by separate teams of midshipman, with the only stipulation being that any input/output generated from the program must be configured to a predetermined format.

Another major factor influencing the design of our control system was software reusability. The AUV competition continues to expand its requirements yearly to add more dynamic features to the contest. With this in mind, we wanted to design our code and architecture so that it can easily be reused and altered for future competition. Sridevi and Singh [8] have implemented architectures for developing reusable testplans for embedded software. A key area of their test plan involves regression testing mission critical systems. Regression testing is the process of testing changes to computer programs to make sure that the older programming still works with the new changes. This is a necessary form of testing for mission critical systems because when changing or adding features to a system, the designer must ensure that the change does not negatively affect any other part of your system that has already been tested. The time constraint of one semester to design, create, and implement the AUV code made regression testing the most efficient testing approach for our development process.

This research project was our first encounter with a true real-time system, and inherently left our team open for several new debugging problems and unforeseen troubles. When dealing with a real-time system that is dependent on mission completion, there is little room for error. Thane and Hansson [9] have researched and published ways to test real-time operating systems that provided direct benefits to our research. For example, consider sequential systems in which any given input for a state will produce a predictable output. When dealing with a real-time operating system, multitasking, and concurrency issues, statically predictable output for a given input and state may not be possible. Thane and Hansson have developed a way to reproduce deterministic outputs for a real-time operating system. Our team uses their approach by creating defined actions that take place when a specific situation occurs. We are able to produce the same results with every occurrence of the same input. Our team was able to take the basic idea behind Thane and Hansson and test our system model with positive results.
3. Research Goals

The intention of our research was to design and implement the AUV control system using the Java programming language. By using the Java programming language and a Java Virtual Machine (JVM), we made our program, platform and operating system independent from one another. Through this approach, we ensure that our software will run on any operating system supporting a JVM. Our approach allows portability and ensures that our code can be reused even if the operating system should change in the future. Our specific goals center on software reuse and maintenance, multi-threaded control systems, hardware and software interaction and system control logic design, and are discussed in the following subsections.

3.1 Software Reuse and Maintenance

Our goal was to create a software package that could easily be upgraded by future programmers, with the intent that our software will be used in future competitions. We needed to create logical components that can easily be upgraded or removed as necessary without detrimental effect on the overall controller. To achieve our goal, we needed to make our software components highly cohesive with very few couplings between components[7]. Cohesion is an intra-class issue that deals with how well the components of a class fit together from a logical viewpoint, while coupling is an inter-class issue that deals with the degree to a component relies on other components for behavior or functionality. Reducing couplings between our classes is critical to the reusability of our design both from the view of maintenance as well as from the perspective of evolution of our system for future competitions. To support reusability and maintainability, we needed to ensure that our controller can be easily tested and provide the methods for various tests. We made a non-embedded prototype of the AUV controller in the Fall 2002 academic year in SI434 (Software Engineering) and used the components of this prototype as the starting point for our research. In particular, as part of SI434, we focused on the creation of a graphical user interface that displays all information pertaining to the state of the AUV and its components

3.2 Multi-threaded Control Systems

Another goal was to create a control system that would utilize concurrency of execution as specified through the programming language rather than as system calls to the operating system. We wanted to make a system that can handle multiple threads of execution and provide the programmer with control over these threads. By using Java’s Thread Class we can control the execution of the sub-components of the AUV controller. Java’s support for concurrency allows multiple devices to communicate with our controller, which allow decisions based on the transferred information to be available simultaneously. The AUV’s controller must be able to analyze the information from every device and coordinate the next control commands without any noticeable pauses. Our approach was to make use of the inherent context switching of the operating system to service the concurrency of the device drivers and the Java controller. The Java threads provide control information to determine when each device driver should be accessed for data needed to produce the necessary control logic.

3.3 Hardware/Software Interaction

Using a Java Virtual Machine (JVM), we were able to run our Java code on the AUV hardware. A JVM interprets the byte-code that is created by the Java environment. An operating system has its own version of the JVM and uses this to change the byte-code into machine code. The machine code is then translated by the specific platform and performs the required tasks. We used C code for the device drivers and for all communication with the hardware components. One of our goals was to either have Java communicate with these C drivers through the Java Native Interface [5], write the drivers in Java which communicate directly to the ports, or have Java communicate with the C code through file I/O.

3.4 Control Logical Design

We needed to create a program that can prioritize and make control decisions based on the information available to it, without any outside interaction other than the embedded system’s hardware components. The control logic must be able to take multiple factors into consideration, and work well in the three dimensional environment in which the AUV will be placed. We needed to determine which devices are the most important to the control system and determine a priority method for accessing these devices.

The following diagrams show the design of the controller. Figure 1 gives a UML Use Case Diagram that shows the connection of the user to the controller and the options that the user has when in testing mode. As shown in Figure 1, the user has four options: Start Manual Mission (testing), Start the AUV Control Logic, Configure the AUV, and Set the Engine Power. When the user selects manual mission, configuration, or power settings mode, independent Graphical User Interfaces (GUIs) are created to aid the user. The device threads are started when a mission is selected and stopped when the exit program option is selected. The configuration option configures all of the device threads. The enter power settings options give direct connection to the motor device driver, which allows the user to enter specific power values.
[image: image1.wmf]

Figure 1. UML Use Case Diagram for the AUV Controller

Figure 2 gives a UML State Diagram that shows what the control system does internally when it is started. As shown in Figure 2, the control system starts all of the Threads and creates the various Control GUIs of the controller. The running program has control over the device threads and can determine which ones to activate. The control logic activates all threads since it will be using the information from every device to make decisions. The exit option stops all of the threads and then closes all of the GUI’s.

Figure 3 gives a UML State Diagram for the interaction between the thread classes, the controller, and the mission types. As shown in Figure 3, the controller starts all of the threads and waits for a mission thread to turn them on or off. Manual Mission displays the GUI’s that are used for testing and allows the user to turn specific threads on and off. Although the threads are started when a mission is selected, they are only active when explicitly set. If they are set as inactive, the thread will sleep for two seconds before it checks its run activity status again. The ControlLogicThread automatically activates all the threads once the timer is done with its countdown. The Java ControlLogicThread receives information from each of the threads and processes the next action. The motorthread is the only thread that writes to the files from Java. The power settings are set by the Control Logic Thread and are written once a second. The motors device driver uses this information to process the motor commands and set the motors to the desired values. If there is a null value received, as would be the case when the C driver controls the desired file, the current values are not changed. The reason they are not changed is because when C has the file, the value returned to Java is null. Therefore, we check for a null value, and do not accept null as a valid input.

[image: image2.wmf]

Figure 2. AUV Controller Class

Figure 4 shows a UML State Diagram for the overall connection of the control system to the mission types and other options included with the control GUI. The ControllerClass contains the main() functionality. The main() is where everything in a program starts. As shown in Figure 4, the ControllerClass instantiates other classes and creates the GUI’s and options for the user. The first GUI is the desktop GUI. The desktop GUI gives the user a window to work within. Instead of having many unassociated GUI’s, the desktop GUI allows for all GUIs in the AUV Controller to be placed in a group, specifically the AUV Desktop. As Figure 4 shows, the controller class has overall control over all other threads involved with the AUV. Therefore, when a thread completes its operations the control is returned to the controller class. The controller class is the location of all the thread instances for this reason.

Figure 5 depicts the interaction between the hardware, the device drivers, and the Java control system. The GUI represents the program starting. When a mission is selected all of the device threads are instantiated and activated. Each device, represented by the bottom row, sends information to files. The Java device threads take the information from the files and store the values.

[image: image3.wmf]

Figure 3. ControllerClass UML State Diagram

4. Research Methodologies

The AUV controller has been designed with each part of the system in distinct logical components. The operating system and the use of Java threads allows for our controller to execute every necessary function virtually simultaneously. The communication between the hardware and the C and Java programs works well and gives our Java controller complete control over the operation of the AUV.

We incorporated many of the ideals that were taught to us in SI434, Software Engineering. We accomplished our goal of a controller that has a low level of coupling and a high level of cohesion by making each class based on a specific device. The controller logic uses these classes to make its choices for the next course of action. This allows for devices to be easily removed from the
[image: image4.wmf]

Figure 4. UML State Diagram for Control GUI

program if a device is not going to be used in the future and also permits new devices to be added to the controller with ease. As shown in Figure 3, a block on the left of the diagram represents each device. A device can be added or removed from the Java program as easily as a block can be added or removed from Figure 3.

4.1 Software Reuse and Maintenance

We designed the AUV controller using Java as planned. The program includes a GUI that is provided for the sole purpose of starting the AUV or to facilitate the testing of its components. We made a Java class for each device that is used on the AUV, a controller class that controls the device classes, and a GUI class that displays the interface to the user. As shown in Figure 1, the user interacts with the GUI classes, the GUI classes configure the thread classes, and the control logic uses the information received from the device thread classes to make decisions. Our design uses components with high levels of cohesion and low levels of coupling. The low levels of coupling come from the lack of dependency of one component on another component. For example, if one of the devices is not going to be used, we can easily remove its component class from our controller. On the other hand, if we need to add more devices, all that needs to be done is the addition of another class for that specific device since our cohesive and minimally coupled components supports ease of reuse. The classes are commented, and have an explanation of their purpose at the beginning of each class definition. Our controller is portable and can be used on any platform supporting a JVM. Therefore, if a future team decides to change the operating system they can still utilize the Java code that we have written.

4.2 Multi-threaded Control Systems

Concurrency with our software system was achieved through the use of the Windows 98 operating system to execute both the Java controller and the C device drivers. As does any multi-tasking operating system, Windows 98 causes programs to context switch and hand control of the CPU over to other programs.

[image: image5.wmf]

Figure 5. Hardware Interaction with Java Control System

The context switching allows all the devices to write to files with Java reading the same files, provided that file access can be managed. We utilized the Java thread system to control access to the data files. Since there are 8 hardware devices, we ideally would want to get data from each of these at different times, but with no longer than a 1 second wait for each device. We determined that 1 second is adequate time since the AUV will not be operating at high speeds. The low operating speeds allow the control logic to take time gathering and manipulating data. By using threads, we caused each component to “sleep” or give up the CPU to another process, every 7/8 of a second. Therefore each device is given the CPU for up to 1/8 of a second approximately every second. Due to the disparity in execution time for a command instruction versus file input/output, this approach provides adequate time for the data to be read from or written to a file.

4.3 Hardware/Software Interaction

Interaction between our Java control system and the AUV hardware occurs through the JVM and the C driver code. The C programs communicate directly with the ports through which the hardware components (sonar, altimeter, etc) connect with the AUV system, and retrieved the information that was sent via the ports. We used C for the drivers due to its support for the 16 bit serial ports on the AUV hardware. Once a C device driver gathers input data from a serial port, the data is written to a file for that specific device. The Java control system references the same file locations, and uses these files to indirectly get the data coming from the hardware. The Java system then invokes its control sequences based on this data and sends the motor commands to a file for access by the motor device drivers. The motor device driver reads the motor commands and sends them to the appropriate ports. As shown in Figure 5, the devices are abstracted from the AUV controller via the indirect sharing of the text files. The motors device driver is the only exception where the indirection is reversed. Motor commands are determined by the Java control system, which writes to the files that the C drivers then use to set the motors accordingly. We implemented this indirect method of communication via file access for testing purposes, and to allow the functionality of the device drivers to stabilize. We do not intend to use this in the AUV competition.

Once the C drivers are completely written and have been tested, we will start to implement the Java Native Interface method. The JNI method will allow for us to make direct function calls to the C functions, and give our Java program more control over the devices connected to the AUV.

Figure 6 shows the hierarchy of the AUV Controller. The Controller class has access to all of the other class instances, and acts as the communication point for the control system. The Controller class can query any of the other classes to determines when they are instantiated and what control data they contain. The ControlLogicThread controls all of the threads by reading data from them and informs the EnginesThread to set power to a desired setting.

[image: image6.wmf]Figure 6. UML Class Diagram

Figure 6. UML Class Diagram

4.4 Control Logic Design

We created our controller’s logic by determining which factors are most important during runtime. For example, we wanted to ensure that we do not surface the AUV during the competition or hit the bottom of the pool, which could severely disorient the AUV. We concluded that priority should be given to the depth and altitude sensors over the other sensory devices. We treat the compass and sonar as a single entity from a control-logic viewpoint. Since the sonar tracks a frequency and returns a bearing relative to the bow of the AUV, the AUV needs to compute motor commands to steer towards this frequency. By converting the sonar bearing to degrees true, we utilize the compass device to control the heading of the AUV. This allows for accurate and easily managed AUV steering.

The motors are the only way to control the AUV and therefore are the most important device. If there is a problem, such as the detection of a leak, the motors are signaled to surface, otherwise they continually are given commands from the control logic. If a bad value is passed to the motors, they will continue on their previous value until a good value is received. This robustness allows for only the data that we want to be processed to be present in the control logic. For example, the motors can only accept values of +- 5 volts for power commands. If for some reason a value larger or smaller than +- 5 volts is computed, the controller will not process the command since it is not within the motor limits. The motor file is only written to once a second by the Java controller, and the C motor device driver could only receive inconsistent information when both programs access the file at the same time. Since the motors operate continuously, the motor device driver loses control of the file once a second, which has little effect on the operation of the AUV since the motors continue their current power settings until updated control settings are provided. The remaining time the motor driver has the control of the file and can read the settings that are set by the controller.

5. Analysis

Throughout this research project we ran into and overcame numerous obstacles. In the following subsections we discuss some of these development issues. The first problem involved our initial use of the QNX operating system. The second arose when we attempted to install a mouse in the embedded system. The third problem surfaced when we tried to install the JBuilder Java compiler and other necessary programs on the AUV. The fourth problem involved communication with the C drivers. The fifth problem we encountered was determining what to place on our Graphical User Interface, and how much control to release to the user.

5.1 Choosing Our Operating System

The first problem that we encountered with the AUV was determining what operating system we should use. In the previous year, the QNX [6] operating system had been used with success. QNX offers real time capabilities that provided for the ease of threading programs and concurrent execution. It also provided us with device drivers that had already been written in C for the QNX OS and the devices that were previously used. However, none of the members on the team were familiar with the QNX system and in our case we could not successfully get the Java Virtual Machine to work under QNX. We analyzed our requirements and determined that a Windows based system would work meet our needs for the AUV. We initially decided on Windows XP, however, we ran into hardware conflicts during installation since the AUV did not have enough computing power to handle this system since Windows XP requires 64 megabytes of RAM, but the AUV has only 32 megabytes of RAM. Therefore, we focused on Windows 98 as it was the most capable system that the AUV could support. Windows 98 provides for multiple threads of execution, and also supports the JVM and other programs that are needed for the development of the control system.

5.2 Getting Mouse Support

Having mouse support is essential in the Windows environment. Even though it is an embedded system, the AUV has two communications ports that are made for such devices. However, upon our initial installation of the mouse drivers, Windows did not recognize the devices as being present. We installed and reinstalled all the communications ports with no success. After we attempted other miscellaneous commands in Windows, we turned to the Basic Input/Ouput System (BIOS). A system’s BIOS contains all of the code used to control the devices such as the keyboard, disk drives, serial ports, and other operations. The BIOS had the mouse device driver communication port listed as expected, however the port was disabled via a control bit setting. Once the mouse port was activated, Windows detected the mouse and the mouse worked as projected.

5.3 Installing Necessary Programs

Installing the software required to create Java and C applications created another obstacle in the progress of our research. Once we had Windows 98 working properly, we installed all the necessary patches and basic applications such as WinZip. After this was completed, we attempted to install our Java development environment, JBuilder3, but we ran into a problem. The graphics driver that was installed by Windows did not allow for resolution to be increased greater than 16 colors. JBuilder3 requires at least 256 colors and will not operate unless it detects these settings are in existence. We searched the Internet for drivers for the AUV video card and finally found the correct driver at Intel’s website. We downloaded and installed this driver and now the AUV has resolution capabilities of 32 million colors up to 1152 X 864 pixels. All software installed properly after this driver was installed.

5.4 Communication Using Different Computer Languages
Communication between two computer-programming languages can be a difficult task. This area presented us with the most problems and the least solutions. We knew that the Systems Engineering students that were involved with the AUV were going to be creating the device drivers in the C language. We needed to determine how to communicate with the C drivers from our Java Controller. We searched for a solution and decided that the Java Native Interface (JNI) would suit our needs. The Java Native Interface allows for invocation of code that has been written in another language, thus limiting the new code that has to be produced. This allows for Java to access C member functions as if they were written in Java. The process requires that a Java header be made, which is used by the C program. The C program is compiled and then transferred into a dynamic linked library (.dll). This library is added to Java’s library path and used as if it were another Java library. The problem with this approach for our purpose is the mutual dependence that each program has on the other. The Java code has to have exactly the same function prototype signatures that the C code has. This works fine if only one side (C or Java) is being continually updated and changed. Since both sides of our application were concurrently under going dynamic changes, the use of JNI did not present our project with a viable solution at that time. However, once the System Engineers finished updating the C drivers, the use of JNI has become feasible for the competition.

Our second approach to this problem was to try and write the drivers in Java. Java has a Comm class that allows the use of serial and parallel ports. This class is located in the javax.comm class and is available for download from Sun Microsystems website[4]. We installed this class and added it to the class path files in JBuilder. We tested samples that came with the download and determined that this would not work with our requirement since it supports 25 bit serial ports, specifically, RS-252 serial ports, and we are working with 16 and 8 bit serial ports. The addressing to access specific ports gets very complicated which does not make Java ideal for this operation. We decided that we would resume development of the C based drivers and continue to search for another path to utilize until the JNI can be implemented.

We settled on a solution that made a primitive use of mutual access to file I/O. Although this was our last choice since it is the least consistent method of getting information, it has proven itself to work well for our testing purposes. As previously discussed, in our approach the C driver writes to the file for a specific device. Since the file can be viewed as a location in memory, each device can designate its own area of memory or “file”. We limit the number of times that Java reads from the same memory location that the C code is writing to allow the normal context switching that a multi-tasking operating system such as Windows 98 conducts to work to our advantage. A C device driver will go to a location in memory (open a file), store data (write to it), and then return the file to its original state (close it). This makes it accessible to Java. Java goes to the same location in memory (opens the file), retrieves the stored data (reads from it), and then returns the file to its original state (closes it). Since there are multiple files, one for each device, the chances that C and Java are accessing the same file at the same time are limited.

We ran test cases using a C program that writes integers to a file and a Java Program that attempts to read them from the same file at the same time. The test results indicated that we could have the Java side sleep for half of a second and still read data from the file with over 98% average success rate. What this means is that the Java side will only get a null value during a one second duration 2% of the time. Since our control system is designed to maintain the previous control settings until explicitly instructed otherwise, the behavior of the AUV is not negatively impacted during the null read results. The 98% availability rate of access to shared data was sufficient for the testing that we needed the file IO to accomplish. A single CPU, multi-tasking operating system is being utilized in the AUV, so even if both programs try to access the same file, the program that opened the file first is granted permission to use the file. A second program that attempts to open a file that is already open by the first program is given a null return value in response to the file open request. In our system, the null value serves to inform the program failing to open the file to try again after a specific wait time. Since the AUV is a slow moving device, it is not crucial that the data be returned at a constant rate. With this method, we can have multiple input from every device every second, which is sufficient for our control system needs. We are using this method until the device drivers are completely done. Once they are done, we will utilize the Java Native Interface to access the devices. The file I/O method allows us to create a control logic system in Java and test it. The addition of JNI will make our program non-dependent on file IO.

5.5 Producing Visual Support

Determining what information and options to place on our GUI was critical to our design. We wanted to provide the maximum amount of information and give the maximum amount of control without cluttering the screen. We decided the stick with our prototype and keep the control options separate from the mission status window. This way when we test the controller’s logical processes we can monitor the mission status window at all times. Furthermore this removes much clutter from the GUI window and provides those that are testing the devices with only the necessary information.

Figure 7 shows what our previous GUI prototype from SI434 looked like for comparison with the layout of the current AUV GUI given in Figure 8. The differences focus primarily on what information is needed during each phase of execution. Instead of creating multiple configurations windows, where each device has its own GUI, we created one window that allows us to configure any part of the AUV. This not only has decreased the complexity of the AUV Controller but has also made configuration much easier. As shown in figure 8, when the user selects the AUV logic controller and a countdown duration is set via the configuration GUI, a timer is started. The timer is used to give the team time to place the AUV in the water and dismantle all wires and devices that are not involved with its underwater operation. When the timer reaches zero, the control logic thread is started and all devices are turned on. At this point the AUV starts its mission. Unlike our prototype, the AUV control logic does not have any GUI’s. Instead, a running sensor log of all sensor data and motor settings is maintained for post mission analysis. Since the purpose is to put the AUV in the water and have it run on its own, there was no need to tie up the processor with unnecessary GUI operations.

[image: image7.png]
6. Testing the AUV Controller
We ran several tests of the AUV's control system, both in and out of the water. The first series of tests involved statically communicating with each of the components in the AUV independently. These tests were successful, and the Java Controller successfully communicated with each hardware component via the C device drivers. In the water test, the AUV was setup to track and follow a specific frequency using its sonar. This test was successful and the AUV guided itself toward the frequency ping using its motors.

[image: image8.png]
We created two different control systems in the AUV controller. One was for testing and the other started the AUV control logic. The testing option was very helpful. It showed us the information that would be processed by the control logic thread. Using the testing method, we determined how to write the control logic thread in order to be efficient and expedient when making motor control decisions. The control logic thread consists of blocked areas of computation as shown in Figure 9. The further that the control-flow progresses, the more complex the decision-making becomes. As shown in Figure 9, the first argument tests to make sure that the leak detector has not detected a leak.

If the system does not detect a leak, control flow proceeds to the next conditional, which includes continually checking the leak detector and determining whether the system is within operational altitudes and depths. It is necessary to check the leak detector again because a leak is an emergency condition in which the AUV must abort the mission and surface. Although the AUV is neutrally buoyant, a leak could cause the system hardware to be lost. At this point the AUV is told, via motor commands, to surface and shut down.

public void run(){ //Controller Thread's run method

 //while the leak detector does not send us a bad signal

 while(getWaterDetected() == false){

 while(getWithinDepth() == true && getWithinAlt() == true

 && getWaterDetected() == false){

 /*Sonar Contact Detected, Sonar Has A Bearing and system is

 Within Predefined Alt and Depth, with No Leak Detected */

 while(sonar.getBearToFreq() != -180 && getWithinDepth() == true

 && getWithinAlt() == true && getWaterDetected() == false){

 /* If Bearing Is between -5 AND 5 degrees, ignore and proceed

 straight forward */

 if(sonar.getBearToFreq() <=5 ||sonar.getBearToFreq() >= -5){

 System.out.println("" + sonar.getBearToFreq());

 System.out.println("Set Port to 5, Set Star to 5");

 engines.setBowPower(0);

 engines.setSternPower(0);

 engines.setPortPower(5);
 engines.setStarPower(5);

 }

Figure 9. Code Sample from ControlLogicThreadClass
The first operational tests that were conducted were very simple. The team started by having the AUV detect and drive towards a known frequency. Since the frequency detection radius is +60 degrees to –60 degrees relative to the bow, we determined that if the AUV does not find a signal, it should drive straight for 5 seconds. If the signal still has not been detected then it will complete a 360-degree turn. If the signal is detected while it is rotating, the AUV will stop turning and drive toward the signal. Otherwise it will repeat the search process. This testing came back successful. Since the AUV is in a small area, the rotating worked well. In our operational tests, the AUV successfully found the frequency and drove towards it as expected.

During our operational testing, we discovered that the file IO method of communication between the Java control system and the device drivers was experiencing difficulties. Since the C device drivers and the Java control program are not dependent on one another, they were operating at different logical speeds. This caused the Java program to lag behind the C drivers in terms of the data the control system was basing decisions on, and ultimately resulted in delayed motor commands. For example, when the motors are signaled to go straight, they remain turning for a short period of time and then go straight. This lag caused our controller to act sluggishly. The source of the lag is the result of independence of the C and Java code. Since the C device drivers' programs have stabilized from a functional perspective as each hardware component was completed, we returned to the Java Native Interface as the preferred communication approach.

Our initial implementations using the Java Native Interface were successful, and will likely removed the sluggishness of our system's response time. Through our use of JNI, the C code is becoming a logical part of the Java control system. This approach allows us to benefit from both the Java threading constructs and the serial communication of the C code. This is by far the best implementation for the AUV controller from an operational viewpoint. The downside to using JNI is that the C device drivers are platform dependent, therefore our controller can only be used on platforms that support the C device drivers or have C drivers written for the devices.

6. Conclusions and Future Work

The Computer Science Department has done an excellent job of preparing midshipmen in the CS major by introducing several different computer programming languages and exposure to multi-threaded environments and diverse operating systems. The background provides the average graduate with the tools needed to be successful in studying new fields on their own. Undertaking a project such as the AUV competition results in experiencing a fully functional real-time operating system first hand. Gaining knowledge on such a system is invaluable whether heading out to the Fleet, the Marine Corps, or beyond in the civilian sector.

Despite the obstacles that we encountered at the beginning of this project, the Java-based AUV Controller has found its place on the AUV. We have managed to communicate with other devices written in different programming languages and have benefited from programmer-level threading of the Java programming language. Currently, the AUV Controller is fully functional and controls all aspects of the AUV’s movement through its device drivers.

Previous work gave us a prototype for this project and reinforces the methods learned in Software Engineering for creating efficient and expandable projects. We learned a great deal about coupling and cohesion and created a software package that benefits from both of these ideals. The result of our research has given us a program that is a third of the size of our original prototype, while having more options and increasing the speed at which it performs tasks. The program also supports easy updates since it abstracts each device into its own class, allowing for the smooth addition or deletion of devices.

The portability of Java makes it a useful language for our purpose. This characteristic alone allows programmers to be flexible when deciding which operating system would best suit the overall need of a given project. As previously discussed, the programming team this year encountered problems trying to install a Java Virtual Machine into the QNX real-time operating system. However, the portability of the Java language allowed the decision to change operating systems to Windows 98 to be readily supported. This does not, however, indicate that Windows 98 is the best operating system to use for this project. There are many features that Windows 98 provides that are not necessary for the needs of the AUV, such as Internet Explorer that nonetheless consume valuable memory space on the embedded system. The challenge for any programmers entering the AUV competition in future is to find a better operating system for the project. Then after the operating system has been decided on, install a JVM on the system and fully implement an operational multi-threaded control system for the next year’s AUV

Ongoing work includes the expansion of the basic control logic. Currently, our AUV system is capable of searching and tracking towards an acoustic frequency. Our focus in this area is on developing possible situations that the AUV may need to overcome during the July competition, and including these in its logic. For example, the competition includes having the AUV find a frequency ping, taking a picture, processing a bar code, and avoiding obstacles in the AUV’s path. This is the next step for the AUV controller’s evolution.

Future work includes determining whether the ports of the AUV system can be directly connected to the Java controller. Instead of using the C device drivers to access port information, Java has pre-defined classes that allow for port I/O. If time could be spent on researching this more thoroughly, the potential exists for expanding the use of Java in the operation of the AUV. As an example, the camera that is being used for the visual identification of objects came with Java constructs to provide for device driver control. Future work could focus on accessing the camera using the given Java code. This approach has the potential of providing improved control over the camera and its operation, and may also improves the efficiency of gathering information from this device. Currently, no work has been done to implement the camera into the program. We are expecting to do this during the summer and most likely in the Java programming language.

7. References

[1] AUVSI AUV Competition. http://www.auvsi.org/competitions/water.cfm. AUVSI

 Online. 21APR02.

[2] Deitel and Deitel. Java How to Program Third Edition. (New Jersey: Prentice Hall, 1999).

[3] Hierons R. M. Checking States and Transitions of a set of Communicating

 Finite State Machines, Microprocessors and Microsystems, Special Issue on Testing

 and testing techniques for real-time embedded software systems, Vol 24 Number 9, pp. 443-

 452, 2001.

[4] JavaTM Communications API. http://java.sun.com/products/javacomm/ Sun Microsystems.

 21APR2002.

[5] Liang, Sheng. The Java Native Interface, Programmer’s Guide and Specification.

 (Massachusetts: Addison-Wesley, 1999).

[6] QNX Real-Time Operating System, version 6. http://www.qnx.com/products/ps_rtosv6/

 QNX.com. April, 21, 2002.

[7] Schach, Stephen R. Classical and Object-Oriented Software Engineering. (New York:

 McGraw-Hill, 1999).
[8] Sridevi, Lingamarla and Singh, Gautam, System for Automated Validation of Embedded

 Software in Multiple Operating Configurations. 323-326 Electronic Edition (IEEE Computer

 Society DL), 2001.

[9] Thane H, Hansson H. Towards Systematic Testing of Distributed Real-Time Systems. Real-

 time Systems Symposium, Phoenix U.S.A, December, 1999.

Figure 8: AUV Controller GUI

Figure 7: Prototype AUV Controller GUI

PAGE
ii

_1081249453.doc
[image: image1.png]

Figure 2. AUV Controller Class

_1081250276.doc
[image: image1.png]

Figure 5. Hardware Interaction with Java Control System

_1081250555.doc
[image: image1.png]

Figure 3. ControllerClass UML State Diagram

_1081249977.doc
[image: image1.png]

Figure 4. UML State Diagram for Control GUI

_1081249374.doc
[image: image1.png]

Figure 1. UML Use Case Diagram for the AUV Controller

_1081248708.doc
[image: image1.png]Figure 6. UML Class Diagram

Figure 6. UML Class Diagram

