
Set-Up Ingredients Our Algorithm

Stable Sparse Interpolation with Fewer Samples

Daniel S. Roche
United States Naval Academy

joint work with

Mark Giesbrecht
University of Waterloo

Fields Workshop on Hybrid Methodologies for
Symbolic-Numeric Computation

November 18, 2011
1 / 16



Set-Up Ingredients Our Algorithm

The Problem

Unknown
FunctionExact θ ∈ C Approximation to f (θ)Input Output

What f (x) = c1xd1 + · · · + ctxdt is in here?What’s in here?

Algorithm input:

Bounds D ≥ di and T ≥ t

Algorithm output:

Coefficients c1, . . . , ct

2 / 16



Set-Up Ingredients Our Algorithm

The Problem

Unknown
FunctionExact θ ∈ C Approximation to f (θ)Input Output

What f (x) = c1xd1 + · · · + ctxdt is in here?What’s in here?

Algorithm input: The black box

Bounds D ≥ di and T ≥ t

Algorithm output: The unknown function

Coefficients c1, . . . , ct

2 / 16



Set-Up Ingredients Our Algorithm

The Problem

Unknown
FunctionExact θ ∈ C Approximation to f (θ)Input Output

What f (x) = c1xd1 + · · · + ctxdt is in here?What sparse polynomial is in here?

Algorithm input: Black box for a sparse polynomial

Bounds D ≥ di and T ≥ t

Algorithm output: Approximation to the hidden polynomial

Coefficients c1, . . . , ct

2 / 16



Set-Up Ingredients Our Algorithm

The Problem

Unknown
FunctionExact θ ∈ C Approximation to f (θ)

What f (x) = c1xd1 + · · · + ctxdt is in here?

Algorithm input: Way to evaluate f (x) =
∑

1≤i≤t aixdi

Bounds D ≥ di and T ≥ t
Algorithm output: Exponents d1, . . . , dt

Coefficients c1, . . . , ct

2 / 16



Set-Up Ingredients Our Algorithm

Problem is Inherently Symbolic-Numeric!

Exact Approximate

Input Bounds Evaluations

Output Exponents Coefficients

3 / 16



Set-Up Ingredients Our Algorithm

Factors Influencing Complexity

• Sparsity (number of nonzero terms)

• Degree (largest exponent)

• Precision (error in evaluations)

Our interest is in the hardest case:
High sparsity, high degree, low precision

We want to minimize the number of probes
and the post-processing cost.

4 / 16



Set-Up Ingredients Our Algorithm

de Prony’s Method

Algorithm to interpolate exponential sums.
Involves structured linear system solving, polynomial root finding,
and computing logarithms.

Much attention in recent years:

• Ben-Or & Tiwari (’88)

• Kaltofen & Lakshman (’89)

• Kaltofen, Lakshman, Wiley (’90)

• Kaltofen, Yang, Zhi (’07)

• Cuyt & Lee (’08)

• Giesbrecht, Labahn, Lee (’09)

5 / 16



Set-Up Ingredients Our Algorithm

Properties of de Prony’s method

Drawbacks

• Not numerically stable

• Requires high precision

• (Discrete logarithms?)

Advantages

• Fewest number of evaluations: O(t)
• Numerical stability can be helped with randomization

6 / 16



Set-Up Ingredients Our Algorithm

Degree Reduction

Basic Idea: Given a sparse polynomial’s black box,
choose evaluations carefully to simulate a lower-degree polynomial

Typically, we get f mod (xp − 1) or f mod (xp−1 − 1).

Some appearances:

• Bläser, Hardt, Lipton, Vishnoi (’09)

• Garg & Schost (’09)

• G. & R. (’10)

7 / 16



Set-Up Ingredients Our Algorithm

Garg & Schost’s Algorithm

Consider (unknown) f = c1xe1 + c2xe2 + · · · + ctxet .

Idea: Evaluate f mod xp − 1 for a small prime p.
This gives fp = c1xe1 mod p + c2xe2 mod p + · · · + ctxet mod p.

If p is “good”, then every ei mod p is distinct, and we have every
coefficient and an unordered set {ei mod p | 1 ≤ i ≤ t}.

Problem: How to correlate terms between different evaluations?

Consider the symmetric polynomial whose roots are the
exponents: Γ(z) = (z − e1)(z − e2) · · · (z − et) ∈ Z[z].

Coefficients of Γ have Θ(t log d) bits, so we need this many “good
prime” evaluations. Then we must find the integer roots of Γ.

8 / 16



Set-Up Ingredients Our Algorithm

Garg & Schost’s Algorithm

Consider (unknown) f = c1xe1 + c2xe2 + · · · + ctxet .

Idea: Evaluate f mod xp − 1 for a small prime p.
This gives fp = c1xe1 mod p + c2xe2 mod p + · · · + ctxet mod p.

If p is “good”, then every ei mod p is distinct, and we have every
coefficient and an unordered set {ei mod p | 1 ≤ i ≤ t}.

Problem: How to correlate terms between different evaluations?

Consider the symmetric polynomial whose roots are the
exponents: Γ(z) = (z − e1)(z − e2) · · · (z − et) ∈ Z[z].

Coefficients of Γ have Θ(t log d) bits, so we need this many “good
prime” evaluations. Then we must find the integer roots of Γ.

8 / 16



Set-Up Ingredients Our Algorithm

Making Garg & Schost Numeric

The previous algorithm was for finite fields.

For other domains, we need a way to compute
f mod (xp − 1) for a chosen p.

This is easy in C: Evaluate f (1), f (ω), . . . , f (ωp−1) for ω a p-PRU.
Using the FFT, this is perfectly numerically stable!

Essentially, we are oversampling to get the best stability.

9 / 16



Set-Up Ingredients Our Algorithm

Diversification

Goal: Avoid the need for computing the symmetric polynomial from
Garg & Schost.

• Define diverse polynomial as one with
pairwise-distinct coefficients.

• If α is a random element (of a certain domain),
f (αx) is diverse w.h.p.

• We can of course recover f (x) from f (αx).

Result: Cost (number of probes and post-processing)
reduced from O(t4 log2 d) down to O(t2 log2 d).

10 / 16



Set-Up Ingredients Our Algorithm

WARNING

This is work in progress!

11 / 16



Set-Up Ingredients Our Algorithm

Improving on Diversification

O(t2 log2 d) is an improvement from Garg & Schost,
but quadratically more probes than de Prony.

New idea — Use the old idea!

Embed de Prony’s method inside our Garg & Schost-like method.

Instead of computing f (1), f (ω), . . . f (ωp−1) and using FFT,
we compute f (1), f (ω), . . . , f (ω2t−1) and use de Prony.

12 / 16



Set-Up Ingredients Our Algorithm

Diversifying the Exponents
• Need ωd1 , ωd2 , . . . , ωdt to be sufficiently separated.

Bad choice
of p or

p-PRU ω:

Equivalent
mod p

Too
close

13 / 16



Set-Up Ingredients Our Algorithm

Diversifying the Exponents
• Need ωd1 , ωd2 , . . . , ωdt to be sufficiently separated.

p sufficiently
large,

ω random
p-PRU:

13 / 16



Set-Up Ingredients Our Algorithm

Diversifying the Coefficients
• Need c1, c2, . . . , ct to be sufficiently distinct — impossible!

Not diverse:

14 / 16



Set-Up Ingredients Our Algorithm

Diversifying the Coefficients
• Need c1ζ

e1 , c2ζ
e2 , . . . , ctζ

et to be sufficiently distinct

Bad choice
of ζ:

14 / 16



Set-Up Ingredients Our Algorithm

Diversifying the Coefficients
• Need c1ζ

e1 , c2ζ
e2 , . . . , ctζ

et to be sufficiently distinct

Good choice
of ζ:

14 / 16



Set-Up Ingredients Our Algorithm

Overview of Combined Algorithm

1 Choose prime s ∈ O(t2) and random s-PRU ζ

2 Choose prime p ∈ O(t2 log d) and random p-PRU ω

3 Evaluate f (1), f (ζω), f (ζ2ω2), . . . f (ζ2t−1ω2t−1)

4 Recover f (ζx) mod (xp − 1) using de Prony’s method

5 Correlate coefficients with exponent residues modulo p

6 Repeat Steps 2–5 O(log d) times

7 Recover exponents from modular residues by Chinese
remaindering

These are the randomization steps.

15 / 16



Set-Up Ingredients Our Algorithm

Overview of Combined Algorithm

1 Choose prime s ∈ O(t2) and random s-PRU ζ

2 Choose prime p ∈ O(t2 log d) and random p-PRU ω

3 Evaluate f (1), f (ζω), f (ζ2ω2), . . . f (ζ2t−1ω2t−1)

4 Recover f (ζx) mod (xp − 1) using de Prony’s method

5 Correlate coefficients with exponent residues modulo p

6 Repeat Steps 2–5 O(log d) times

7 Recover exponents from modular residues by Chinese
remaindering

These are the randomization steps.

15 / 16



Set-Up Ingredients Our Algorithm

Results

Sparse interpolation algorithm featuring

• O(t log d) probes at (nearly) fixed precision
— optimal in terms of total bit length

• O˜(t2 log d) post-processing cost

Requires low precision, even at high degrees,
and with as few probes as possible.

16 / 16


	Set-Up
	Ingredients
	Our Algorithm

