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Set-Up Ingredients Our Algorithm

The Problem

Unknown
FunctionExact θ ∈ C Approximation to f (θ)Input Output

What f (x) = c1xd1 + · · · + ctxdt is in here?What’s in here?

Algorithm input:

Bounds D ≥ di and T ≥ t

Algorithm output:

Coefficients c1, . . . , ct
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FunctionExact θ ∈ C Approximation to f (θ)Input Output
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Set-Up Ingredients Our Algorithm

The Problem

Unknown
FunctionExact θ ∈ C Approximation to f (θ)

What f (x) = c1xd1 + · · · + ctxdt is in here?

Algorithm input: Way to evaluate f (x) =
∑

1≤i≤t aixdi

Bounds D ≥ di and T ≥ t
Algorithm output: Exponents d1, . . . , dt

Coefficients c1, . . . , ct

2 / 16



Set-Up Ingredients Our Algorithm

Problem is Inherently Symbolic-Numeric!

Exact Approximate

Input Bounds Evaluations

Output Exponents Coefficients
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Factors Influencing Complexity

• Sparsity (number of nonzero terms)

• Degree (largest exponent)

• Precision (error in evaluations)

Our interest is in the hardest case:
High sparsity, high degree, low precision

We want to minimize the number of probes
and the post-processing cost.

4 / 16



Set-Up Ingredients Our Algorithm

de Prony’s Method

Algorithm to interpolate exponential sums.
Involves structured linear system solving, polynomial root finding,
and computing logarithms.

Much attention in recent years:

• Ben-Or & Tiwari (’88)

• Kaltofen & Lakshman (’89)

• Kaltofen, Lakshman, Wiley (’90)

• Kaltofen, Yang, Zhi (’07)

• Cuyt & Lee (’08)

• Giesbrecht, Labahn, Lee (’09)
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Properties of de Prony’s method

Drawbacks

• Not numerically stable

• Requires high precision

• (Discrete logarithms?)

Advantages

• Fewest number of evaluations: O(t)
• Numerical stability can be helped with randomization
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Degree Reduction

Basic Idea: Given a sparse polynomial’s black box,
choose evaluations carefully to simulate a lower-degree polynomial

Typically, we get f mod (xp − 1) or f mod (xp−1 − 1).

Some appearances:

• Bläser, Hardt, Lipton, Vishnoi (’09)

• Garg & Schost (’09)

• G. & R. (’10)
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Garg & Schost’s Algorithm

Consider (unknown) f = c1xe1 + c2xe2 + · · · + ctxet .

Idea: Evaluate f mod xp − 1 for a small prime p.
This gives fp = c1xe1 mod p + c2xe2 mod p + · · · + ctxet mod p.

If p is “good”, then every ei mod p is distinct, and we have every
coefficient and an unordered set {ei mod p | 1 ≤ i ≤ t}.

Problem: How to correlate terms between different evaluations?

Consider the symmetric polynomial whose roots are the
exponents: Γ(z) = (z − e1)(z − e2) · · · (z − et) ∈ Z[z].

Coefficients of Γ have Θ(t log d) bits, so we need this many “good
prime” evaluations. Then we must find the integer roots of Γ.
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Making Garg & Schost Numeric

The previous algorithm was for finite fields.

For other domains, we need a way to compute
f mod (xp − 1) for a chosen p.

This is easy in C: Evaluate f (1), f (ω), . . . , f (ωp−1) for ω a p-PRU.
Using the FFT, this is perfectly numerically stable!

Essentially, we are oversampling to get the best stability.
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Diversification

Goal: Avoid the need for computing the symmetric polynomial from
Garg & Schost.

• Define diverse polynomial as one with
pairwise-distinct coefficients.

• If α is a random element (of a certain domain),
f (αx) is diverse w.h.p.

• We can of course recover f (x) from f (αx).

Result: Cost (number of probes and post-processing)
reduced from O(t4 log2 d) down to O(t2 log2 d).
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WARNING

This is work in progress!
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Improving on Diversification

O(t2 log2 d) is an improvement from Garg & Schost,
but quadratically more probes than de Prony.

New idea — Use the old idea!

Embed de Prony’s method inside our Garg & Schost-like method.

Instead of computing f (1), f (ω), . . . f (ωp−1) and using FFT,
we compute f (1), f (ω), . . . , f (ω2t−1) and use de Prony.
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Diversifying the Exponents
• Need ωd1 , ωd2 , . . . , ωdt to be sufficiently separated.

Bad choice
of p or

p-PRU ω:

Equivalent
mod p

Too
close
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Diversifying the Exponents
• Need ωd1 , ωd2 , . . . , ωdt to be sufficiently separated.

p sufficiently
large,

ω random
p-PRU:
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Diversifying the Coefficients
• Need c1, c2, . . . , ct to be sufficiently distinct — impossible!

Not diverse:
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Diversifying the Coefficients
• Need c1ζ

e1 , c2ζ
e2 , . . . , ctζ

et to be sufficiently distinct

Bad choice
of ζ:
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Diversifying the Coefficients
• Need c1ζ

e1 , c2ζ
e2 , . . . , ctζ

et to be sufficiently distinct

Good choice
of ζ:
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Overview of Combined Algorithm

1 Choose prime s ∈ O(t2) and random s-PRU ζ

2 Choose prime p ∈ O(t2 log d) and random p-PRU ω

3 Evaluate f (1), f (ζω), f (ζ2ω2), . . . f (ζ2t−1ω2t−1)

4 Recover f (ζx) mod (xp − 1) using de Prony’s method

5 Correlate coefficients with exponent residues modulo p

6 Repeat Steps 2–5 O(log d) times

7 Recover exponents from modular residues by Chinese
remaindering

These are the randomization steps.
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Results

Sparse interpolation algorithm featuring

• O(t log d) probes at (nearly) fixed precision
— optimal in terms of total bit length

• O˜(t2 log d) post-processing cost

Requires low precision, even at high degrees,
and with as few probes as possible.
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