
Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

On Lacunary Polynomial Perfect Powers

Mark Giesbrecht Daniel S. Roche

Symbolic Computation Group
School of Computer Science

University of Waterloo

ISSAC 2008
RISC Linz

Hagenberg, Austria
23 July 2008

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Polynomial Representations
A polynomial which is easy to write:

f (x) = x123705y9432 + 9 x95911y7510 + 3 x82470y6288 + 27 x68117y5588 + 18 x54676y4366

+ 3 x41235y3144 + 27 x40323y3666 + 27 x26882y2444 + 9 x13441y1222 + 1

How to represent this polynomial?

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Polynomial Representations
A polynomial which is easy to write:

f (x) = x123705y9432 + 9 x95911y7510 + 3 x82470y6288 + 27 x68117y5588 + 18 x54676y4366

+ 3 x41235y3144 + 27 x40323y3666 + 27 x26882y2444 + 9 x13441y1222 + 1

Dense Representation

For a degree-n polynomial in k variables:

Store a k-dimensional array of every possible coefficient

Size ≈ nk

This example: more than 1 GB!

More natural representation

Default in most CAS

Can be exponentially more compact

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Polynomial Representations
A polynomial which is easy to write:

f (x) = x123705y9432 + 9 x95911y7510 + 3 x82470y6288 + 27 x68117y5588 + 18 x54676y4366

+ 3 x41235y3144 + 27 x40323y3666 + 27 x26882y2444 + 9 x13441y1222 + 1

Sparse Representation

For a degree-n polynomial in k variables with t terms:

Store a list of t coefficient-exponent tuples

Size ≈ kt log2 n

This example: less than 1 KB

More natural representation

Default in most CAS

Can be exponentially more compact

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Polynomial Representations
A polynomial which is easy to write:

f (x) = x123705y9432 + 9 x95911y7510 + 3 x82470y6288 + 27 x68117y5588 + 18 x54676y4366

+ 3 x41235y3144 + 27 x40323y3666 + 27 x26882y2444 + 9 x13441y1222 + 1

Sparse Representation

For a degree-n polynomial in k variables with t terms:

Store a list of t coefficient-exponent tuples

Size ≈ kt log2 n

This example: less than 1 KB

More natural representation

Default in most CAS

Can be exponentially more compact

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Computing with Polynomials
Lots of things are easy when polynomials are dense:

GCD, factorization, Euclidean division

Relative Primality

Square-freeness

Divisibility

Reducibility

Evaluation, Differentiation

Interpolation

Root finding

Low-degree factors

Jacobi symbols, perfect square detection

Perfect power detection Today!
Something

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Computing with Polynomials
Some things are hard when polynomials are sparse:

GCD, factorization, Euclidean division

Relative Primality (Plaisted ’84)

Square-freeness (Karpinski & Shparlinski ’99)

Divisibility

Reducibility

Evaluation, Differentiation

Interpolation

Root finding

Low-degree factors

Jacobi symbols, perfect square detection

Perfect power detection Today!
Something

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Computing with Polynomials
Some things might be hard when polynomials are sparse:

GCD, factorization, Euclidean division

Relative Primality (Plaisted ’84)

Square-freeness (Karpinski & Shparlinski ’99)

Divisibility

Reducibility

Evaluation, Differentiation

Interpolation

Root finding

Low-degree factors

Jacobi symbols, perfect square detection

Perfect power detection Today!
Something

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Computing with Polynomials
Some things are easy when polynomials are sparse:

GCD, factorization, Euclidean division

Relative Primality (Plaisted ’84)

Square-freeness (Karpinski & Shparlinski ’99)

Divisibility

Reducibility

Evaluation, Differentiation

Sparse Interpolation
(Ben-Or & Tiwari ’88; Kaltofen & Lee ’03; G. & R. ’07)

Root finding (Cucker, Koiran, Smale ’99)

Low-degree factors (Lenstra ’99; Kaltofen & Koiran ’05,’06)

Jacobi symbols, perfect square detection (Shparlinski ’00)

Perfect power detection Today!

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Computing with Polynomials
Some things are easy when polynomials are sparse:

GCD, factorization, Euclidean division

Relative Primality (Plaisted ’84)

Square-freeness (Karpinski & Shparlinski ’99)

Divisibility

Reducibility

Evaluation, Differentiation

Sparse Interpolation
(Ben-Or & Tiwari ’88; Kaltofen & Lee ’03; G. & R. ’07)

Root finding (Cucker, Koiran, Smale ’99)

Low-degree factors (Lenstra ’99; Kaltofen & Koiran ’05,’06)

Jacobi symbols, perfect square detection (Shparlinski ’00)

Perfect power detection Today!

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Back to the example

f (x) = x123705y9432 + 9 x95911y7510 + 3 x82470y6288 + 27 x68117y5588 + 18 x54676y4366

+ 3 x41235y3144 + 27 x40323y3666 + 27 x26882y2444 + 9 x13441y1222 + 1

=
(
x41235y3144 + 3 x13441y1222 + 1

)3

r = 3

h(x) = x41235y3144 + 3 x13441y1222 + 1

We will use this notation consistently.

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Problems to Solve

1 Given f , determine whether f = hr for any h and r ≥ 2.

2 If so, find one such r.

3 Given r, find one such h.

Algorithm Requirements:

Cost polynomial in k, t, and log n

When R = Z, also polynomial in log ‖f ‖∞

First, we solve (1) and (2) for univariate integer polynomials.

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Problems to Solve

1 Given f , determine whether f = hr for any h and r ≥ 2.

2 If so, find one such r.

3 Given r, find one such h.

Algorithm Requirements:

Cost polynomial in k, t, and log n

When R = Z, also polynomial in log ‖f ‖∞

First, we solve (1) and (2) for univariate integer polynomials.

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each possible r do

Probabilistically choose p with p - disc(f)
q← pr−1

Choose random α ∈ Z

α1

if f (α) is a perfect rth power then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Can’t evaluate over Z

1 Can restrict to r < 2 log2 ‖f ‖1

2 Five evaluations guarantees high probability of success

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each possible r do
Probabilistically choose p with p - disc(f)

q← pr−1

Choose random α ∈ Fp

α1

if f (α) is a perfect rth power then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Can’t determine rth-poweredness over Fp.

1 Can restrict to r < 2 log2 ‖f ‖1

2 Five evaluations guarantees high probability of success

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each possible prime r do
Probabilistically choose p with p - disc(f)
q← pr−1

Choose random α ∈ Fq

α1

if f (α)(q−1)/r = 1 then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Need some deeper math

1 Can restrict to r < 2 log2 ‖f ‖1

2 Five evaluations guarantees high probability of success

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each prime r < 2 log2 ‖f ‖1 do
Probabilistically choose p with p - disc(f)
q← pr−1

Choose random α ∈ Fq

α1

if f (α)(q−1)/r = 1 then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Need some deeper math

1 Can restrict to r < 2 log2 ‖f ‖1

2 Five evaluations guarantees high probability of success

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each prime r < 2 log2 ‖f ‖1 do
Probabilistically choose p with p - disc(f)
q← pr−1

Choose random α1, α2, . . . , α5 ∈ Fq

α1

if f (α1)(q−1)/r = · · · = f (α5)(q−1)/r = 1 then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Need some deeper math

1 Can restrict to r < 2 log2 ‖f ‖1
2 Five evaluations guarantees high probability of success

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Bound on r

Theorem

If f ∈ Z[x] is a perfect rth power and has at least 2 terms, then

r ≤ 2 log2 ‖f ‖1.

Proof arises from orthogonality of DFT matrix

If f has only one term, the problem is trivial (primality testing).

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Perfect Power Evaluation Witnesses

Theorem

Suppose f ∈ Fq[x] has degree n and is not a perfect rth power.
Then, if q ≥ 4n2,

#
{
α ∈ Fq : f (α) is an rth power

}
≤

3q
4
.

Means that at least 1/4 of elements will be “good witnesses”.

Proof uses method of completing the character sum,
relying on a theorem of Weil (1948).

No information on the distribution of good witnesses.

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Perfect Power Detection

Theorem

For f ∈ Z[x] with degree n and t terms, we can determine whether
f is a perfect power using O(t log2 ‖f ‖∞ log2 n) bit operations.

Probabilistic Monte Carlo algorithm
(always fast; correct with arbitrarily high probability)

For f ∈ Q[x], can reduce to Z[x] by Gauß’s Lemma

The case of f ∈ Fq[x] is already handled!

For f ∈ R[x1, x2, . . . , xk], substitute random values for x2, . . . , xk

and work over R[x1].

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Previously-Known Methods to Detect Perfect Powers

Square-Free Decomposition (Yun ’76)

Computes f = gd1
1 gd2

2 · · · g
dk
k ,

for square-free, relatively prime, nonconstant g1, . . . , gk.
f is a perfect power iff gcd(d1, . . . , dk) > 1.

Implemented natively in NTL

Newton Iteration

For each r, computes a power series rth root of f .
Then Monte Carlo check by random evaluation.

Implemented in NTL by us

Follows best method for computing roots of integers
(Bach & Sorenson ’93; Bernstein ’98)

We also implemented our detection algorithm in NTL.

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Previously-Known Methods to Detect Perfect Powers

Square-Free Decomposition (Yun ’76)

Computes f = gd1
1 gd2

2 · · · g
dk
k ,

for square-free, relatively prime, nonconstant g1, . . . , gk.
f is a perfect power iff gcd(d1, . . . , dk) > 1.
Implemented natively in NTL

Newton Iteration

For each r, computes a power series rth root of f .
Then Monte Carlo check by random evaluation.
Implemented in NTL by us

Follows best method for computing roots of integers
(Bach & Sorenson ’93; Bernstein ’98)

We also implemented our detection algorithm in NTL.

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Notes on the Timings

Square-free decomposition was always much slower;
not shown

Millions of trials, ZERO failures

Our algorithm wins even for dense polynomials
(it’s really a black-box algorithm)

Not a fair comparison because we’re not computing the root
(yet. . .)

Newton iteration (blue) vs. Lacunary Alg. (red) for n = 10, 000

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Computing Perfect rth roots

Problem

We can determine if f = hr for some h, and find r, but how do we
compute h given r and (lacunary) f ?

How dense can the root be?

This is a very old, well-studied problem
Erdös (’47); Coppersmith & Davenport (’91); Abbot (’02);
Schinzel (’87); Zannier (’07)

Still not known whether a sparse poly. may have a dense root.
(Our first thm. proves this for fixed-height integer polynomials)

We seek only output-sensitive algorithms
(i.e. assume h is sparse)

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Newton Iteration to Compute Roots

Input: f ∈ R[x], r ∈ N s.t. f is a perfect rth power
Output: h ∈ R[x] s.t. f = hr

k ← 1; h← r
√

f (0)
while k ≤ (deg f)/r

h← h +
f − hr

r hr−1 mod x2k

k ← 2k

end while

Let’s rearrange to give more insight into the computation

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Newton Iteration to Compute Roots

Input: f ∈ R[x], r ∈ N s.t. f is a perfect rth power
Output: h ∈ R[x] s.t. f = hr

k ← 1; h← r
√

f (0)
while k ≤ (deg f)/r

a←
f − hr mod x2k

rxk

h← h +
(a
hr−1 mod xk

)
· xk

k ← 2k

end while

Problem: hr mod x2k could be dense

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Sparse Newton Iteration to Compute Roots

Input: f ∈ R[x], r ∈ N s.t. f is a perfect rth power
Output: h ∈ R[x] s.t. f = hr

k ← 1; h← r
√

f (0)
while k ≤ (deg f)/r

a←
fh − hr+1 mod x2k

rxk

h← h +
(

a
f

mod xk
)
· xk

k ← 2k

end while

But we can prove hr+1 mod x2k is not dense
(assuming the output is sparse).

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Complexity of Computing the Root
Need a conjecture to prove output-sensitive polynomial time:

Conjecture

Given h ∈ R[x] and r, k ∈ N, we can compute hr mod xk in time
polynomial in:

The lacunary size of h

The lacunary size of hr mod xk, and

log r

Repeated squaring and truncating seems to satisfy this.

Update

We now have a (different) provable method of computing rth roots
in output-sensitive polynomial time
(almost certainly less efficient in practice).

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Conclusions and Future Directions

Contributions

Monte Carlo polynomial-time algorithm to determine if a
lacunary polynomial is a perfect power

Sparsity-sensitive Newton iteration to compute the root
(subject to conjectures)

Future Directions

Other Models Straight-line programs, black boxes, . . .

Other Domains Sparse integers, approximate, . . .

Other Problems Divisibility, reducibility, factorization, . . .

Lacunary Polynomials Our Algorithm Why it Works Implementation Computing the Root

Some Open Problems

Given f ∈ Z[x] with t nonzero terms, what is the
least number of terms in f 2? f r? g ◦ f ?

Given a black box (or SLP) for f ∈ Fq[x],
construct a black box (or SLP) for f 2 mod xk.

Find polynomial-time algorithms for lacunary polynomial
divisibility or reducibility tests, or prove they are NP-hard.

Solve any of these problems for sparse integers.

	Lacunary Polynomials
	Our Algorithm
	Why it Works
	Implementation
	Computing the Root

