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Polynomial Representations
A polynomial which is easy to write:

f (x) = x123705y9432 + 9 x95911y7510 + 3 x82470y6288 + 27 x68117y5588 + 18 x54676y4366

+ 3 x41235y3144 + 27 x40323y3666 + 27 x26882y2444 + 9 x13441y1222 + 1

How to represent this polynomial?
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Polynomial Representations
A polynomial which is easy to write:

f (x) = x123705y9432 + 9 x95911y7510 + 3 x82470y6288 + 27 x68117y5588 + 18 x54676y4366

+ 3 x41235y3144 + 27 x40323y3666 + 27 x26882y2444 + 9 x13441y1222 + 1

Dense Representation

For a degree-n polynomial in k variables:

Store a k-dimensional array of every possible coefficient

Size ≈ nk

This example: more than 1 GB!

More natural representation

Default in most CAS

Can be exponentially more compact
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Sparse Representation

For a degree-n polynomial in k variables with t terms:

Store a list of t coefficient-exponent tuples

Size ≈ kt log2 n

This example: less than 1 KB

More natural representation

Default in most CAS

Can be exponentially more compact
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Computing with Polynomials
Lots of things are easy when polynomials are dense:

GCD, factorization, Euclidean division

Relative Primality

Square-freeness

Divisibility

Reducibility

Evaluation, Differentiation

Interpolation

Root finding

Low-degree factors

Jacobi symbols, perfect square detection

Perfect power detection Today!
Something
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Computing with Polynomials
Some things are hard when polynomials are sparse:
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Relative Primality (Plaisted ’84)

Square-freeness (Karpinski & Shparlinski ’99)
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Computing with Polynomials
Some things might be hard when polynomials are sparse:
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Square-freeness (Karpinski & Shparlinski ’99)
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Evaluation, Differentiation
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Root finding
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Jacobi symbols, perfect square detection

Perfect power detection Today!
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Computing with Polynomials
Some things are easy when polynomials are sparse:

GCD, factorization, Euclidean division

Relative Primality (Plaisted ’84)

Square-freeness (Karpinski & Shparlinski ’99)

Divisibility

Reducibility

Evaluation, Differentiation

Sparse Interpolation
(Ben-Or & Tiwari ’88; Kaltofen & Lee ’03; G. & R. ’07)

Root finding (Cucker, Koiran, Smale ’99)

Low-degree factors (Lenstra ’99; Kaltofen & Koiran ’05,’06)

Jacobi symbols, perfect square detection (Shparlinski ’00)

Perfect power detection Today!
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Back to the example

f (x) = x123705y9432 + 9 x95911y7510 + 3 x82470y6288 + 27 x68117y5588 + 18 x54676y4366

+ 3 x41235y3144 + 27 x40323y3666 + 27 x26882y2444 + 9 x13441y1222 + 1

=
(
x41235y3144 + 3 x13441y1222 + 1

)3

r = 3

h(x) = x41235y3144 + 3 x13441y1222 + 1

We will use this notation consistently.
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Problems to Solve

1 Given f , determine whether f = hr for any h and r ≥ 2.

2 If so, find one such r.

3 Given r, find one such h.

Algorithm Requirements:

Cost polynomial in k, t, and log n

When R = Z, also polynomial in log ‖f ‖∞

First, we solve (1) and (2) for univariate integer polynomials.
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Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each possible r do

Probabilistically choose p with p - disc(f )
q← pr−1

Choose random α ∈ Z

α1

if f (α) is a perfect rth power then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Can’t evaluate over Z

1 Can restrict to r < 2 log2 ‖f ‖1

2 Five evaluations guarantees high probability of success
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Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each possible r do
Probabilistically choose p with p - disc(f )

q← pr−1

Choose random α ∈ Fp

α1

if f (α) is a perfect rth power then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Can’t determine rth-poweredness over Fp.

1 Can restrict to r < 2 log2 ‖f ‖1

2 Five evaluations guarantees high probability of success
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Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each possible prime r do
Probabilistically choose p with p - disc(f )
q← pr−1

Choose random α ∈ Fq

α1

if f (α)(q−1)/r = 1 then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Need some deeper math

1 Can restrict to r < 2 log2 ‖f ‖1

2 Five evaluations guarantees high probability of success
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Perfect Power Detection Algorithm

Input: f ∈ Z[x]
Output: r ≥ 2 s.t. f = hr for some h, or FALSE

for each prime r < 2 log2 ‖f ‖1 do
Probabilistically choose p with p - disc(f )
q← pr−1

Choose random α1, α2, . . . , α5 ∈ Fq

α1

if f (α1)(q−1)/r = · · · = f (α5)(q−1)/r = 1 then

f (α1)(q−1)/r

return r

end do

return FALSE

Problem: Need some deeper math

1 Can restrict to r < 2 log2 ‖f ‖1
2 Five evaluations guarantees high probability of success
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Bound on r

Theorem

If f ∈ Z[x] is a perfect rth power and has at least 2 terms, then

r ≤ 2 log2 ‖f ‖1.

Proof arises from orthogonality of DFT matrix

If f has only one term, the problem is trivial (primality testing).
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Perfect Power Evaluation Witnesses

Theorem

Suppose f ∈ Fq[x] has degree n and is not a perfect rth power.
Then, if q ≥ 4n2,

#
{
α ∈ Fq : f (α) is an rth power

}
≤

3q
4
.

Means that at least 1/4 of elements will be “good witnesses”.

Proof uses method of completing the character sum,
relying on a theorem of Weil (1948).

No information on the distribution of good witnesses.
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Perfect Power Detection

Theorem

For f ∈ Z[x] with degree n and t terms, we can determine whether
f is a perfect power using O(t log2 ‖f ‖∞ log2 n) bit operations.

Probabilistic Monte Carlo algorithm
(always fast; correct with arbitrarily high probability)

For f ∈ Q[x], can reduce to Z[x] by Gauß’s Lemma

The case of f ∈ Fq[x] is already handled!

For f ∈ R[x1, x2, . . . , xk], substitute random values for x2, . . . , xk

and work over R[x1].
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Previously-Known Methods to Detect Perfect Powers

Square-Free Decomposition (Yun ’76)

Computes f = gd1
1 gd2

2 · · · g
dk
k ,

for square-free, relatively prime, nonconstant g1, . . . , gk.
f is a perfect power iff gcd(d1, . . . , dk) > 1.

Implemented natively in NTL

Newton Iteration

For each r, computes a power series rth root of f .
Then Monte Carlo check by random evaluation.

Implemented in NTL by us

Follows best method for computing roots of integers
(Bach & Sorenson ’93; Bernstein ’98)

We also implemented our detection algorithm in NTL.
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Notes on the Timings

Square-free decomposition was always much slower;
not shown

Millions of trials, ZERO failures

Our algorithm wins even for dense polynomials
(it’s really a black-box algorithm)

Not a fair comparison because we’re not computing the root
(yet. . . )



Newton iteration (blue) vs. Lacunary Alg. (red) for n = 10, 000
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Computing Perfect rth roots

Problem

We can determine if f = hr for some h, and find r, but how do we
compute h given r and (lacunary) f ?

How dense can the root be?

This is a very old, well-studied problem
Erdös (’47); Coppersmith & Davenport (’91); Abbot (’02);
Schinzel (’87); Zannier (’07)

Still not known whether a sparse poly. may have a dense root.
(Our first thm. proves this for fixed-height integer polynomials)

We seek only output-sensitive algorithms
(i.e. assume h is sparse)
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Newton Iteration to Compute Roots

Input: f ∈ R[x], r ∈ N s.t. f is a perfect rth power
Output: h ∈ R[x] s.t. f = hr

k ← 1; h← r
√

f (0)
while k ≤ (deg f )/r

h← h +
f − hr

r hr−1 mod x2k

k ← 2k

end while

Let’s rearrange to give more insight into the computation
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Newton Iteration to Compute Roots

Input: f ∈ R[x], r ∈ N s.t. f is a perfect rth power
Output: h ∈ R[x] s.t. f = hr

k ← 1; h← r
√

f (0)
while k ≤ (deg f )/r

a←
f − hr mod x2k

rxk

h← h +
( a
hr−1 mod xk

)
· xk

k ← 2k

end while

Problem: hr mod x2k could be dense
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Sparse Newton Iteration to Compute Roots

Input: f ∈ R[x], r ∈ N s.t. f is a perfect rth power
Output: h ∈ R[x] s.t. f = hr

k ← 1; h← r
√

f (0)
while k ≤ (deg f )/r

a←
fh − hr+1 mod x2k

rxk

h← h +
(

a
f

mod xk
)
· xk

k ← 2k

end while

But we can prove hr+1 mod x2k is not dense
(assuming the output is sparse).
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Complexity of Computing the Root
Need a conjecture to prove output-sensitive polynomial time:

Conjecture

Given h ∈ R[x] and r, k ∈ N, we can compute hr mod xk in time
polynomial in:

The lacunary size of h

The lacunary size of hr mod xk, and

log r

Repeated squaring and truncating seems to satisfy this.

Update

We now have a (different) provable method of computing rth roots
in output-sensitive polynomial time
(almost certainly less efficient in practice).
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Conclusions and Future Directions

Contributions

Monte Carlo polynomial-time algorithm to determine if a
lacunary polynomial is a perfect power

Sparsity-sensitive Newton iteration to compute the root
(subject to conjectures)

Future Directions

Other Models Straight-line programs, black boxes, . . .

Other Domains Sparse integers, approximate, . . .

Other Problems Divisibility, reducibility, factorization, . . .
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Some Open Problems

Given f ∈ Z[x] with t nonzero terms, what is the
least number of terms in f 2? f r? g ◦ f ?

Given a black box (or SLP) for f ∈ Fq[x],
construct a black box (or SLP) for f 2 mod xk.

Find polynomial-time algorithms for lacunary polynomial
divisibility or reducibility tests, or prove they are NP-hard.

Solve any of these problems for sparse integers.
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