
Computer Science Department

SI496 Research Project Report

Spring 2003

HUMAN INTERFACE DEVICE DESIGN FOR SIMULATING A

MANUAL TRANSMISSION

by

Midshipman Steven A. Ekdahl, 041926

United States Naval Academy

Annapolis, MD

Certification of Faculty Mentor's Approval

Assistant Professor David J. Stahl, Jr.

Department of Computer Science

Department Chair Endorsement

Professor Patrick Harrison

Chair, Department of Computer Science

 i

ABSTRACT

The visual and behavioral realism exhibited by inexpensive (consumer-targeted)

driving simulation software has continually improved in recent years. To further enhance

the sense of realism, various human interface devices (HID) are available that allow a

user to control the simulation in much the same manner as one would in the real world.

By manipulating a steering wheel or by depressing an accelerator and brake pedal, and in

some cases through rudimentary force-feedback, the interaction realism of the simulation

is enhanced. Current simulations are lacking, however, in a conspicuous absence of gear

shift and clutch mechanism. Adding this capability would significantly enhance the

sense of realism in simulations that model manual transmissions.

The goal of this proposal is to design and implement, (1) human input

mechanisms to simulate a clutch pedal and engine transmission state, (2) a Microsoft

Windows application to display this input graphically, and (3) an I/O device to read the

input mechanisms and drive the display. Specifically, the USB standard will be used as

the interface between a physical input mechanism and a simulated application. The

mechanical position of a clutch pedal will be modeled using a potentiometer, and the

engaged or disengaged state of a transmission gear will be modeled using a switch. Pedal

position and transmission state will visualized in real time, on-screen. The results of this

research provide a foundation for anticipated follow-on development of a more

sophisticated transmission model, including engine response and force-feedback.

Keywords: USB, human-interface device, peripheral

 ii

TABLE OF CONTENTS

1. INTRODUCTION..1

2. BACKGROUND ..1

2.1 Preliminary Work in Core Courses ...1

2.2 Universal Serial Bus Introduction ...2

 2.2.1 Universal Serial Bus Communication From the Top Down........................2

 2.2.1.1 Standard Device Types vs. Custom Devices3

 2.2.1.2 Communication and the Layered Driver Model4

 2.2.1.3 USB Driver Layers ..4

 2.2.1.4 Bus Drivers and Host Controllers .. 5

3. RESEARCH GOALS.. 6

4. RESEARCH METHODOLOGIES... 7

4.1 Hardware .. 7

 4.1.1 USB Hardware Design Considerations.. 8

4.2 Software...10

 4.2.1 Firmware Engineering and Keil..11

 4.2.2 Class Drivers...12

 4.2.3 Application Programming Interface ...12

5. ANALYSIS ..13

5.1 Options for Firmware Loading..13

5.2 A/D and I
2
C ...16

5.3 The Demonstration Program ...18

6. CONCLUSIONS AND LESSONS LEARNED ..21

7. FUTURE WORK ...22

APPENDIX A -API FUNCTION FORMAT ..23

APPENDIX B- DEMONSTRATION PROGRAM SOURCE CODE..............................26

LIST OF REFERENCES...30

INITIAL DISTRIBUTION LIST ..31

 iii

LISTS OF FIGURES

Figure 1. USB LAYERED DRIVER MODEL UNDER WINDOWS8

Figure 2. USB COMMUNICATION VIA DRIVERS ..10

Figure 3. COMPONENTS OF HUMAN INTERFACE DESIGN11

Figure 4. SWITCH SCHEMATIC...13

Figure 5. LED SCHEMATIC ..14

Figure 6. PRIOR TO FIRMWARE LOAD ...19

Figure 7. POST FIRMWARE LOAD..20

Figure 8. PCF8591 ADDRESS BYTE ..22

Figure 9. PCF8591 ADDRESS ASSIGNMENT...22

Figure 10. CONTROL PANEL USER INTERFACE ..23

Figure 11. CIRCUIT DIAGRAM..ATTACHED

 iv

ACKNOWLEGEMENTS

Many thanks to the Computer Science Department for giving me this opportunity to

branch out of the offered curriculum and to expand my computer science knowledge and

experience. I especially appreciate the efforts of Professor Stahl, who always made it

clear that he had confidence in my abilities when I was hitting brick walls, and he was

usually right. The Electrical Engineering Department was instrumental in providing me

with the tools necessary to get the job done; special thanks to the Electrical Engineering

Department Technicians. Commander Cameron of the Electrical Engineering

Department was always able to make time for me, aid me in realizing the big picture, and

guide me when I was going off course. Finally, big thanks for all the help from Michael

DeVault at Devasys; without his aid I would still be spinning my wheels.

1

1. INTRODUCTION

 This paper examines the design, development, and implementation of a Universal

Serial Bus Human Interface Device. This project is a portion of a larger scheme aimed at

improving current practice in vehicle engine simulation through more realistic modeling

of a manual transmission. Designing an algorithm that models vehicle performance

would be facilitated by physical devices providing input similar to that received by an

actual manual transmission. The first step in this project is to design and construct

hardware to give such inputs to simulation software. The Universal Serial Bus (USB)

interface is well suited for this hardware requirement. USB has much to offer in the area

of peripheral development. Recent improvements in development tools have made it

easier and more affordable to design simple USB peripherals. Because USB devices are

"hot swappable" and require very little user intervention during installation, USB is an

ideal interface for developing I/O devices and associated application software of the type

needed to realistically simulate a vehicle engine.

2. BACKGROUND

 This section discusses preliminary studies that aided in understanding and

designing the USB peripheral as well as a basic understanding of how the Universal

Serial Bus works on a Microsoft Windows based personal Computer.

2.1 PRELIMINARY WORK IN CORE COURSES

 This project was especially rewarding in that it drew from my knowledge in many

courses in the Computer Science curriculum. Of the all the core courses completed in

Computer Science thus far, most are represented in some way in this project.

Programming skills learned in SI204 (Introduction to Computer Science) were needed to

develop application software written in the C programming language. SI332 (Computer

Architecture) played a major role in my understanding of microcontrollers, most

specifically the Cypress AN2131QC Microcontroller. SI311 (Assembly Language)

proved to be a great complement to my knowledge in SI332 and aided my understanding

2

of the Technical Reference Manual (TRM) for the AN2131QC. The circuit design would

not have been possible without basic electrical engineering skills learned through EE221

(1
st
 Semester Circuit Analysis for Electrical Engineering Majors). The continuation to

EE302 (Digital Communications and Computer Technology) came just in time to solve a

major design issue of converting an analog signal to a digital signal (A/D conversion).

Progress would have been hindered without knowledge of successive-approximation

converters.

2.2 UNIVERSAL SERIAL BUS INTRODUCTION

 The Universal Serial Bus provides users and developers a relatively simple

interface with which to work. Its ease-of-use capability makes installation much more

user friendly and is easier to reconfigure than other buses. The following sections give an

overview of Universal Serial Bus communications with a host computer.

2.2.1 UNIVERSAL SERIAL BUS COMMUNICATION FROM THE TOP DOWN

To keep application programmers from getting mired in the details of directly

implementing the USB protocol in every application needing a USB device, a USB

device driver is used. The device driver translates between the application and hardware.

It converts a request from the Application Programming Interface (API) into a format the

USB drivers can interpret. Access to the device circuits is handled at the device driver

level. API functions allow programmers to make calls to the device through their

application program code. The Windows Driver Model for USB devices takes a layered

approach to handle communication between host and peripheral. As shown in Figure 1,

the Function Drivers handle communication between applications and Bus Drivers,

which in turn manage communication between Function Drivers and Hardware. Filter

Drivers may complement the Function Drivers and Bus Drivers as necessary.

3

 Figure 1. Windows USB Layered Driver Model [1]

2.2.1.1 STANDARD DEVICE TYPES VS. CUSTOM DEVICES

Devices that fit into popular categories such as printers, keyboards, mice, disk

drives, etc. are considered standard to the USB and form a core set of device classes.

Knowing that developers must write drivers for devices that fall into popular categories,

USB was created in such a way as to ease the development process to increase its usage

and become the interface of choice for peripherals. Class drivers facilitate this goal

because they are automatically assigned to and installed upon a generic device connecting

to the host. Firmware, local to the peripheral, provides notification via device descriptors

to an operating system (OS), identifying itself as a peripheral in a generic class.

Microsoft Windows™ ("Windows"), for example, will thus assign an appropriate class

driver. Furthermore, should a generic class driver not be sufficient for the device’s

needs, a filter driver provides added functionality, although it must be written by the

4

developer. Custom devices demand a more labor intensive process for development.

Devices for specialized applications often require an entirely new driver to be written,

although in some cases a device may be designed such that complies with existing class

capabilities, and just needs a bit of extra functionality, which a filter driver can provide.

2.2.1.2 COMMUNICATION AND THE LAYERED DRIVER MODEL

USB device drivers take advantage of the privileged access offered by Windows,

which permits code to execute in either user mode or kernel mode. User mode imposes

limitations on memory access and resource usage. Kernel mode allows access to any

portion of system resources, including I/O ports. Figure 1 illustrates this separation of

access into user and kernel mode access. Communication between the WIN32

Subsystem and Bus Driver is accompished using I/O Request Packets (IRPs) used by the

USB drivers and managed by the operating system.

2.2.1.3 USB DRIVER LAYERS

In Windows, the I/O subsystem manages device input and output communication.

Within the I/O subsystem lies the USB subsystem containing drivers to handle USB

communication. Requests pass through the USB subsystem in layers. Figure 2

represents requests passing between layers. Notice the 3 device-class drivers sitting

above the 3 bus-class drivers. This logically separates code specific to the device and

code specific to hardware on the host. As seen in Figure 2 the function driver allows

applications to communicate with a device using API functions. The importance of the

function driver lies in that it allows for the application to know nothing of the USB

protocol. This driver is commonly referred to as the device driver and is either device-

specific or class specific. Furthermore, filter drivers are implemented when a device has

needs that a class driver cannot fulfill alone. This driver adds the needed capabilities.

Known as the upper filter driver, it sits above the class driver, as shown above. Requests

from the application enter the filter driver first and are then passed to the class driver. In

addition, a lower filter driver exists between the class driver and bus drivers to “enable a

single class driver to support multiple interfaces, with each driver supporting class-

specific operations required for an interface.”[1]

5

Figure 2. USB communication via function, filter, and bus drivers [1]

2.2.1.4 BUS DRIVERS AND HOST CONTROLLERS

The bus drivers for USB are the root-hub driver, the bus-class driver, and the host

controller driver. The root hub takes care of initializing ports and communication

between device drivers and bus-class drivers. As shown in Figure 2, the bus driver is

responsible for bus power, enumeration, USB transactions, and acts as the medium

between the root hub driver and the host controller driver. The host controller driver

allows for communication to the USB system software. The system files within the host

controller driver communicate with the local host controller hardware. Three types of

host controllers exist for USB. The Open Host Controller Interface (OHCI) and

Universal Host Controller Interface (UHCI) are for low-speed (1.5 Mbps) and full-speed

APPLICATIONS

UPPER FILTER DRIVER

SUPPORTS DEVICE-SPECIFIC

CAPABILITIES

LOWER FILTER DRIVER

ENABLES DEVICES TO COMMUNICATE

WITH THE SYSTEM’S USB DRIVERS

CLASS FUNCTION DRIVER

DEFINES A USER

INTERFACE FOR A CLASS

CUSTOM FUNCTION DRIVER

DEFINES A USER INTERFACE

FOR CUSTOM HARDWARE

USB HUB DRIVER

(USBHUB.SYS):

INITIALIZES PORTS

USB BUS-CLASS DRIVER

(USBD.SYS):

MANAGES USB TRANSACTIONS, POWER, BUS ENUMERATION

HOST CONTROLLER DRIVER

(UHCI.SYS, OPENHCI.SYS, EHCI.SYS):

COMMUNICATES WITH HARDWARE

6

(12 Mbps) devices. The Enhanced Host Controller Interface (EHCI) was designed for

large data transfer rates and is considered high-speed (480 Mbps). These controllers

provide communication from USB hardware to the bus class driver such that they

coincide with the type of USB device connected.

3. RESEARCH GOALS

Three components are required in designing a HID that models a manual transmission:

Figure 3. Components of human interface design

1. Hardware: Physical mechanisms for obtaining human input and providing

response feedback (clutch and accelerator pedals, gearshift); input/output (I/O)

device for reading/writing this low-level data.

2. Firmware: I/O device read/write functions to translate between the low-level

physical device and the higher level application.

3. Software: HID driver, Transmission and engine response model, Visual, audio,

and haptic displays (instrument panel gauges, audio output, force-feedback)

Many design alternatives and development environments are possible. The

Universal Serial Bus (USB) standard is a popular choice for device I/O in consumer

applications. Its appeal is due to “plug-n-play” capability that in most cases only requires

a user to find the correct port into which to plug a HID. Microsoft Windows is an

attractive choice as an application platform due to its dominance in the consumer market,

I/O device

Firmware

Physical

I/O

Mechanisms

Application

HID Driver

Hardware

Software

7

but in addition, it is appealing as a development environment. The Windows Driver

Development Kit, for example, provides an HID class for use in designing an HID driver.

This research focuses on the USB 2.0 Specification and hardware solutions

needed to get the proper inputs for application software. Specifically, the following goals

are identified:

1. Study the USB 2.0 specification for familiarity and working knowledge.

2. Develop an understanding of the Windows Driver Model.

3. Investigate choices for and select a USB controller chip, interface board, and

 firmware development software.

4. Interface a switch and potentiometer as input to the USB device.

5. Test the USB device I/O functions.

6. Implement a graphical display for potentiometer position and switch state.

4. RESEARCH METHODOLOGIES

 Considerable preparatory study was required to establish what hardware was

necessary for providing the desired input and output functionality. Hardware was

acquired, assembled and tested, and application software to visually display switch

(clutch) and potentiometer (pedal) operation was designed and implemented.

4.1 HARDWARE

The investigation phase of this research led first to the USB specification and the

Hyde [1] and Axelson texts [8] on USB peripheral development. After reading these

books, it became clear I needed a USB interface board that would provide I/O ports

capable of transferring data needed by the application (display) software. After

reviewing many USB development kits, I settled on the Devasys USB I2C/IO (Revision

B) interface board [2]. The primary reasons were cost and functionality: it is a very low

cost board with development capability. Its versatility allowed for firmware to be loaded

into the onboard Electronically Erasable Programmable Memory (EEPROM) or into the

random access memory of the Cypress AN2131QC micro-controller. The following is a

more detailed discussion of how this hardware was used.

8

4.1.1 USB HARDWARE DESIGN CONSIDERATIONS

 The starting point for designing custom hardware was deciding on a USB

interface board. A USB interface board is a relatively straightforward device to

understand. A series-B plug is the downside link toward the USB function (device) and

provides two data lines, ground, and power to the USB interface board. The series-B

socket is the interface between the plug and the micro-controller. The onboard micro-

controller must be specifically designed to contain an instruction set that is compatible

with the USB protocol. Connected to the micro-controller is EEPROM which houses

instructions for the micro-controller to fetch and execute. Also connected to the micro-

controller is any special function hardware that is micro-controller specific as well as

input and output ports for developer constructed hardware.

 Taking this information into account and the cost of development kits, it was an

easy choice when looking at what Devasys offered. For minimal cost, I was able to

obtain a board that allowed for I
2
C compatible hardware as well as connections to the

board’s 20 I/0 pins. I visualized 8 pins for input (1st-7
th

 gear and reverse), 8 pins for

output (feedback to each gear), and 3 pins left over for addressing the analog input

channels through the PCF8591. Since the board requires high input levels of 3.3 volts, it

was necessary to compute what resistance was necessary for pull-up resistors with a 3.3

V input. Drawing on my EE221 experience, I knew voltage = current * resistance, and I

had a .5 milliamp goal. Thus, 3.3 V = .0005 A* R, so the resistance required was 6600

Ohms. Three 2200 Ohm resistors were used in series to give the required resistance of

6600 Ohms. Eight switches completed the pull-up resistor mechanism. Figure 1 is a

diagram of proper pull-up resistor implementation.

9

+
3.3 Volts

+
3.3 V

2200 Ohm s
2200 Ohm s

2200Ohms

GND

Switch

Input to Micro-controller (3.3 Volts)

Figure 4. Switch schematic

Light emitting diodes (LEDs) rated for 3.3V were found to be well suited for output from

the micro-controller. The LEDs used have an internal resistance designed for 3.3V so no

external resistor is necessary for proper operation (see Figure 2).

Light Em itting Diode

GND

3.3 Volt Output Port from Micro-controller

Figure 5. LED Schematic

 Variable resistors (potentiometers) were required to model a range of values such

as those that would be received from an accelerator pedal. The next step was to figure

out how to get the analog signal from the variable resistors into a digital form the micro-

controller could understand. Limitations on the number of I/O pins eliminated the

possibility of using a conventional successive-approximation converter (SAC) ADC.

Unfortunately, the API that was to be used with the board did not allow SACs to be

10

connected directly to I/O pins. Additionally, the API does not permit access to the micro-

controller’s internal clock. It was therefore necessary to find an SAC with I
2
C Bus

compatibility. The Philips PCF8591 chip was the only I
2
C compatible ADC found that

meets required voltage specifications and provides adequate resolution.

 The Electrical Engineering technicians were able to provide all the necessary

hardware for basic I/O, but unfortunately, they did not have analog-to-digital converters

with the all important I
2
C interface. Philips had the only ADC (PCF8591) I found able to

operate with a supplied voltage of 3.3 volts, contain the I
2
C interface, allow for 4 analog

inputs, and be in a dual inline pin package so it could fit onto the breadboard I was using.

Bancroft Hall computer repair provided the 34-pin cable used for I/O, and again, the

Electrical Engineering department provided a 5-pin cable for the I
2
C bus, the breadboard,

digital multi-meter, soldering iron, geek box, and a plethora of wire, and other

miscellaneous parts.

 It was ascertained that the application software had to interpret the serial signals

relayed from the SAC through the I
2
C Bus to the micro-controller, thus requiring an

algorithm to convert values sent from the SAC. Figure 11 shows how hardware external

to the I
2
C bus is connected in order to produce proper digital output for an analog input.

4.2 SOFTWARE

 Simply connecting the hardware so everything functions as it is supposed to does

not mean it can stand alone. Control mechanisms need to be in place for the device to

behave as desired. For the scope of this project there are 3 major levels of

communication used by the developer to get signals from the device to the computer

screen and vice versa. They include firmware, an application programming interface

(API), and application software. Firmware is external to the personal computer and

resides on the USB I2C/IO development board, specifically in the onboard EEPROM or

in the random access memory (RAM) inside the AN2131QC micro-controller. This

software is critical to the development board’s communication with the host controller.

The host controller depends on the firmware to properly identify the device in which it

resides, the type of device it is, and the specific input and output it responds to. For

11

example, the firmware provided by Devasys does not provide the API with "hooks" for

responding to calls for the micro-controller’s clock. This is not to say implementing

hooks to send the clock’s state to the API, when called, is impossible. Writing new

firmware would make it possible. Taking this into account, it is obvious that firmware is

a vital medium between host controller and hardware external to the USB I2C/IO

interface to provide communication ultimately to the application software.

 The application programming interface is essential for application software to

access the USB device. To utilize an application programming interface, 3 files are

necessary. A dynamic link library (.dll), a library file (.lib), and a header file (.h) must be

installed for application software programming. The header file provides the calls to the

device which send and receive data pertaining to device function. In the Devasys API,

functions such as opening the USB I2C/IO device, configuring input and output, sending

output, receiving input, and I
2
C reading and writing are all available to the application

programmer.

 Once firmware has been written to the desired specifications, and an API is found

that provides the necessary interface to the device, application programming can take

place. At this point enough testing has been accomplished such that the reliability of the

custom USB peripheral hardware is known.

4.2.1 FIRMWARE ENGINEERING AND KEIL

 With current and subsequent research in mind, it was advantageous to acquire a

development environment that could produce firmware that would lead to a greater

understanding of embedded system design. The development environment that met those

interests was Keil µVision 2. This is a compiler for micro-controllers and supports the

8051 core. Researching descriptor tables, HID usage tables, and previously written

firmware and running through several examples in the µVision 2 development

environment greatly enhanced my understanding of firmware and how it relates to micro-

controllers.

12

4.2.2 CLASS DRIVERS

 During initial research, I thought I would have to write a driver to allow the

Operating System access to the device. With the advent of class drivers in the Windows

Operating systems, this is no longer an issue. Since the hardware being developed is a

Human Interface Device (HID), it is part of a category of peripherals recognized by

Microsoft as a major part of the peripheral industry. In order to facilitate development of

human interface devices, the HID class driver is available in windows. In order to tell the

operating system the USB peripheral developed is a human interface device, descriptor

tables in firmware are read and the operating system recognizes a line in the descriptor

tables that defines the type of USB device. This support of a generic class of devices

eliminates the need to install or write drivers.

4.2.3 APPLICATION PROGRAMMING INTERFACE

 The Devasys API was ideal for use in a project with basic I/O needs. Since the

API is written for the C programming language, it is also necessary to write the

application software in C. Using Microsoft Visual C++ 6.0, I was able to successfully

open the device and use the function calls dictated by the API. The following list the

API functions that were used [6] (see Appendix A for API function format):

DetectDevice Return true if device handle is valid

 (device present).

OpenDeviceInstance Opens a handle to a specified device instance.

CloseDeviceInstance Closes a device instance handle.

ConfigIoPorts Configures the I/0 port bits as Inputs or Outputs.

ReadIoPorts Reads from the I/O pins (both inputs and outputs).

WriteIoPorts Writes to the I/O output pins.

ReadI2c Executes an I
2
C read transaction

WriteI2c Executes an I
2
C write transaction

Implementation of these function calls provide the application software with the

mechanisms for input and output consistent for the requirements of this project.

13

5. ANALYSIS

 After extensive research as to how bring a control interface to life, I needed to

determine a specific and detailed path to reach the end state defined by the project goals.

The following information provides insight into the path taken, alternative solutions, and

problems encountered while attempting to develop working USB hardware.

5.1 OPTIONS FOR FIRMWARE LOADING

 The Devasys USB I2C/IO device allows for a few options regarding loading

firmware. The board can acquire its firmware in one of 3 ways:

1. EEPROM

2. The Cypress EZ-USB Control Panel

3. Dynamic Downloading using LoadEz.sys

 The first option, using Electronically Erasable Programmable Memory

(EEPROM) to load firmware is not conducive to a development process. When a

peripheral has finished development, it is advantageous to keep the firmware in

EEPROM to avoid having to manually load it as that is required for the other two options

listed. When permanently loading firmware to EEPROM, the jumper JP2 must be

located over pins 3 and 4 to allow writing. Locating the jumper over pins 1 and 2 will

write protect the EEPROM after the desired firmware is loaded. EEPROM can be erased

and used again, but for the development process it is best to avoid this scheme.

The second option is to use the Cypress EZ-USB Control Panel. This method

provides a convenient way to develop and implement custom firmware without having to

worry about what the name of the hex file is and where it must be placed in the OS

directory structure in order to work properly. To utilize this method of firmware loading,

the jumper JP2 must be removed from any pins it is connecting. At this point connecting

the USB I2C/IO development board will result in a different VID and PID recognized by

the OS. The EEPROM is considered “missing” without the jumper connecting pins 1 and

2 or 3 and 4. In the absence of EEPROM, firmware is loaded into onboard random

14

access memory. The device is then generically identified by its micro-controller, the

Cypress AN2131QC with appropriate VID and PID being sent to the OS to identify the

device as such. At this point the Cypress EZ-USB Control Panel Program is usable and

has the ability to load firmware, which is one among many functions of this program.

Figure 4 shows a screen shot of the loading of firmware for a mouse (ezmouse.hex).

Figure 6. Prior to Firmware Load

15

Figure 7. Post Firmware Load

*HID-compliant mouse is now listed under “Mice and other pointing devices.”

*USB Human Interface Device is now listed under “Human Interface Devices.”

*Cypress EZ-USB (2131Q/2131S/2135S) – EEPROM missing no longer exists as under

“Universal Serial Bus controllers.”

The third option, dynamic downloading of firmware, is the option selected for this

project. The USB I2C/IO device obtains firmware from the host using John Hyde’s

LoadEz.sys driver. Upon enumeration of the device the EMPTY USB I2C/IO is listed

with a vendor identification (VID) of 0x0ABF (Devasys), and product identification

(PID) 0x03E8 (empty USB I2C/IO). This is possible because the VID and PID are

already located in EEPROM. The VID and PID are sent to the host to aid in firmware

loading. The host will then load the LoadEz.sys driver and uploads the firmware file

0ABF03E8.hex to the USB I2C/IO device. The board is then reset and goes through

enumeration once again. This time the USB I2C/IO device retains the same VID and

PID, but will load the UsbI2cIo.sys driver. At this stage, the API provided by Michael

DeVault can be used to make calls to the different functions of the device. One of the

advantages to using the USB I2C/IO is the fact that it uses an EZ-USB micro-controller,

16

the Cypress AN2131QC. The unique feature of the micro-controller being EZ-USB is

that it can disconnect/connect using its software, so the firmware loading technique is not

exclusive to the Devasys firmware 0ABF03E8.hex. When provided a VID and PID, the

Windows OS will search SystemRoot/System32/Drivers directory for a file named

VID_PID_.hex. VID_ is the vendor identification in four hexadecimal digits and PID_ is

the product identification in four hexadecimal digits. The OS loads the hex file onto the

USB I2C/IO development board and releases RESET so the onboard micro-controller can

run the loaded firmware program.

Either of the last two options described is effective for the development process.

Option three was chosen because writing custom firmware was not necessary to complete

the project, although it is anticipated that follow on research will require writing such

firmware.

5.2 A/D AND I
2
C

 Getting the switches and lights in working order is straight forward and all that is

needed is a HIGH or LOW voltage to notify the I/O ports. The difficulty came in when

an analog signal needed to be represented digitally. Because I was using firmware

written by another programmer, his accompanying API was not uniquely suited for my

project needs. In the absence of access to the internal clock, the only way to get an

analog signal through ports A, B, or C is to use a flash ADC. This would not provide a

high enough resolution due to a flash ADC’s large hardware requirements and high cost.

The successive approximation ADC was the hardware solution needed; but because the

API was only set up to handle specialized ADCs with I
2
C capability, a conventional SAC

ADC could not be used. The Philips PCF8591 was found to meet the required

specifications. The PCF8591 has four analog input pins and provides constant polling of

changing voltage. A control byte is sent to the PCF8591 to indicate which analog input

pin to read from. Unfortunately, either the API does not successfully send a control byte

or the control byte is ignored by the PCF8591 because calls to change the read to the

second analog input pin yield no data. This problem was overcome by using a second

PCF8591. See the attached schematic for details on how the two PCF8591s were

17

connected to the USB I2C/IO interface board. The address byte sent to the I
2
C bus is

read by the PCF8591. Figure 7 shows the address byte sent to through the I
2
C bus.

Figure 8. PCF8591 Address Byte[4]

This byte is sent along the I
2
C bus data line (SDA on Figure 3). Any hardware connected

along SDA will receive this byte, therefore setting A0 HIGH on the second PCF8591 will

make its address 001 and the entire byte in hex is 0x92. Figure 8 shows the two

PCF8591s and how their addresses are established in the circuit.

Figure 9. PCF8591 Address Assignment[4]

Now that the two PCF8591s have different addresses, they can both be polled and

respond independently. This will solve the problem with the control byte and allow the

API to obtain the states of two analog signals.

Programmable bits Fixed bits

msb

1

R/W

A0

A1

A2

1

0

0

lsb

18

5.3 THE DEMONSTRATION PROGRAM

Microsoft Visual C++ 6.0 was found to meet the needs required to develop a

demonstration program. The fact that the API was written for the C programming

language and its availability through the Computer Science department made it the

compiler of choice. Furthermore, a Microsoft Foundation Class (MFC) Application

(executable) provides the necessary user interface options to put together a control panel

that would account for all project I/O. It was clear that there were three areas of

programming that needed algorithms: the ability to turn on/off any light emitting diode

(LED); the states of eight switches; and dual potentiometer output. A screen capture is

provided in Figure 10.

Figure 10. Control panel user interface

The scheme used turns LEDs on or off independently of one another. Clicking a

check box will set the appropriate port HIGH, and 3.3V will travel through the attached

LED which results in an ON state. When the box is not checked, the appropriate port is

set to LOW and the LED is in the OFF state.

19

The following code demonstrates how the state of the first LED was manipulated.

void CControlPanelDlg::OnLed1()

{

 if(((CButton *)GetDlgItem(IDC_LED1))->GetCheck() == 0) // unchecked

 // write to port B0

 DAPI_WriteIoPorts(hDevInstance, 0x00000000, 0x00000100);

 if(((CButton *)GetDlgItem(IDC_LED1))->GetCheck() == 1) // checked

 // write to port B0

 DAPI_WriteIoPorts(hDevInstance, 0xFFFFFFFF, 0x00000100);

}

*Note the first four hexadecimal digits in 0x00000000 refer to the states of port A and port B respectively

(0x0000BBAA). If AA were F9 the state ports A7-A0 would read 1111|1001, similarly if BB were 9F the

state of ports B7-B0 would read 1001|1111

When the first LED check box is clicked, it calls OnLed1 and checks to see whether the

check box is being filled or not. A filled check box results in a 1 being written to port

B0. The last parameter in DAPI_WriteIoPorts defines which port is allowed to be written

to. The state of the port is manipulated in the second parameter. Since B0 is the only

port allowed to be written to, sending 0xFFFFFFFF to the API will only change B0.

Using eight of these functions allows for the control of all attached LEDs.

 The state of the switches was the next step in programming the demonstration

application. The scheme for the LEDs indicated earlier is not sufficient to read the states

of switches that can change at any given time. To solve this issue a timer[3] was

implemented and used to poll the switch state every 100 milliseconds. In order to check

the state of the switches, the API function DAPI_ReadIoPorts was called to get a

snapshot of all I/0 ports on the USB I2C/IO device. Since it was in an eight digit hex

format, bit masking was necessary to obtain the state of an individual port (switch). This

section of code shows how the bit masking was accomplished:

if(variableToRead & 0x00000008) // bit mask: is port A3 HIGH?

 // port A3 HIGH, fill box

 ((CButton *)GetDlgItem(IDC_SWITCH4))->SetCheck(1);

else

 // port A3 LOW, clear box

 ((CButton *)GetDlgItem(IDC_SWITCH4))->SetCheck(0);

*Note the last hexadecimal digit in 0x00000008 corresponds to binary 1000, which mean port A3 is being

referenced in this case.

20

 The next problem to address was displaying the output of the two potentiometers.

As indicated earlier, PCF8591 is accessed through an address byte. In the USB I2C/IO

API User’s Guide the address byte for the PCF8591 was referenced by the member

variable “bySlvDevAddr” and is used for specifying what the API refers to as the

“Control Byte” for the I
2
C transaction. What the API defines as the “Control Byte”

differs from what the PCF8591 defines as the “Control Byte.” The API’s control byte

takes care of operations along the I
2
C bus. The control byte defined in the PCF8591

datasheet deals only with operations (ADC, DAC, etc.) the PCF8591 can perform. After

noting the conflicting terminology, the following algorithm was implemented to get

analog output to control the sliders in the demonstration application:

I2C_TRANS I2cTrans; // I2C Transaction Structure for I2C operations

LONG lRetVal; // return value from function calls

// PCF8591 is not a memory device so there is no memory address scheme

I2cTrans.byTransType = I2C_TRANS_NOADR;

I2cTrans.bySlvDevAddr = 0x90; // address of first PCF8591

// I2C_TRANS_NOADR transactions => I2cTrans.wMemoryAddr member not used

I2cTrans.wMemoryAddr = 0x0000;

I2cTrans.wCount = 1; // number of bytes to be written

lRetVal = DAPI_ReadI2c(hDevInstance, &I2cTrans);

if (lRetVal) { // determine if transaction was successful

 for(int i=0; i<I2cTrans.wCount; i++) {

 m_ctrl1.SetPos(I2cTrans.Data[i]); // slider 1

 CString s;

 s.Format("%d",I2cTrans.Data[i]);

 m_SliderVal1.SetWindowText(s);

 }// end for

} // end if

I2cTrans.bySlvDevAddr = 0x92; // address of second

lRetVal = DAPI_ReadI2c(hDevInstance, &I2cTrans);

if (lRetVal) {

 for(int j=0; j<I2cTrans.wCount; j++) {

 m_ctrl2.SetPos(I2cTrans.Data[j]); // slider 2

 CString s;

 s.Format("%d",I2cTrans.Data[j]);

 m_SliderVal2.SetWindowText(s);

 }// end for

} // end if

21

I2cTrans denotes an instance of the structure “I2C_TRANS”. 1RetVal is used to check

to see if the transaction along the I
2
C bus was successful. Since the PCF8591 is not a

memory device, a memory addressing scheme does not exist for it, hence the transaction

type is defined as “I2cTrans.byTransType = I2C_TRANS_NOADR;”. The address of

the first PCF8591 is assigned to the member variable “bySlvDevAddr”. A memory

schem does not exist so the memory address is set to zero by “I2cTrans.wMemoryAddr =

0x0000;”. Next, the number of bytes written is determined by the programmer with the

assignment statement “I2cTrans.wCount = 1;”. Since the wCount was chosen as one

there will be only one byte read during the transaction. 1RetVal is then assigned a value

based on whether or not the I
2
C transaction was successful. The selection statement

following that does a Boolean operation to determine whether or not it should execute the

lines within its block of code. Returning a 1 will have the expression evaluate to true and

returning a 0 will have the expression evaluate to false. Assuming the transaction was a

success, the value stored in the 256 byte read/write buffer during the read I
2
C transaction

is passed to the user interface to update the slider via the command

“m_ctrl1.SetPos(I2cTrans.Data[i]);”. The same procedure was carried out for the second

PCF8591, the only change being “bySlvDevAddr”, which was assigned a value of 0x92

to address the second PCF8591.

6. CONCLUSIONS AND LESSONS LEARNED

After experiencing the difficulty with acquiring specialized parts, it was clear that

relying on firmware written by others makes designing a custom USB peripheral that

much more complicated. Taking this into account, it is ideal to have the embedded

systems programming knowledge to be able to use hardware immediately available.

Realizing that peripheral components of personal computers rely heavily on firmware for

communication to devices, it is advantageous to know this area thorougly.

The functionality of the API provided by Michael DeVault of Devasys had

limited versatility. The conflicting terminology of “Control Byte” used by both the API

User’s Guide and the PCF8591 datasheet was a source of confusion since they were

referencing bytes that were different. If a write I
2
C transaction were to take place, there

is no way for a control byte defined by the PCF8591 to be sent by the API.

22

An unresolved problem in this project concerns analog input. Upon viewing one

of the analog signal inputs, the serial data line and the serial clock line on the I
2
C bus

through an oscilloscope, the PCF8591 appears suspect. Conversions are transmitted by

the PCF8591 in the proper format, but the data output is not consistent with the analog

voltage input. The cause of this is unknown, but it is obvious the PCF8591 is not

correctly converting the analog signal . In addition, when turning on multiple LEDs,

some of the LEDs will turn off randomly. I attribute this to noise in the circuit and

possibly an unfavorable circuit layout. Both of these issues should be resolved before

expanding the scope of this project in follow-on research involving USB devices.

7. FUTURE WORK

Although I now have a device that would allow me to proceed to the simulation

programming phase of manual transmission modeling, I feel I would have only scratched

the surface of embedded systems programming. This portion of the project is ideal

because it highlights the importance of embedded systems programmers in many facets

of hardware development. While I have come away with an excellent overview and

grasp of what it takes to put together a USB peripheral, learning embedded systems

would give me the skills to free myself of USB interface board designers.

Next semester I plan to continue development in the area of embedded systems.

Using my existing hardware in conjunction with Keil µVision 2 provides me with the

capability to learn the tools of the trade that would allow me to connect the conventional

successive-approximation converter directly to the I/O pins, bypassing the I
2
C bus. After

developing the hooks in the firmware for the application programming interface, the C++

programming language would be my language of choice for the programming

environment in which the API function calls would exist. Successfully writing firmware

and an API would yield real benefits and skills that I could take directly to a future

career.

23

APPENDIX A – API FUNCTION FORMAT

DetectDevice:

Prototype: BOOL _stdcall DAPI_DetectDevice(HANDLE hDevInstance);

Parameters: HANDLE hDevInstance

A HANDLE (long int) to a device instance. Specifies which USB I
2
C/IO device

instance.

Return Value: A BOOL indicating whether the device is still attached (TRUE when device is attached).

OpenDeviceInstance:

Prototype: HANDLE _stdcall DAPI_OpenDeviceInstance(LPSTR IpsDevName, BYTE

byDevInstance);

Parameters: LPSTR IpsDevName

 A long pointer to a string, which contains the symbolic name of the device’s driver. For

the generic USB I
2
C/IO device the symbolic name is “USBI2cIo”.

 BYTE byDevInstance

A byte representing the device instance. The first device attached is usually device

instance 0, the 2
nd

 is usually 1, etc.

Return Value: A HANDLE (long int) to the specified device instance. The first device attached is

usually device instance 0, the 2
nd

 is usually 1, etc.

CloseDeviceInstance:

Prototype: BOOL _stdcall DAPI_CloseDeviceInstance(HANDLE hDevInstance);

Parameters: HANDLE hDevInstance

A HANDLE (long int) to a device instance. Specifies which USB I
2
C/IO device

instance.

Return Value: Returns a non-zero value to indicate success, zero to indicate failure.

ConfigIoPorts:

Prototype: BOOL _stdcall DAPI_ConfigIoPorts(HANDLE hDevInstance, ULONG

UlIoPortConfig);

Parameters: HANDLE hDevInstance

A HANDLE (long int) to a device instance. Specifies which USB I
2
C/IO device

instance.

ULONG ulIoPortConfig

An unsigned long specifying the desired configuration for the I/O port bits.

The bit mapping is as follows:

0x000CBBAA

Where C, B, and A correspond to the port bits

Byte[0] bits 7..0 = Port A bits 7..0 configuration value

Byte[1] bits 7..0 = Port B bits 7..0 configuration value

 Byte[2] bits 3..0 = Port C bits 7..4 configuration value

Byte[2] bits 7..4 = reserved

Byte[3] bits 7..0 = reserved

Return Value: Returns a non-zero value to indicate success, zero to indicate failure.

ReadIoPorts:

Prototype: BOOL _stdcall DAPI_ReadIoPorts(HANDLE hDevInstance, LPLONG IpulIoPortData);

Parameters: HANDLE hDevInstance

A HANDLE (long int) to a device instance. Specifies which USB I
2
C/IO device

instance.

LPLONG IpulIoPortData

A long pointer to an unsigned long specifying the location to store the data read from the

I/O ports.

The bit mapping is as follows:

24

0x000CBBAA

Where C, B, and A correspond to the port bits

Byte[0] bits 7..0 = Port A bits 7..0 configuration value

Byte[1] bits 7..0 = Port B bits 7..0 configuration value

 Byte[2] bits 3..0 = Port C bits 7..4 configuration value

Byte[2] bits 7..4 = reserved

Byte[3] bits 7..0 = reserved

Return Value: Returns a non-zero value to indicate success, zero to indicate failure.

WriteIoPorts:

Prototype: BOOL _stdcall DAPI_WriteIoPorts(HANDLE hDevInstance, ULONG ulIoPortMask);

Parameters: HANDLE hDevInstance

A HANDLE (long int) to a device instance. Specifies which USB I
2
C/IO device

instance.

ULONG ulIoPortData

An unsigned long specifying the data to write to the I/O ports.

The bit mapping is as follows:

0x000CBBAA

Where C, B, and A correspond to the port bits

Byte[0] bits 7..0 = Port A bits 7..0 configuration value

Byte[1] bits 7..0 = Port B bits 7..0 configuration value

 Byte[2] bits 3..0 = Port C bits 7..4 configuration value

Byte[2] bits 7..4 = reserved

Byte[3] bits 7..0 = reserved

ULONG ulIoPortMask

An unsigned long specifying the data mask to use when modifying the I/O ports outputs.

The mask value allows a Read-Modify-Write operation to occur at the firmware level,

which frees the application software from having to maintain an image of the ports, and

reduces USB traffic.

The bit mapping is as follows:

0x000CBBAA

Where C, B, and A correspond to the port bits

Byte[0] bits 7..0 = Port A bits 7..0 configuration value

Byte[1] bits 7..0 = Port B bits 7..0 configuration value

 Byte[2] bits 3..0 = Port C bits 7..4 configuration value

Byte[2] bits 7..4 = reserved

Byte[3] bits 7..0 = reserved

Return Value: Returns a non-zero value to indicate success, zero to indicate failure.

ReadI2c:

Prototype: LONG_stdcall DAPI_ReadI2c(HANDLE hDevInstance, I2C_TRANS * TransI2C);

Parameters: HANDLE hDevInstance

 A HANDLE (long int) to a device instance. Specifies which USB I
2
C/IO device

instance.

 I2C_TRANS * TransI2C

 A pointer to an I2C_TRANS structure. The I2C_TRANS structure is used to specify the

details of an I
2
C transaction (device address, number of bytes, etc.).

 The I2C_TRANS structure is defined in the dll header file as follows:

 Typedef struct _I2C_TRANS{

 BYTE byTransType;

 BYTE bySlvDevAddr;

 WORD wMemoryAddr;

 WORD wCount;

 BYTE Data[256];

 } I2C_TRANS, *PI2C_TRANS;

25

Return Value: On success, returns the number of bytes successfully read from the specified I
2
C device.

On failure, returns a negative number.

WriteI2c:

Prototype: LONG_stdcall DAPI_WriteI2c(HANDLE hDevInstance, I2C_TRANS * TransI2C);

Parameters: HANDLE hDevInstance

 A HANDLE (long int) to a device instance. Specifies which USB I
2
C/IO device

instance.

 I2C_TRANS * TransI2C

 A pointer to an I2C_TRANS structure. The I2C_TRANS structure is used to specify the

details of an I
2
C transaction (device address, number of bytes, etc.).

 The I2C_TRANS structure is defined in the dll header file as follows:

 Typedef struct _I2C_TRANS{

 BYTE byTransType;

 BYTE bySlvDevAddr;

 WORD wMemoryAddr;

 WORD wCount;

 BYTE Data[256];

 } I2C_TRANS, *PI2C_TRANS;

Return Value: On success, returns the number of bytes successfully written to the specified I
2
C device.

On failure, returns a negative number.

26

APPENDIX B- DEMONSTRATION PROGRAM SOURCE CODE

CONTROL PANELDLG.CPP

// Control PanelDlg.cpp : implementation file

#include "stdafx.h"

#include "Control Panel.h"

#include "Control PanelDlg.h"

#include "UsbI2cIo.h"

// Global Handle

HANDLE hDevInstance = INVALID_HANDLE_VALUE; // device instance handle

// Global reading reference

long variableToRead;

CControlPanelDlg::CControlPanelDlg(CWnd* pParent /*=NULL*/)

 : CDialog(CControlPanelDlg::IDD, pParent)

{

 //{{AFX_DATA_INIT(CControlPanelDlg)

 //}}AFX_DATA_INIT

 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CControlPanelDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CControlPanelDlg)

 DDX_Control(pDX, IDC_SLIDERVAL2, m_SliderVal2);

 DDX_Control(pDX, IDC_SLIDERVAL1, m_SliderVal1);

 DDX_Control(pDX, IDC_SLIDER2, m_ctrl2);

 DDX_Control(pDX, IDC_SLIDER1, m_ctrl1);

 //}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CControlPanelDlg, CDialog)

 //{{AFX_MSG_MAP(CControlPanelDlg)

 ON_WM_PAINT()

 ON_WM_QUERYDRAGICON()

 ON_BN_CLICKED(IDC_LED1, OnLed1)

 ON_BN_CLICKED(IDC_LED2, OnLed2)

 // etc, other LED

 ON_WM_TIMER()

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

27

///

// CControlPanelDlg message handlers

BOOL CControlPanelDlg::OnInitDialog()

{

 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 m_ctrl1.SetRange(0,255,false);

 m_ctrl1.SetPos(0);

 m_ctrl2.SetRange(0,255,false);

 m_ctrl2.SetPos(0);

 hDevInstance = DAPI_OpenDeviceInstance("UsbI2cIo",0);

 if(hDevInstance != INVALID_HANDLE_VALUE) {

 DAPI_ReadIoPorts(hDevInstance, &variableToRead);

 // success - device instance handle opened

 AfxMessageBox("Opened device: UsbI2cIo0");

 // configure A.0 through A.7: 0 = output, 1 = input

 DAPI_ConfigIoPorts(hDevInstance, 0x000000FF);

 // write to all ports to intialize

DAPI_WriteIoPorts(hDevInstance, 0x00000000, 0xFFFFFFFF

 m_timer = SetTimer(IDT_TIMER_0, 100, NULL);

 }

 else

 AfxMessageBox("Failed to open device UsbI2cIo0\n");

 return TRUE

}

28

// LED CONTROL

void CControlPanelDlg::OnLed1()

{

 // button is unchecked

 if(((CButton *)GetDlgItem(IDC_LED1))->GetCheck() == 0)

 // write to port B0

 DAPI_WriteIoPorts(hDevInstance, 0x00000000, 0x00000100);

 // button is checked

 if(((CButton *)GetDlgItem(IDC_LED1))->GetCheck() == 1

 DAPI_WriteIoPorts(hDevInstance, 0xFFFFFFFF, 0x00000100);

}

// etc, for remaining LED 2 through 7

// SWITCH CONTROL

void CControlPanelDlg::OnTimer(UINT nIDEvent)

{

 if(KillTimer(IDT_TIMER_0))

 {

 // get a snapshot of all the I/O ports on the device

 DAPI_ReadIoPorts(hDevInstance, &variableToRead);

 if(variableToRead & 0x00000001)

 // port A0 HIGH? check box

 ((CButton *)GetDlgItem(IDC_SWITCH1))->SetCheck(1);

 else

 // port A0 LOW? clear box

 ((CButton *)GetDlgItem(IDC_SWITCH1))->SetCheck(0);

 // etc., for remaining switches

 // SLIDER CONTROL

 // reset the timer

 m_timer = SetTimer(IDT_TIMER_0, 100, NULL);

 }

 CDialog::OnTimer(nIDEvent);

}

29

///

CONTROL PANELDLG.H

#define IDT_TIMER_0 WM_USER + 200

class CControlPanelDlg : public CDialog

{

// Construction

public:

 UINT m_timer;

 CControlPanelDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data

 //{{AFX_DATA(CControlPanelDlg)

 enum { IDD = IDD_CONTROLPANEL_DIALOG };

 CStatic m_SliderVal2;

 CStatic m_SliderVal1;

 CSliderCtrl m_ctrl2;

 CSliderCtrl m_ctrl1;

 //}}AFX_DATA

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CControlPanelDlg)

 protected:

 virtual void DoDataExchange(CDataExchange* pDX);

 //}}AFX_VIRTUAL

// Implementation

protected:

 HICON m_hIcon;

 // Generated message map functions

 //{{AFX_MSG(CControlPanelDlg)

 virtual BOOL OnInitDialog();

 afx_msg void OnPaint();

 afx_msg HCURSOR OnQueryDragIcon();

 virtual void OnOK();

 afx_msg void OnLed1();

 afx_msg void OnLed2();

 // etc. other LED

 afx_msg void OnTimer(UINT nIDEvent);

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

30

LIST OF REFERENCES

[1] Axelson, Jan. USB Complete: Second Edition. (Madison: Lakeview Research, 2001).

[2] DeVault, Michael. http://www.devasys.com/usbi2cio.htm. USB I2C/IO Rev B. 20

APR 2003.

[3] MSDN Library. http://msdn.microsoft.com/library/default.asp. Microsoft Developers

Network. 23 APR 2003.

[4] PCF8591 Datasheet.

http://www.semiconductors.philips.com/acrobat/datasheets/PCF8591_6.pdf.

PCF8591 I
2
C ADC. 20 APR 2003.

[5] Ross, Kevin. http://www.seattlerobotics.org/encoder/mar97/basics.html. The Basics:

Very Basic Circuits. 20 APR 2003.

[6] USB I2C/IO API Users Guide.

http://www.devasys.com/download/UsbI2cIo/API%20User's%20Guide.pdf. USB

I2C/IO Revision B. 20 APR 2003.

[7] USB I2C/IO Revision B Schematic. http://www.devasys.com/i2ciob/schematic.pdf.

USB I2C/IO Revision B. 20 APR 2003.

[8] Hyde, John. USB Design by Example: A Practical Guide to Building I/O Devices,

 John Wiley & Sons, 1999.

